首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
Ion etching of human adenovirus 2: structure of the core   总被引:10,自引:7,他引:3       下载免费PDF全文
The surface of human adenovirus 2 was etched by irradiating intact virions with low-energy (1-keV) Ar+ ions in a Technics Hummer V sputter coater . Viral structures exposed by the etching process were shadowed and then examined in the electron microscope. Periods of etching that were sufficient to reduce the viral diameter by 20 to 30 nm revealed distinct substructural elements in the virion core. Cores were found to consist of a cluster of 12 large, uniformly size spheres which abutted one another in the intact virion. The spheres, for which we suggest the name " adenosomes ," had a diameter of 23.0 +/- 2.3 nm, and they were related to each other by two-, three-, and fivefold axes of rotational symmetry. The results support the view, originally suggested by Brown et al. (J. Virol. 16:366-387, 1975) that the adenovirus 2 core is composed of 12 large spheres packed tightly together in such a way that each is directed toward the vertex of an icosahedron . Such a structure, constructed of 23.0-nm-diameter spheres, would have an outside diameter (vertex-to-vertex distance) of 67.0 nm and a face-to-face distance of 58.2 nm. It could be accommodated inside the icosahedral adenovirus capsid if each large sphere were located beneath a capsid vertex.  相似文献   

2.
Bacteriophage PRD1 is a membrane-containing virus with an unexpected similarity to adenovirus. We mutagenized unassigned PRD1 genes to identify minor capsid proteins that could be structural or functional analogs to adenovirus proteins.We report here the identification of an amber mutant, sus525, in an essential PRD1 gene XXXI. The gene was cloned and the gene product was overexpressed and purified to near homogeneity. Analytical ultracentrifugation and gel filtration showed that P31 is a homopentamer of about 70 kDa. The protein was shown to be accessible on the virion surface and its absence in the sus525 particles led to the deficiency of two other viral coat proteins, protein P5 and the adsorption protein P2. Cryo-electron microscopy and image reconstruction of the sus525 particles indicate that these proteins are located on the capsid vertices, because in these particles the entire vertex structure was missing along with the peripentonal major capsid protein P3 trimers. Sus525 particles package DNA effectively but loose it upon purification.All of the PRD1 vertex structures are labile and potentially capable of mediating DNA delivery; this is in contrast to other dsDNA phages which employ a single vertex for packaging and delivery. We propose that this arises from a symmetry mismatch between protein P2 and the pentameric P31 in analogy to that between the adenovirus penton base and the receptor-binding spike.  相似文献   

3.
Adenovirus assembly concludes with proteolytic processing of several capsid and core proteins. Immature virions containing precursor proteins lack infectivity because they cannot properly uncoat, becoming trapped in early endosomes. Structural studies have shown that precursors increase the network of interactions maintaining virion integrity. Using different biophysical techniques to analyze capsid disruption in vitro, we show that immature virions are more stable than the mature ones under a variety of stress conditions and that maturation primes adenovirus for highly cooperative DNA release. Cryoelectron tomography reveals that under mildly acidic conditions mimicking the early endosome, mature virions release pentons and peripheral core contents. At higher stress levels, both mature and immature capsids crack open. The virus core is completely released from cracked capsids in mature virions, but it remains connected to shell fragments in the immature particle. The extra stability of immature adenovirus does not equate with greater rigidity, because in nanoindentation assays immature virions exhibit greater elasticity than the mature particles. Our results have implications for the role of proteolytic maturation in adenovirus assembly and uncoating. Precursor proteins favor assembly by establishing stable interactions with the appropriate curvature and preventing premature ejection of contents by tightly sealing the capsid vertices. Upon maturation, core organization is looser, particularly at the periphery, and interactions preserving capsid curvature are weakened. The capsid becomes brittle, and pentons are more easily released. Based on these results, we hypothesize that changes in core compaction during maturation may increase capsid internal pressure to trigger proper uncoating of adenovirus.  相似文献   

4.
Pestiviruses, including bovine viral diarrhea virus (BVDV), are important animal pathogens and close relatives of hepatitis C virus. Pestivirus particles are composed of an RNA genome, a host-derived lipid envelope, and four virion-encoded structural proteins, core (C), Erns, E1, and E2. Core is a small, highly basic polypeptide that is processed by three enzymatic cleavages before its incorporation into virions. Little is known about its biological properties or its role in virion assembly and structure. We have purified BVDV core protein and characterized it biochemically. We have determined that the processed form of core lacks significant secondary structure and is instead intrinsically disordered. Consistent with its highly basic sequence, we observed that core binds to RNA, although with low affinity and little discernible specificity. We found that BVDV core protein was able to functionally replace the nonspecific RNA binding and condensing region of an unrelated viral capsid protein. Together these results suggest that the in vitro properties of core may reflect its mechanism of action in RNA packaging and virion morphogenesis.  相似文献   

