首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Despite a large number of studies focusing on the complexity of coral reef habitats and the characteristics of associated fish assemblages, the relationship between reef structure and fish assemblages remains unclear. The textural discontinuity hypothesis, which proposes that multi-modal body size distributions of organisms are driven by discontinuous habitat structure, provides a theoretical basis that may explain the influence of habitat availability on associated organisms. In this study we use fractal techniques to characterize patterns of cross-scale habitat complexity, and examine how this relates to body-depth abundance distributions of associated fish assemblages over corresponding spatial scales. Our study demonstrates that: (1) Reefs formed from different underlying substrata exhibit distinct patterns of cross-scale habitat complexity; (2) The availability of potential refuges at different scales correlates with patterns in fish body depth distributions, but habitat structure is more strongly related to the relative abundance of fish in the body depth modes, rather than to the number of modes; (3) As reefs change from coral- to algal-dominated states, the complexity of the underlying reef substratum may change, presenting a more homogenous environment to associated assemblages; (4) Individual fish body depth distributions may be multi-modal, however, these distributions are not static characteristics of the fish assemblage and may change to uni-modal forms in response to changing habitat condition. In light of predicted anthropogenic changes, there is a clear need to improve our understanding of the scale of ecological relationships to anticipate future changes and vulnerabilities.  相似文献   

2.
The potential to carry out oxygenic photosynthesis after prolonged burial below the photic zone was studied at 0.1-mm depth intervals in the thick, laminated Microcoleus chthonoplastes mats growing in Solar Lake, Sinai. The buried mat community lost about 20% of its photosynthetic potential with depth per annual layer down to 8- to 10-year-old layers at a 14-mm depth. In some of the older layers, below a 30-mm depth, light-dependent oxygen consumption which increased with increasing light intensity was observed. Possible mechanisms for this phenomenon are (i) pseudocyclic electron transport (Mehler reaction), (ii) interactions between respiratory electron transport and photosynthetic electron transport, (iii) photorespiration, and (iv) photooxidation.  相似文献   

3.
4.
The recruitment of juvenile corals and post-settlement mortalityare important processes for coral population dynamics and reefcommunity ecology. I monitored juvenile coral recruitment andsurvival on a severely disturbed reef in Bermuda from 1981 to1989 and on adjacent healthy reefs from 1986 to 1990. Poritesastreoides was the dominant recruiting species at all sites,due to the release of brooded planulae that may settle rapidly.The dominant corals on Bermuda's reef, Diploria spp., were poorrecruiters, perhaps due to the broadcast mode of reproductionof these species. However, Diploria spp. have lower juvenilemortality rates compared to P. astreoides, which may explaintheir abundance on Bermuda's reefs. Brooding corals, primarily agariciids, were the dominant recruitson Atlantic reefs compared to high recruitment rates by spawningacroporids in the Pacific, which may be the result of differentenvironmental conditions and/or evolutionary trends in the twooceans. The latter group also suffered high post-settlementmortality compared to brooding coralsin both the Atlantic andthe Pacific. Massive corals in both oceans had generally lowrecruitment rates, related to their spawning mode of reproduction,and low rates of post-settlement mortality. The dominant roleof long-lived massive corals on the Atlantic and Pacific reefscan be understood in terms of their life-history strategy incomparison to the relatively short-lived Pacific acroporidsand Atlantic agariciids that rely on different strategies tomaintain their populations.  相似文献   

