首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
The composition of the ether lipids of a strain of Caldariella acidophila, with respect to the different numbers of cyclizations of the biphytanyl components, is shown to differ between the various complex lipid classes, but the degree of cyclization increases systematically with the growth temperature in the range 75–89°. The problem of distinguishing adaptive from phyletic features in archaebacterial lipids is considered.  相似文献   

4.
It is shown that the lipids from 5 extreme thermoacidophile bacteria of the Caldariella group—2 isolates of Sulfolobus acidocaldarius, one of Thermoplasma acidophila, and 2 of the MT series—are all based on the same type of cyclic diether combining glycerol and one of a series of very unusual C40 isoprenoid diols. The relative proportions of the different C40 components in each isolate have been determined.  相似文献   

5.
6.
Membrane lipid compositions of Cryptosporidium parvum and Madin-Darby bovine kidney cells, an epithelial-like cell line commonly used to study coccidia in vitro, were analyzed using both thin-layer chromatography and gas-liquid chromatography. Phosphatidylcholine was the predominant lipid in both C. parvum and Madin-Darby bovine kidney cells, comprising 65% and 41% of the total phospholipids, respectively. Phospholipids of C. parvum contained twice the level of 16:0 and twenty-fold more 18:2 than the Madin-Darby bovine kidney cell line. We suggest that the parasite may be capable of sequestering specific complex membrane lipids at concentrations greater than those in the host cells. This study constitutes the first report of the lipid composition of C. parvum .  相似文献   

7.
The lipids of Archaea, based on glycerol isopranoid ethers, can be used taxonomically to distinguish between phenotypic subgroups of the domain to delineate them clearly from all other organisms. This review is a general survey of the structural features of archaeal lipids and how they relate to survival in the harsh environments in which the Archaea live. The molecular organization of archaeal lipids in monolayers, artificial black membranes and vesicles and the unique properties and possible biotechnological applications of liposomes of the lipids are presented. The results with these liposomes are compared with similar data obtained with synthetic compounds which mimic the structure of archaeal lipids. Studies on computer simulation are also reported.A. Gambacorta is with the istituto per la Chimica di Molecole di interesse Biologico, CNR via Toiano 6, 80072 Arco Felice, Napoli, Italy; A Gliozzi is with the Dipartimento di Fisica, Università di Genova, via Dodecanneso 33, 16146 Genova, Italy. M. De Rosa is with the Istituto di Biochimica delle Macromolecole. Seconda Università di Napoli, via Costantinopoli 16, 80132 Napoli, Italy.  相似文献   

8.
Aminoacylated phosphatidylglycerols are common lipids in bacterial cytoplasmic membranes. Their presence in Staphylococcus aureus has been linked to increased resistance to a number of antibacterial agents, including antimicrobial peptides. Most commonly, the phosphatidylglycerol headgroup is esterified to lysine, which converts anionic phosphatidylglycerol into a cationic lipid with a considerably increased headgroup size. In the present work, we investigated the interactions of two well-studied antimicrobial peptides, cecropin A and mastoparan X, with lipid vesicles composed of 1-palmitoyl-2-oleoyl-phosphatidylcholine (POPC) and 1-palmitoyl-2-oleoyl-phosphatidylglycerol (POPG), containing varying fractions of an aminoacylated phosphatidylethanolamine, a stable analog of the corresponding phosphatidylglycerol-derivative. To differentiate between the effects of headgroup size and charge on peptide–lipid interactions, we synthesized two different derivatives. In one, the headgroup was modified by the addition of lysine, and in the other, by glutamine. The modification by glutamine results in a phospholipid with a headgroup size comparable to that of the lysylated version. However, whereas lysyl-phosphatidylethanolamine (Lys-PE) is cationic, glutaminyl-phosphatidylethanolamine (Gln-PE) is zwitterionic. We found that binding of mastoparan X and cecropin A was not significantly altered if the content of aminoacylated phosphatidylethanolamines did not exceed 20 mol.%, which is the concentration found in bacterial membranes. However, a lysyl-phosphatidylethanolamine content of 20 mol% significantly inhibits dye release from lipid vesicles, to a degree that depends on the peptide. In the case of mastoparan X, dye release is essentially abolished at 20 mol.% lysyl-phosphatidylethanolamine, whereas cecropin A is less sensitive to the presence of lysyl-phosphatidylethanolamine. These observations are understood through the complex interplay between peptide binding and membrane stabilization as a function of the aminoacylated lipid content. This article is part of a Special Issue entitled: Interfacially Active Peptides and Proteins. Guest Editors: William C. Wimley and Kalina Hristova.  相似文献   