5.
We have studied the relationship between adeno-associated virus (AAV) DNA replication and virus particle assembly. Formation of empty or full particles and accumulation of AAV capsid proteins was prevented in the presence of the arginine analogue, L-canavanine, or when a temperature-sensitive helper adenovirus was used at the nonpermissive temperature. In each case there was a concomitant inhibition of AAV single-stranded (progeny) DNA accumulation but little or no effect upon synthesis of AAV duplex, replicating form DNA. These results indicate that AAV protein, perhaps in the form of assembled capsids, is required for AAV single-stranded progeny DNA accumulation.  相似文献   

6.
Soon after penetration of adenovirus serotype 2 in BHK-21 and HeLa cells, HSP70 and HSC70 proteins become associated with the viral capsid. By analysis with a polyclonal antibody derived from a fusion protein containing the C-terminal domain, 290 amino acids of HSP70, and using both immunological methods and infected cells fractionation we observed that a significant amount of HSP70 proteins moved to the nucleus and colocalized with the adenovirus particles. HSP70 proteins of infected cells were isolated as a complex cross-linked with intracytoplasmic adenovirus type 2. By coprecipitation, using a polyclonal-specific antiserum derived from the fusion protein, or two different monoclonal-specific antisera, we showed that HSP70 and HSC70 proteins were associated with hexon, the major adenovirus capsid protein.  相似文献   

7.
8.
Adenovirus empty capsids are immature intermediates that lack DNA and viral core proteins. Highly purified preparations of empty and full capsids were generated by subjecting purified adenovirus preparations to repeated cesium chloride gradient separations. PAGE results revealed that empty capsids contain at least five bands that correspond to proteins absent from the mature virus proteome. Peptide mapping by matrix-assisted laser desorption/ionization time-of-flight MS revealed that three of these bands correspond to varying forms of L1 52/55kDa, a protein involved in the encapsidation of the viral DNA. One band at around 31kDa was found to include precursors to proteins VI and VIII. These precursors correspond to proteins that have not been cleaved by the adenovirus-encoded protease and are not present in the mature full capsids. The precursor to protein VIII (pVIII), a capsid cement protein, is used in this study as a marker in reverse-phased HPLC (RP-HPLC) analyses of adenovirus for the quantitation of empty capsids. A novel calculation method applied to the integration of RP-HPLC chromatograms allowed for the generation of a percentage empty capsid value in a given adenovirus preparation. The percentage empty capsid values generated to date by this method show a high degree of precision and good agreement with a cesium chloride gradient/SDS-PAGE quantitation method of empty capsids. The advantage of this method lies in the accurate, precise, and rapid generation of the percentage of empty capsids in a given purified virus preparation without relying on tedious and time-consuming cesium chloride gradient separations and extractions.  相似文献   

9.
Oncolytic adenoviruses represent a promising therapeutic medicine for human cancer therapy, but successful translation into human clinical trials requires careful evaluation of their viral characteristics. While the function of adenovirus proteins has been analyzed in detail, the dynamics of adenovirus infection remain largely unknown due to technological constraints that prevent adequate tracking of adenovirus particles after infection. Fluorescence labeling of adenoviral particles is one new strategy designed to directly analyze the dynamic processes of viral infection in virus-host cell interactions. We hypothesized that the double labeling of an adenovirus with fluorescent proteins would allow us to properly analyze intracellular viruses and the fate of viral proteins in a live analysis of an adenovirus as compared to single labeling. Thus, we generated a fluorescently labeled adenovirus with both a red fluorescent minor capsid protein IX (pIX) [pIX monomeric red fluorescent protein 1 (mRFP1)] and a green fluorescent minor core protein V (pV) [pV enhanced green fluorescent protein (EGFP)], resulting in Ad5-IX-mRFP1-E3-V-EGFP. The fluorescent signals for pIX-mRFP1 and pV-EGFP were detected within 10 min in living cells. However, a growth curve analysis of Ad5-IX-mRFP1-E3-V-EGFP showed an approximately 150-fold reduced production of the viral progeny at 48 h postinfection as compared to adenovirus type 5. Interestingly, pIX-mRFP1 and pV-EGFP were initially localized in the cytoplasm and nucleolus, respectively, at 18 h postinfection. These proteins were observed in the nucleus during the late stage of infection, and relocalization of the proteins was observed in an adenoviral-replication-dependent manner. These results indicate that simultaneous detection of adenoviruses using dual-fluorescent proteins is suitable for real-time analysis, including identification of infected cells and monitoring of viral spread, which will be required for a complete evaluation of oncolytic adenoviruses.  相似文献   