5.
The Gulf of Papagayo at the northern Pacific coast of Costa Rica experiences pronounced seasonal changes in water parameters caused by wind-driven coastal upwelling. While remote sensing and open water sampling already described the physical nature of this upwelling, the spatial and temporal effects on key parameters and processes in the water column have not been investigated yet, although being highly relevant for coral reef functioning. The present study investigated a range of water parameters on two coral reefs with different exposure to upwelling (Matapalo and Bajo Rojo) in a weekly to monthly resolution over one year (May 2013 to April 2014). Based on air temperature, wind speed and water temperature, three time clusters were defined: a) May to November 2013 without upwelling, b) December 2013 to April 2014 with moderate upwelling, punctuated by c) extreme upwelling events in February, March and April 2014. During upwelling peaks, water temperatures decreased by 7°C (Matapalo) and 9°C (Bajo Rojo) to minima of 20.1 and 15.3°C respectively, while phosphate, ammonia and nitrate concentrations increased 3 to 15-fold to maxima of 1.3 μmol PO4 3- L-1, 3.0 μmol NH4 + L-1 and 9.7 μmol NO3 - L-1. This increased availability of nutrients triggered several successive phytoplankton blooms as indicated by 3- (Matapalo) and 6-fold (Bajo Rojo) increases in chlorophyll a concentrations. Particulate organic carbon and nitrogen (POC and PON) increased by 40 and 70% respectively from February to April 2014. Dissolved organic carbon (DOC) increased by 70% in December and stayed elevated for at least 4 months, indicating high organic matter release by primary producers. Such strong cascading effects of upwelling on organic matter dynamics on coral reefs have not been reported previously, although likely impacting many reefs in comparable upwelling systems.  相似文献   

6.
For 30 years it has been assumed that a single species of cyanobacteria, Phormidium corallyticum, is the volumetrically dominant component of all cases of black band disease (BBD) in coral. Cyanobacterium-specific 16S rRNA gene primers and terminal restriction fragment length polymorphism analyses were used to determine the phylogenetic diversity of these BBD cyanobacteria on coral reefs in the Caribbean and Indo-Pacific Seas. These analyses indicate that the cyanobacteria that inhabit BBD bacterial mats collected from the Caribbean and Indo-Pacific Seas belong to at least three different taxa, despite the fact that the corals in each case exhibit similar signs and patterns of BBD mat development.  相似文献   

7.
Community structure and assembly are determined in part by environmental heterogeneity. While reef-building corals respond negatively to warming (i.e. bleaching events) and ocean acidification (OA), the extent of present-day natural variability in pH on shallow reefs and ecological consequences for benthic assemblages is unknown. We documented high resolution temporal patterns in temperature and pH from three reefs in the central Pacific and examined how these data relate to community development and net accretion rates of early successional benthic organisms. These reefs experienced substantial diel fluctuations in temperature (0.78°C) and pH (>0.2) similar to the magnitude of 'warming' and 'acidification' expected over the next century. Where daily pH within the benthic boundary layer failed to exceed pelagic climatological seasonal lows, net accretion was slower and fleshy, non-calcifying benthic organisms dominated space. Thus, key aspects of coral reef ecosystem structure and function are presently related to natural diurnal variability in pH.  相似文献   

8.
Caribbean coral reefs are becoming structurally simpler, largely due to human impacts. The consequences of this trend for reef-associated communities are currently unclear, but expected to be profound. Here, we assess whether changes in fish assemblages have been non-random over several decades of declining reef structure. More specifically, we predicted that species that depend exclusively on coral reef habitat (i.e., habitat specialists) should be at a disadvantage compared to those that use a broader array of habitats (i.e., habitat generalists). Analysing 3727 abundance trends of 161 Caribbean reef-fishes, surveyed between 1980 and 2006, we found that the trends of habitat-generalists and habitat-specialists differed markedly. The abundance of specialists started to decline in the mid-1980s, reaching a low of ~60% of the 1980 baseline by the mid-1990s. Both the average and the variation in abundance of specialists have increased since the early 2000s, although the average is still well below the baseline level of 1980. This modest recovery occurred despite no clear evidence of a regional recovery in coral reef habitat quality in the Caribbean during the 2000s. In contrast, the abundance of generalist fishes remained relatively stable over the same three decades. Few specialist species are fished, thus their population declines are most likely linked to habitat degradation. These results mirror the observed trends of replacement of specialists by generalists, observed in terrestrial taxa across the globe. A significant challenge that arises from our findings is now to investigate if, and how, such community-level changes in fish populations affect ecosystem function.  相似文献   