9.
The lipids of the Caldariella group of extremely thermophilic acidophilic bacteria are based on a 72-membered macrocyclic tetraether made up from two C40 diol units and either two glycerol units or one glycerol and one nonitol. The C40 components have the 16,16′-biphytanyl skeleton and the detailed structure of three of them is established.  相似文献   

10.
Corals contain large quantities of lipids in their tissues; these lipids may be either structural or for storage. Little information is available about the lipid content of deep-sea corals, as well as ratios of main lipid classes. In this study, lipid percentages of 81 deep-sea specimens were measured and the presence of six major classes, including sterols (STEROLS), free fatty acids (FFA), triacylglycerols (TG), monoalkyldiacyl glycerol (MADAG), wax (WAX), and sterol esters (SE), was assessed. Deep-sea corals had fewer lipids than their shallow water counterparts. Decision-tree analysis revealed a link between coral groups and total lipid percentages, showing that species within the same group were characterized by similar lipid amounts. Depth did not seem to impact the total lipid percentages, suggesting that deep-sea corals adapt to the differential access to food by changing the proportion of lipid classes while maintaining equivalent lipid levels. In deep-sea species, similar to their shallow water counterparts, energy seems to be stored as neutral lipids (wax esters and triacylglycerols), with the notable difference that a high proportion of MADAG is present. These compounds are less rich in energy than TG. Depth trends were found for FFA, TG and SE with an increase in percentages after 800 m suggesting a potential need for storage due to decreased food availability. A subsequent decrease after 1,100 m was observed for FFA and TG but a more detailed investigation is warranted as the number of specimens acquired from these depths was less than 20. It is nonetheless a surprising result as increased storage is expected when food sources are sparse.  相似文献   

11.
The surface behavior of six different ether lipids from archaebacteria, based on condensation of glycerol or more complex polyols with two isoprenoid alcohols at 20 or 40 carbon atoms, was investigated in monolayers at the air-water interface.The compounds with no complex polar group (GD, GDGT, GDNT) form monolayers showing a reversible collapse at surface pressure as low as 22 dynes/cm. This collapse pressure decrease with temperature in such a way that the film tension remains constant. In condensed films, these molecules do not assume a completely upright position.Lipids with complex polar ends (HL, GLB, PLII) form films more stable to compression. Forcearea characteristics and surface moment values of HL monolayers are similar to those of analogous ester lipids with fatty acid chains. Monolayers of the two bipolar lipids, GLB and PLII, at room temperature present a more condensed state, probably due to the lateral cohesion between long alkyl chains, but a lower collapse pressure.For all bipolar lipids, the area expansion induced by temperature increase is larger than that of monopolar ones.Abbreviations GD Glycerol diether (2,3-di-O-phytanyl-sn-glycerol - GDGT Glycerol-dialkyl-glycerol tetraether - GDNT Glycerol-dialkyl-nonitol tetraether - GLB Glycolipid B - PLII Phospholipid II - HL Total lipid extract from Halobacterium halobium  相似文献   

12.
A liquid culture technique has been developed to study lipid metabolism in seeds of Brassica campestris L. grown in vitro from terminal inflorescences detached 4 to 46 days after anthesis. Seeds developed under these conditions exhibited pattern of growth, deposition of storage products and lipid composition similar to those from intact plant.  相似文献   

