首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
2.
DNase I and MPE.Fe (II) footprinting both employ partial cleavage of ligand-protected DNA restriction fragments and Maxam-Gilbert sequencing gel methods of analysis. One method utilizes the enzyme, DNase I, as the DNA cleaving agent while the other employs the synthetic molecule, methidium-propyl-EDTA (MPE). For actinomycin D, chromomycin A3 and distamycin A, DNase I footprinting reports larger binding site sizes than MPE.Fe (II). DNase I footprinting appears more sensitive for weakly bound sites. MPE.Fe (II) footprinting appears more accurate in determining the actual size and location of the binding sites for small molecules on DNA, especially in cases where several small molecules are closely spaced on the DNA. MPE.Fe (II) and DNase I report the same sequence and binding site size for lac repressor protein on operator DNA.  相似文献   

3.
4.
Insulin-like growth factor 2 (Igf 2) and H19 genes are oppositely imprinted and as such have been most extensively studied imprinted genes both genetically and at the molecular level. Imprints of the H19 gene, being established during spermatogenesis, are epigenetically transmitted to the somatic cells of the embryo. Current hypotheses attempting to explain the allele-specific silence of the H19 gene include DNA methylation and chromatin condensation. In order to understand the molecular basis of H19 epigenesis, it is crucial to identify the markings in the chromatin organising the imprinted domain in spermatozoa. Using Micrococcal nuclease (MNase), DNase I and Methidiumpropyl-EDTA. iron II (MPE·Fe(II)) as chromatin probes, we demonstrate that in mouse epididymal spermatozoa, at least 4 kb DNA upstream of the H19 ‘cap’ site, containing the imprinted and differentially methylated domain (DMD), is heterochromatic. The cleavage sites in this domain (−2 to −4 kb) exhibit ~425 bp periodicity. This structure is maintained in the paternal allele of normal embryos and is disrupted at −2.2, −2.65 and at −3.5 kb in embryos maternally disomic for the distal end of chromosome 7 (MatDp 7). The hypersensitive sites in chromatin precisely register the MPE·Fe(II) cleavage sites in chromosomal DNA. Therefore, the DNA sequences in the imprinted domain constrain the chromatin structure in a way similar to that of 1.688 g/cm3 Drosophila satellite chromatin. In addition, we find that condensation of the paternal allele correlates with methylation-dependent alteration in the structure of DNA sequences in DMD. These results suggest that CpG-methylation induces localised changes in DNA conformation and these facilitate consequent remodelling of chromatin thereby allowing the paternal and maternal H19 alleles to be distinguished.  相似文献   

5.
6.
7.
8.
We have used line HS-2 of Drosophila melanogaster, carrying a silenced transgene in the pericentric heterochromatin, to investigate in detail the chromatin structure imposed by this environment. Digestion of the chromatin with micrococcal nuclease (MNase) shows a nucleosome array with extensive long-range order, indicating regular spacing, and with well-defined MNase cleavage fragments, indicating a smaller MNase target in the linker region. The repeating unit is ca. 10 bp larger than that observed for bulk Drosophila chromatin. The silenced transgene shows both a loss of DNase I-hypersensitive sites and decreased sensitivity to DNase I digestion within an array of nucleosomes lacking such sites; within such an array, sensitivity to digestion by MNase is unchanged. The ordered nucleosome array extends across the regulatory region of the transgene, a shift that could explain the loss of transgene expression in heterochromatin. Highly regular nucleosome arrays are observed over several endogenous heterochromatic sequences, indicating that this is a general feature of heterochromatin. However, genes normally active within heterochromatin (rolled and light) do not show this pattern, suggesting that the altered chromatin structure observed is associated with regions that are silent, rather than being a property of the domain as a whole. The results indicate that long-range nucleosomal ordering is linked with the heterochromatic packaging that imposes gene silencing.  相似文献   

9.
R P Hertzberg  P B Dervan 《Biochemistry》1984,23(17):3934-3945
The synthesis of methidiumpropyl-EDTA (MPE) is described. The binding affinities of MPE, MPE.Ni(II), and MPE.Mg(II) to calf thymus DNA are 2.4 X 10(4) M-1, 1.5 X 10(5) M-1, and 1.2 X 10(5) M-1, respectively, in 50 mM NaCl, pH 7.4. The binding site size is two base pairs. MPE.Mg(II) unwinds PM2 DNA 11 +/- 3 degrees per bound molecule. MPE.Fe(II) in the presence of O2 efficiently cleaves DNA and with low sequence specificity. Reducing agents significantly enhance the efficiency of the cleavage reaction in the order sodium ascorbate greater than dithiothreitol greater than NADPH. At concentrations of 0.1-0.01 microM in MPE.Fe(II) and 10 microM in DNA base pairs, optimum ascorbate and dithiothreitol concentrations for DNA cleavage are 1-5 mM. Efficient cleavage of DNA (10 microM in base pairs) with MPE.Fe(II) (0.1-0.01 microM) occurs over a pH range of 7-10 with the optimum at 7.4 (Tris-HCl buffer). The optimum cleavage time is 3.5 h (22 degrees C). DNA cleavage is efficient in a Na+ ion concentration range of 5 mM to 1 M, with the optimum at 5 mM NaCl. The number of single-strand scissions on supercoiled DNA per MPE.Fe(II) under optimum conditions is 1.4. Metals such as Co(II), Mg(II), Ni(II), and Zn(II) inhibit strand scission by MPE. The released products from DNA cleavage by MPE.Fe(II) are the four nucleotide bases. The DNA termini at the cleavage site are 5'-phosphate and roughly equal proportions of 3'-phosphate and 3'-(phosphoglycolic acid). The products are consistent with the oxidative degradation of the deoxyribose ring of the DNA backbone, most likely by hydroxy radical.  相似文献   