9.
Caribbean reefs have steadily declined during the past 30 years. Thermal disturbances that elicit coral bleaching have been identified as a major driver of such coral degradation. It has been suggested that either the evolution of more tolerant symbionts, or shifts in the distribution of existing, tolerant symbionts could ameliorate the effect of rising sea temperatures on Caribbean reefs. Using a spatial ecosystem model we describe the characteristics that new tolerant symbionts, ‘super-symbionts’, and their coral hosts, require for coral cover to be maintained. We also quantify the time necessary for such symbionts to become dominant before their potential beneficial effect is lost. Running scenarios under two levels of greenhouse gas emissions, we find that aggressive action to reduce emissions could almost triple the time available for new super-symbionts to become dominant and potentially mitigate the effect of thermal disturbances. The benefits of thermally tolerant super-symbionts depend on the life-history traits of the host, the number of coral species infected and the present coral assemblage. Corals that are strong competitors with macroalgae are likely to become dominant on future reefs if a super-symbiont appears in the next 25–60 years. In principle, super-symbionts could have ecosystem-level benefits in the Caribbean providing that they become dominant in multiple coral hosts with specific life-history traits within the next 60 years. This potential benefit would only be realized if the appearance of the super-symbiont is combined with drastic reductions of greenhouse gas emissions and maintenance of ecosystem processes such as herbivory.  相似文献   

10.
Sediments are widely accepted as a threat to coral reefs but our understanding of their ecological impacts is limited. Evidence has suggested that benthic sediments bound within the epilithic algal matrix (EAM) suppress reef fish herbivory, a key ecological process maintaining reef resilience. An experimental combination of caging and sediment addition treatments were used to investigate the effects of sediment pulses on herbivory and EAMs and to determine whether sediment addition could trigger a positive-feedback loop, leading to deep, sediment-rich turfs. A 1-week pulsed sediment addition resulted in rapid increases in algal turf length with effects comparable to those seen in herbivore exclusion cages. Contrary to the hypothesised positive-feedback mechanism, benthic sediment loads returned to natural levels within 3 weeks, however, the EAM turfs remained almost 60% longer for at least 3 months. While reduced herbivore density is widely understood to be a major threat to reefs, we show that acute disturbances to reef sediments elicit similar ecological responses in the EAM. With reefs increasingly threatened by both reductions in herbivore biomass and altered sediment fluxes, the development of longer turfs may become more common on coral reefs.  相似文献   

11.
This study provides the first evaluation of abundance and diversity of polychaete annelid assemblages of coral reefs. Quantitative analyses of the polychaete fauna of truncated coral reef limestone platforms off Sumatra and Thailand revealed a total of 76 species (13 reported for the first time from the tropical Indian Ocean) and average population densities of 49,000/m2. The number of species in a single sample ranged from 16 to 32, and species diversity (H) ranged from 1.9 to 2.5. Three species of Syllidae, Palola siciliensis, and Dodecaceria laddi occurred in all samples. The syllids dominated numerically in all samples but were quite small, mainly 2–10 mm long and 0.01–0.04 mg dry weight. Samples from the same station were essentially identical in species composition and relative abundance. Similarity decreased with increasing distance between stations. With respect to number of species, population density, and dominance of syllids, the assemblages studied resemble those associated with limestone substrates in marine caves in the Mediterranean.  相似文献   