13.
The neutral fraction of nonstarch lipids in developing brown rice (Oryza sativa L., cv IR42) was accumulated up to 16 days after flowering (DAF), but phospholipids and glycolipids increased only up to 8 DAF. Fatty acids accumulated in nonstarch lipids until 12 DAF. However, the proportion of linolenic acid in the lipid fraction decreased and that of oleic acid increased during this period. Accumulation of fat-by-hydrolysis in the brown rice occurred until 20 DAF and followed closely that of starch. The proportion of linolenic acid decreased and that of linoleic acid increased until 16 DAF. The fatty acid composition of fat-by-hydrolysis and starch lipids were identical and fat-by-hydrolysis accounted for 48% by weight of starch lipids. Nonstarch lipids were mainly composed of triglycerides and were located in the bran and embryo of mature brown rice. Starch lipids were mainly composed of lysophosphatidyl choline, free fatty acids and lysophosphatidyl ethanolamine, and were located in the endosperm.  相似文献   

14.
Cold hardiness in the Arctic Collembola Megaphorura arctica (Tullberg), formerly Onychiurus arcticus, has been the subject of extensive studies over the last decade. This species employs an unusual strategy known as cryoprotective dehydration to survive winter temperatures as low as ?25 °C. To expand knowledge of cryoprotective dehydration in M. arctica, the present study investigates how a reduction in ambient temperature affects the fatty acid composition of the total body lipid content along with polar (mainly membrane phospholipids) and nonpolar (mainly triacylglycerols) lipids. Most ectothermic animals compensate for changes in fluidity by regulating fatty acid composition, a process often described as homeoviscous adaptation. In M. arctica, changes in the fatty acid composition of total body lipid content during cold treatment are only moderate, with no clear pattern emerging. However, the levels of unsaturated fatty acids in the polar lipids increase with cold exposure, largely attributable to 16 : 1(n? 7), 18 : 1(n? 9), 18 : 3(n? 6) and 18 : 3(n? 3), whereas unsaturated fatty acid levels in the nonpolar lipids correspondingly decrease. These results suggest a reallocation of fatty acids between the two lipid pools as a response to a temperature reduction of 6 °C. Because of hypometabolism, a characteristic of cold adaptation, such a mechanism could be less energy demanding than de novo synthesis of fatty acids and may comprise part of an adaptive homeostatic response.  相似文献   

15.
Cells produce tens of thousands of different lipid species, but the importance of this complexity in vivo is unclear. Analysis of individual tissues and cell types has revealed differences in abundance of individual lipid species, but there has been no comprehensive study comparing tissue lipidomes within a single developing organism. Here, we used quantitative shotgun profiling by high‐resolution mass spectrometry to determine the absolute (molar) content of 250 species of 14 major lipid classes in 6 tissues of animals at 27 developmental stages raised on 4 different diets. Comparing these lipidomes revealed unexpected insights into lipid metabolism. Surprisingly, the fatty acids present in dietary lipids directly influence tissue phospholipid composition throughout the animal. Furthermore, Drosophila differentially regulates uptake, mobilization and tissue accumulation of specific sterols, and undergoes unsuspected shifts in fat metabolism during larval and pupal development. Finally, we observed striking differences between tissue lipidomes that are conserved between phyla. This study provides a comprehensive, quantitative and expandable resource for further pharmacological and genetic studies of metabolic disorders and molecular mechanisms underlying dietary response.  相似文献   