10.
The role of local sequence information in establishing the chromatin structure of the human c-myc upstream region (MUR) was investigated. Adeno-associated virus (AAV)-mediated gene transduction was used to introduce an additional unrearranged copy of the 2.4 kb HindIII-XhoI fragment of the MUR into a novel location in the genome in each of two cloned HeLa cell lines. The AAV-based rep- cap- viral vector SKMA used to transduce the MUR retained only 1.4 kb (24%) of the AAV genome and could accommodate inserts as large as 2.4 kb. SKMA was capable of infecting HeLa cells and integrating into the host genome at single copy number. Integration may have occurred at a preferred site in the HeLa genome, but this site was apparently distinct from the previously identified preferred AAV integration site on human chromosome 19. Indirect end-labelling was used to map DNase I and micrococcal nuclease (MNase) cleavage sites over the transduced c-myc sequences and the endogenous c-myc loci in infected HeLa cells. A similarly ordered chromatin domain, extending 5' from c-myc promoter P0, was found to exist at the transduced c-myc locus in each clone. The position and relative sensitivity of 13 MNase cleavage sites and five DNase I hypersensitive sites, originally identified at the endogenous MUR in non-transduced cells, were shown to be conserved when this DNA was moved to a new chromosome site. A conserved DNase I hypersensitive site also was mapped to the region between the left AAV terminal repeat and AAV promoter P5. These results suggest that the information required to establish the particular chromatin structure of the MUR resides within the local DNA sequence of that region.  相似文献   

11.
In chromosomes of metazoa, the assembly of the genome into chromatin makes an important but poorly understood contribution to determining where DNA replication will initiate. We addressed this issue by studying the developmental progression of the location of the DNA replication origin (ORI) and alterations in chromatin structure in one of the best-mapped ORIs in metazoa, that found in DNA puff II/9A of the fly Sciara coprophila. We found that DNA synthesis for both normal chromosomal endoduplication and DNA amplification initiates within the same 5.5 kb EcoRI fragment. We showed that irrespective of the mode of ORI function--replication or amplification--chromatin over the 1 kb major ORI is never remodeled into a conventional DNase I hypersensitive site (DH site). Instead, we found that the major site of alterations to chromatin structure at this locus is a large (approximately 400 bp) DH site located 600 bp away from the major ORI, at a position where the frequency of replication initiation events falls dramatically. We describe a tight positive correlation between ORI activity, strength of this DH site, and the intranuclear titer of protein factor(s) that bind the DH site in a sequence-specific manner. We propose that the Sciara replicator in locus II/9A is composed of sequences that reside within the ORI per se as well as sequences encompassed by the DH site.  相似文献   

12.
13.
M W Van Dyke  P B Dervan 《Biochemistry》1983,22(10):2373-2377
The DNA binding sites for the antitumor, antiviral, antibiotics chromomycin, mithramycin, and olivomycin on 70 base pairs of heterogeneous DNA have been determined by using the (methidiumpropyl-EDTA)iron(II) [MPE x Fe(II)] DNA cleavage inhibition pattern technique. Two DNA restriction fragments 117 and 168 base pairs in length containing the lactose operon promoter-operator region were prepared with complementary strands labeled with 32P at the 3' end. MPE x Fe(II) was allowed to partially cleave the restriction fragment preequilibrated with either chromomycin, mithramycin, or olivomycin in the presence of Mg2+. The preferred binding sites for chromomycin, mithramycin, and olivomycin in the presence of Mg2+ appear to be a minimum of 3 base pairs in size containing at least 2 contiguous dG x dC base pairs. Many binding sites are similar for the three antibiotics; chromomycin and olivomycin binding sites are nearly identical. The number of sites protected from MPE x Fe(II) cleavage increases as the concentration of drug is raised. For chromomycin/Mg2+, the preferred sites on the 70 base pairs of DNA examined are (in decreasing affinity) 3'-GGG, CGA greater than CCG, GCC greater than CGA, CCT greater than CTG-5'. The sequence 3'-CGA-5' has different affinities, indicating the importance of either flanking sequences or a nearly bound drug.  相似文献   

14.
15.
The Mu in vitro strand transfer reaction proceeds via two stable higher order nucleoprotein complexes, the Type 1 and Type 2 transpososomes. The Mu A protein is responsible for the structural and functional integrity of the Type 1 transpososome. We have investigated the quaternary structure of the Mu A protein within this complex by chemical cross-linking experiments and found that the basic structural unit is an A tetramer. Three Mu A binding sites in the transpososome are protected by DNase I footprinting: the outermost A binding sites L1 and R1, as well as R2. Genetic evidence is also presented which corroborates this result. Efficient formation of Type 1 complexes occurs in mini-Mus with the L3 or R3 sites deleted or when the L2 site has been substituted; but no reaction occurs in the absence of R2. The protection at the L1 and R1 sites extends 12-13 bp beyond the Mu-host junctions as seen by DNase I and methidiumpropyl-EDTA.Fe(II) [MPE.Fe(II)] foot-printing, indicating Mu A contacts with the flanking host sequences in the transpososome but not on linear DNA; furthermore, hydroxyl radical footprinting shows an unprecedentedly large enhancement on the continuous strand, 2 bp beyond the nick site outside the Mu right end, which suggests that an altered DNA structure is induced upon Type 1 complex formation.  相似文献   

16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号