12.
13.
14.
The coral reefs at the northernmost tip of Sabah, Borneo will be established under a marine protected area: the Tun Mustapha Park (TMP) by the end of 2015. This area is a passage where the Sulu Sea meets the South China Sea and it is situated at the border of the area of maximum marine biodiversity, the Coral Triangle. The TMP includes fringing and patch reefs established on a relatively shallow sea floor. Surveys were carried out to examine features of the coral reefs in terms of scleractinian species richness, and benthic reef assemblages following the Reef Check substrate categories, with emphasis on hard coral cover. Variation in scleractinian diversity was based on the species composition of coral families Fungiidae (n = 39), Agariciidae (n = 30) and Euphylliidae (n = 15). The number of coral species was highest at reefs with a larger depth gradient i.e. at the periphery of the study area and in the deep South Banggi Channel. Average live hard coral cover across the sites was 49%. Only 7% of the examined reefs had > 75% hard coral cover, while the majority of the reef sites were rated fair (51%) and good (38%). Sites with low coral cover and high rubble fragments are evidence of blast fishing, although the observed damage appeared old. Depth was a dominant factor in influencing the coral species composition and benthic reef communities in the TMP. Besides filling in the information gaps regarding species richness and benthic cover for reef areas that were previously without any data, the results of this study together with information that is already available on the coral reefs of TMP will be used to make informed decisions on zoning plans for conservation priorities in the proposed park.  相似文献   

15.
Palsa peatlands, permafrost-affected peatlands characteristic of the outer margin of the discontinuous permafrost zone, form unique ecosystems in northern-boreal and arctic regions, but are now degrading throughout their distributional range due to climate warming. Permafrost thaw and the degradation of palsa mounds are likely to affect the biogeochemical stability of soil organic matter (that is, SOM resistance to microbial decomposition), which may change the net C source/sink character of palsa peatland ecosystems. In this study, we have assessed both biological and chemical proxies for SOM stability, and we have investigated SOM bulk chemistry with mid-infrared spectroscopy, in surface peat of three distinct peatland features in a palsa peatland in northern Norway. Our results show that the stability of SOM in surface peat as determined by both biological and chemical proxies is consistently higher in the permafrost-associated palsa mounds than in the surrounding internal lawns and bog hummocks. Our results also suggest that differences in SOM bulk chemistry is a main factor explaining the present SOM stability in surface peat of palsa peatlands, with selective preservation of recalcitrant and highly oxidized SOM components in the active layer of palsa mounds during intense aerobic decomposition over time, whereas SOM in the wetter areas of the peatland remains stabilized mainly by anaerobic conditions. The continued degradation of palsa mounds and the expansion of wetter peat areas are likely to modify the bulk SOM chemistry of palsa peatlands, but the effect on the future net C source/sink character of palsa peatlands will largely depend on moisture conditions and oxygen availability in peat.  相似文献   

16.
Monitoring changes in coral cover and composition through space and time can provide insights to reef health and assist the focus of management and conservation efforts. We used a meta-analytical approach to assess coral cover data across latitudes 10–35°S along the west Australian coast, including 25 years of data from the Ningaloo region. Current estimates of coral cover ranged between 3 and 44% in coral habitats. Coral communities in the northern regions were dominated by corals from the families Acroporidae and Poritidae, which became less common at higher latitudes. At Ningaloo Reef coral cover has remained relatively stable through time (∼28%), although north-eastern and southern areas have experienced significant declines in overall cover. These declines are likely related to periodic disturbances such as cyclones and thermal anomalies, which were particularly noticeable around 1998/1999 and 2010/2011. Linear mixed effects models (LME) suggest latitude explains 10% of the deviance in coral cover through time at Ningaloo. Acroporidae has decreased in abundance relative to other common families at Ningaloo in the south, which might be related to persistence of more thermally and mechanically tolerant families. We identify regions where quantitative time-series data on coral cover and composition are lacking, particularly in north-western Australia. Standardising routine monitoring methods used by management and research agencies at these, and other locations, would allow a more robust assessment of coral condition and a better basis for conservation of coral reefs.  相似文献   