16.
B. D. Whitaker 《Planta》1986,169(3):313-319
The fatty-acid composition of polar lipids from fruit and leaf chloroplasts was compared in five Solanaceous and two cucurbit species. The acylated fatty acids in monogalactosyl diglycerides (MGDG) from leaf chloroplasts of all five Solanaceous species included substantial amounts of 7,10,13-hexadecatrienoic acid (16:3). In contrast, the MGDG from fruit chloroplasts of the Solanaceae contained very little of this plastid-specific polyunsaturate, and instead included a proportionately greater percentage of linoleic acid (18:2). In MGDG from leaf chloroplasts of two cucurbits, -linolenic acid (18:3) constituted 94–95% of the acylated fatty acids. Fruit-chloroplast galactolipids of the cucurbits had a greater abundance of 18:2, and hence a higher 18:2/18:3 ratio, than found in the corresponding leaf lipids. Among the phosphoglycerides, the unusual fatty acid 3-trans-hexadecenoate (trans-16:1) constituted from 15 to 24% of the acylated fatty acids in phosphatidyl glycerol (PG) from leaf chloroplasts (all species). In sharp contrast, trans-16:1 was virtually absent in PG from fruit chloroplasts of both Solanaceous and cucurbit species, and was replaced by a proportionate increase in the content of palmitate (16:0). The observed differences in the polar lipid fatty-acid composition of fruit and leaf chloroplasts are discussed in terms of the relative activity of several intrachloroplastic enzymes involved in lipid synthesis and fatty-acyl desaturation.Abbreviations MGDG monogalactosyldiglyceride - DGDG digalactosyl diglyceride - PC phosphatidyl choline - PE phosphatidyl ethanolamine - PG phosphatidyl glycerol  相似文献   

17.
18.
The total solvent extracts (TSE) of mineral and organic horizons of selected soils and overlying vegetation were analyzed using gas chromatography–mass spectrometry (GC–MS) to determine the composition of solvent-extractable (‘free’) lipids in soils and to study the degradation and possible preservation of vascular plant-derived molecular markers (biomarkers) in soils. Major compound classes in the TSE of soils and vegetation included a homologous series of aliphatic lipids (alkanoic acids, alkanols, alkanes), steroids, and terpenoids. Characteristic patterns of aliphatic and cyclic biomarkers derived from the overlying, native vegetation were recognized in the associated soil samples indicating the preservation of lipids from the external waxes of vascular plants in the soil organic matter (SOM). The observed biomarker patterns in the grassland soils (Brown Chernozems) were similar to the compounds identified in their major source vegetation, Western Wheatgrass. A similar composition of biomarkers was observed in Aspen leaves and the soil horizons of the forest–grassland transition soil (Dark Gray Chernozem). The Lodgepole Pine needles yielded a characteristic pattern of diterpenoids that was also detected in leaf litter and the O horizon of the associated forest soil (Brunisol). The results demonstrate that solvent extractable biomarkers derived from vascular plants maintain their characteristic pattern of aliphatic and cyclic lipids despite ongoing degradation processes and are thus valuable molecular markers for the determination of the sources of SOM. Furthermore, the abundance of aliphatic wax lipids in plant material and soils decreased at higher rates than the steroids and terpenoids indicating the preferential degradation of aliphatic over cyclic biomarkers. Most of the plant-derived steroids and terpenoids identified in the soils were unaltered, preserved biomolecules as observed in the source vegetation, but minor amounts of their degradation products were also present. Oxidation products of plant sterols are reported here for the first time in soils. The detected alteration products of steroids and diterpenoids are consistent with the oxidative degradation of free cyclic biomarkers in decomposing plant material and soils.  相似文献   

19.
Phosphoglycerol, triacylglycerol, diacylglycerol, and free fatty acid content was studied in eggs of the codling moth Cydia pomonella at the white, red ring, and black head developmental stages. The composition of total phosphoglycerols and of the three classes of neutral lipids was also analyzed. The highest total lipid content was found in eggs at the white stage, the amount decreasing during development mainly as a result of a diminution in the quantity of phosphoglycerols, which account for approximately 50% of total content at all stages of egg development. The amount of triacylglycerols and free fatty acids changes significantly during development, whereas only minor changes were found in diacyglycerol levels. The total phosphoglycerol acyl composition of eggs at the white and red ring stages is similar, whereas differences are evident at the black head stage of development. Triacylglycerols and free fatty acids are enriched in saturated fatty acids in all analyzed stages. The acyl profile of diacylglycerols is different at each stage. The unsaturation index decreases in diacylglycerols and free fatty acids as a function of egg development. The results of the present paper suggest that triacylglycerols may constitute an important source of energy during the final period of egg development while phosphoglycerols may function as fuel during the beginning. Phosphoglycerols could be precursors for the triacylglycerol biosynthesis that takes place between white and red ring stages.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号