10.
Assembly of Adenoviruses   总被引:19,自引:17,他引:2       下载免费PDF全文
Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of purified incomplete particles of adenoviruses type 2 and 3 revealed that core proteins V and VII and capsid proteins VI, VIII, and X were absent in these particles, but they contained polypeptides not present in complete particles. Two types of incomplete particles were observed in the electron microscope, appearing as deoxyribonucleic acid-less particles with single discontinuities in the capsid structure (about 80%), or more amorphous particles resembling hexon aggregates (about 20%). The amount of incomplete and complete particles increased in parallel during the infectious cycle. Detectable amounts were found at 13 h with a maximum rate of synthesis for both particles at 24 h after infection. (3)H-labeled amino acids were incorporated into incomplete particles without a detectable lag period, but the label appeared in complete particles with a 60- to 80-min lag. Early after the pulse in pulse-chase experiments, the radioactivity was higher for incomplete particles than for complete particles and leveled off before the activity of complete particles reached a maximum. In the adenovirus type 2 system, pulse-chase experiments suggested a precursor-product relationship between incomplete and complete particles. After a short pulse, 19 h postinfection, entrance of (3)H-labeled amino acids into the hexon polypeptide of complete particles was delayed for 80 min, but no delay was observed for the labeling of the hexon polypeptide of incomplete particles. The core polypeptides appear in complete particles without a delay, also suggesting that incomplete particles were precursors to complete particles. Incorporation of (3)H-labeled amino acids into the hexon polypeptide of complete and incomplete particles was drastically decreased by inhibition of protein synthesis with emetine. However, the uptake of label into core proteins of complete particles was only decreased to 50% on inhibition of protein synthesis. The results suggest that incomplete particles are intermediates in virus assembly in vivo and that the assembly of capsid polypeptides into incomplete and complete particles is dependent on continuing protein synthesis.  相似文献   

11.
The Raman spectrum of the isometric bacteriophage phi X174 contains a number of well-resolved bands which have been assigned unambiguously to proteins of the capsid or to the single-stranded DNA (ssDNA) genome. Additional Raman bands of protein and DNA, which are partially overlapped in the spectrum of virus, have been resolution enhanced by Fourier deconvolution to permit improved semiquantitative measurement of spectral intensities and frequencies for structural conclusions. Raman conformation markers indicate that the ssDNA molecule within the capsid contains nucleosides of C2'-endo sugar pucker and anti-glycoside bond orientation, but the nucleic acid backbone lacks the geometry characteristic of B-form DNA. The Raman profile of encapsidated phi X DNA indicates a backbone more similar to heat-denatured DNA than to DNA containing hairpinlike secondary structure. This finding suggests limited interbase interactions in the packaged genome, which is presumably the result of constraints imposed by the viral capsid. Thus, the extensive pairing and stacking of bases indicated by Raman profiles from ssRNA viruses are not evident for the phi X174 chromosome. Overall, the proteins of the virion contain extensive beta-sheet and irregular secondary structures. Fourier deconvolution of the Raman amide I band provides an estimate of the percentage of total beta-sheet structure (approximately 60%) in all proteins of the virion. The amide III region of the spectrum confirms that beta-sheet and irregular domains are the predominant protein secondary structures. Samples of phi X174 concentrated for Raman spectroscopy by either ultracentrifugation or ultrafiltration exhibit nearly identical Raman spectra, indicating that either method can be employed to prepare intact virus without significant loss of DNA or protein components.  相似文献   

12.
Structural studies of adenovirus type 2 by neutron and X-ray scattering   总被引:2,自引:0,他引:2  
Small-angle neutron and X-ray scattering have been used to investigate various aspects of the structural organization of adenovirus type 2. Neutron scattering allows the determination of the radial distribution of DNA and protein, which because of the highly icosahedral form of the virus allows it to be described in terms of three icosahedral shells. X-ray scattering shows that the distance between the major coat proteins (hexons) in the capsid is 100 +/- A. Evidence was also observed for an organization in the nucleoprotein core that gives rise to a maximum in the X-ray scattering at 1/29 A-1.  相似文献   