17.
18.
Consumers and prey diversity, their interactions, and subsequent effects on ecosystem function are important for ecological processes but not well understood in high diversity ecosystems such as coral reefs. Consequently, we tested the potential for diversity-effects with a series of surveys and experiments evaluating the influence of browsing herbivores on macroalgae in Kenya’s fringing reef ecosystem. We surveyed sites and undertook experiments in reefs subject to three levels of human fishing influence: open access fished reefs, small and recently established community-managed marine reserves, and larger, older government-managed marine reserves. Older marine reserves had a greater overall diversity of herbivores and browsers but this was not clearly associated with reduced macroalgal diversity or abundance. Experiments studying succession on hard substrata also found no effects of consumer diversity. Instead, overall browser abundance of either sea urchins or fishes was correlated with declines in macroalgal cover. An exception was that the absence of a key fish browser genus, Naso, which was correlated with the persistence of Sargassum in a marine reserve. Algal selectivity assays showed that macroalgae were consumed at variable rates, a product of strong species-specific feeding and low overlap in the selectivity of browsing fishes. We conclude that the effects of browser and herbivore diversity are less than the influences of key species, whose impacts emerge in different contexts that are influenced by fisheries management. Consequently, identifying key herbivore species and managing to protect them may assist protecting reef functions.  相似文献   

19.

Biofilm development on titanium panels immersed in the surface waters of Dona Paula Bay was investigated using molecular biomarkers such as n-alkanes and other chemical and biological parameters. Biofilm biomass measured as organic carbon (OC), organic nitrogen (ON), chlorophyll a, diatoms and bacterial numbers on the titanium panels generally increased over the period of immersion. Total lipids and n-alkane concentration also showed similar trends. n-alkanes from C12 to C30 were detected in the biofilm samples, which showed a bimodal distribution. The first mode consisted of n-alkanes > C23 with a strong even over odd predominance. In the second mode, the n-alkanes < C23 were more abundant with odd carbon number maxima at C15, C17 and C19 and a strong odd over even carbon number predominance (Carbon Preference Index > 2). The predominance of these odd-chain n-alkanes strongly indicates that the organic matter derived from macroalgal sources was the major contributor to the biofilm organic matter developed on the titanium panels over the 15 d period of study. The data suggest that molecular characterization is a useful tool in understanding the sources of biofilm organic matter. The observed abundance of macroalgal organic matter during the 15 d period of biofilm development may play an important role in subsequent fouling by micro- and macrofouling organisms.  相似文献   

20.
Despite high diversity and abundance of nominally herbivorous fishes on coral reefs, recent studies indicate that only a small subset of taxa are capable of removing dominant macroalgae once these become established. This limited functional redundancy highlights the potential vulnerability of coral reefs to disturbance and stresses the need to assess the functional role of individual species of herbivores. However, our knowledge of species-specific patterns in macroalgal consumption is limited geographically, and there is a need to determine the extent to which patterns observed in specific reefs can be generalised at larger spatial scales. In this study, video cameras were used to quantify rates of macroalgae consumption by fishes in two coral reefs located at a similar latitude in opposite sides of Australia: the Keppel Islands in the Great Barrier Reef (eastern coast) and Ningaloo Reef (western coast). The community of nominally herbivorous fish was also characterised in both systems to determine whether potential differences in the species observed feeding on macroalgae were related to spatial dissimilarities in herbivore community composition. The total number of species observed biting on the dominant brown alga Sargassum myriocystum differed dramatically among the two systems, with 23 species feeding in Ningaloo, compared with just 8 in the Keppel Islands. Strong differences were also found in the species composition and total biomass of nominally herbivorous fish, which was an order of magnitude higher in Ningaloo. However, despite such marked differences in the diversity, biomass, and community composition of resident herbivorous fishes, Sargassum consumption was dominated by only four species in both systems, with Naso unicornis and Kyphosus vaigiensis consistently emerging as dominant feeders of macroalgae.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号