13.
The strongly conserved amino acid sequences of the P8 outer capsid proteins of Rice dwarf virus (RDV) and Rice gall dwarf virus (RGDV) and the distribution of electrostatic potential on the proteins at the interfaces between structural proteins suggested the possibility that P8-trimers of RGDV might bind to the 3-fold symmetrical axes of RDV core particles, with vertical interaction between heterologous P3 and P8 proteins and lateral binding of homologous P8 proteins, thereby allowing formation of the double-layered capsids that are characteristic of viruses that belong to the family Reoviridae. We proved this hypothesis using chimeric virus-like particles composed of the P3 core capsid protein of RDV and the P8 outer capsid protein of RGDV, which were co-expressed in a baculovirus expression system. This is the first report on the molecular biological proof of the mechanism of the assembly of the double-layered capsids with disparate icosahedral lattices.  相似文献   

14.
BACKGROUND: The dsDNA bacteriophage PRD1 has a membrane inside its icosahedral capsid. While its large size (66 MDa) hinders the study of the complete virion at atomic resolution, a 1.65-A crystallographic structure of its major coat protein, P3, is available. Cryo-electron microscopy (cryo-EM) and three-dimensional reconstruction have shown the capsid at 20-28 A resolution. Striking architectural similarities between PRD1 and the mammalian adenovirus indicate a common ancestor. RESULTS: The P3 atomic structure has been fitted into improved cryo-EM reconstructions for three types of PRD1 particles: the wild-type virion, a packaging mutant without DNA, and a P3-shell lacking the membrane and the vertices. Establishing the absolute EM scale was crucial for an accurate match. The resulting "quasi-atomic" models of the capsid define the residues involved in the major P3 interactions, within the quasi-equivalent interfaces and with the membrane, and show how these are altered upon DNA packaging. CONCLUSIONS: The new cryo-EM reconstructions reveal the structure of the PRD1 vertex and the concentric packing of DNA. The capsid is essentially unchanged upon DNA packaging, with alterations limited to those P3 residues involved in membrane contacts. These are restricted to a few of the N termini along the icosahedral edges in the empty particle; DNA packaging leads to a 4-fold increase in the number of contacts, including almost all copies of the N terminus and the loop between the two beta barrels. Analysis of the P3 residues in each quasi-equivalent interface suggests two sites for minor proteins in the capsid edges, analogous to those in adenovirus.  相似文献   

15.
DNA-negative Dane particles have been observed in hepatitis B virus (HBV)-infected sera. The capsids of the empty particles are thought to be composed of core protein but have not been studied in detail. In the present study, the protein composition of the particles was examined using new enzyme immunoassays for the HBV core antigen (HBcAg) and for the HBV precore/core proteins (core-related antigens, HBcrAg). HBcrAg were abundant in fractions slightly less dense than HBcAg and HBV DNA. Three times more Dane-like particles were observed in the HBcrAg-rich fraction than in the HBV DNA-rich fraction by electron microscopy. Western blots and mass spectrometry identified the HBcrAg as a 22-kDa precore protein (p22cr) containing the uncleaved signal peptide and lacking the arginine-rich domain that is involved in binding the RNA pregenome or the DNA genome. In sera from 30 HBV-infected patients, HBcAg represented only a median 10.5% of the precore/core proteins in enveloped particles. These data suggest that most of the Dane particles lack viral DNA and core capsid but contain p22cr. This study provides a model for the formation of the DNA-negative Dane particles. The precore proteins, which lack the arginine-rich nucleotide-binding domain, form viral RNA/DNA-negative capsid-like particles and are enveloped and released as empty particles.  相似文献   

16.
Taking advantage of the sedimentation properties of adenovirus particles, adenovirus-infected baby hamster kidney (BHK21) cells were reversibly fixed with cleavable diimidoester dimethyl 3,3'-dithiobispropionimidate (DTBP) at early times of infection (30 min). Cytoskeletal proteins associated with/or in close vicinity to virions were isolated as a complex cross-linked with carrier virus. Four major cellular proteins were thus found to co-purify with adenovirus particles. They were characterized by their coordinates on 2D maps and immunological reactivity. Two of them were identified as alpha-tubulin (58 kD), and vimentin subunits (56 kD). The two other species 68 and 66 kD might correspond to stress proteins. Affinity blotting on gels showed that both alpha-tubulin and vimentin were capable of binding with intact and penton-less adenovirions. Adenovirus components involved in the binding seemed to be mainly core proteins V and VII, and to a lesser extent, hexon. Analysis of neighbor relationships among proteins of the adenovirus-cytoskeletal protein cross-linked complex suggested that some capsid alterations occurred upon/or after entry of the virus into the cell, and that these structural modifications preferentially concerned the vertex components penton and IIIa, and the core protein V.  相似文献   

17.
The adenovirus IVa2 and L1 52/55-kDa proteins are involved in the assembly of new virus particles. Both proteins bind to the packaging sequence of the viral chromosome, and the lack of expression of either protein results in no virus progeny: the absence of the L1 52/55-kDa protein leads to formation of only empty capsids, and the absence of the IVa2 protein results in no capsid assembly. Furthermore, the IVa2 and L1 52/55-kDa proteins interact with each other during adenovirus infection. However, what is not yet clear is when and how this interaction occurs during the course of the viral infection. We defined the domains of the L1 52/55-kDa protein required for interaction with the IVa2 protein, DNA binding, and virus replication by constructing L1 52/55-kDa protein truncations. We found that the N-terminal 173 amino acids of the L1 52/55-kDa protein are essential for interaction with the IVa2 protein. However, for both DNA binding and complementation of the pm8001 mutant virus, which does not express the L1 52/55-kDa protein, the amino-terminal 331 amino acids of the L1 52/55-kDa protein are necessary. These results suggest that the production of infectious virus particles depends on the ability of the L1 52/55-kDa protein to bind to DNA.  相似文献   

18.
Adenovirus complex structures   总被引:5,自引:0,他引:5  
Adenovirus has, for a long time, been a model system for understanding complex virus structure, assembly and interference in host cell processes. Recent structures of adenoviral capsid proteins critical for cell entry have given new insights into both interactions with host cell receptors and inter-capsid protein interactions, which determine the capsid architecture. Such studies are of importance in engineering adenovirus for use in various gene transfer applications. Remarkable and unexpected similarities have been revealed between the cell-attachment proteins and primary receptors of adenovirus and the unrelated reovirus, and between the capsid proteins and architecture of adenovirus, the enveloped bacteriophage PRD1 and other large DNA viruses.  相似文献   

19.
Late in adenovirus assembly, the viral protease (AVP) becomes activated and cleaves multiple copies of three capsid and three core proteins. Proteolytic maturation is an absolute requirement to render the viral particle infectious. We show here that the L1 52/55k protein, which is present in empty capsids but not in mature virions and is required for genome packaging, is the seventh substrate for AVP. A new estimate on its copy number indicates that there are about 50 molecules of the L1 52/55k protein in the immature virus particle. Using a quasi-in vivo situation, i.e., the addition of recombinant AVP to mildly disrupted immature virus particles, we show that cleavage of L1 52/55k is DNA dependent, as is the cleavage of the other viral precursor proteins, and occurs at multiple sites, many not conforming to AVP consensus cleavage sites. Proteolytic processing of L1 52/55k disrupts its interactions with other capsid and core proteins, providing a mechanism for its removal during viral maturation. Our results support a model in which the role of L1 52/55k protein during assembly consists in tethering the viral core to the icosahedral shell and in which maturation proceeds simultaneously with packaging, before the viral particle is sealed.  相似文献   

20.
A nucleic acid-bound capsid protein dimer was previously identified using a Sindbis virus in vitro nucleocapsid assembly system and cross-linking reagents. Cross-link mapping, in combination with a model of the nucleocapsid core, suggested that this dimer contained one monomer from each of two adjacent capsomeres. This intercapsomere dimer is believed to be the initial intermediate in the nucleocapsid core assembly mechanism. This paper presents the purification of cross-linked dimers of a truncated capsid protein and the partial purification of cross-linked dimers of a full-length assembly-defective mutant. The assembly of core-like particles from these cross-linked capsid protein dimers is demonstrated. Core-like particles generated from cross-linked full-length mutant CP(19-264)L52D were examined by electron microscopy and appeared to have a morphology similar to that of wild-type in vitro-assembled core-like particles, although a slight size difference was often visible. Truncated cross-linked CP(81-264) dimers generated core-like particles as well. These core-like particles could subsequently be disassembled when reversible cross-linking reagents were used to form the dimers. The ability of the covalent intercapsomere cross-link to rescue capsid proteins with assembly defects or truncations in the amino-terminal region of the capsid protein supports the previous model of assembly and suggests a possible role for the amino-terminal region of the protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号