首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Simultaneous and accurate measurement of circulating vitamin D metabolites is critical to studies of the metabolic regulation of vitamin D and its impact on health and disease. To that end, we have developed a specific liquid chromatography–tandem mass spectrometry (LC–MS/MS) method that permits the quantification of major circulating vitamin D3 metabolites in human plasma. Plasma samples were subjected to a protein precipitation, liquid–liquid extraction, and Diels–Alder derivatization procedure prior to LC–MS/MS analysis. Importantly, in all human plasma samples tested, we identified a significant dihydroxyvitamin D3 peak that could potentially interfere with the determination of 1α,25-dihydroxyvitamin D3 [1α,25(OH)2D3] concentrations. This interfering metabolite has been identified as 4β,25-dihydroxyvitamin D3 [4β,25(OH)2D3] and was found at concentrations comparable to 1α,25(OH)2D3. Quantification of 1α,25(OH)2D3 in plasma required complete chromatographic separation of 1α,25(OH)2D3 from 4β,25(OH)2D3. An assay incorporating this feature was used to simultaneously determine the plasma concentrations of 25OHD3, 24R,25(OH)2D3, 1α,25(OH)2D3, and 4β,25(OH)2D3 in healthy individuals. The LC–MS/MS method developed and described here could result in considerable improvement in quantifying 1α,25(OH)2D3 as well as monitoring the newly identified circulating metabolite, 4β,25(OH)2D3.  相似文献   

2.
1α,25-Dihydroxy-2β-(3-hydroxypropoxy)vitamin D3 (ED-71), an analog of active vitamin D3, 1α,25-dihydroxyvitamin D3 [1,25(OH)2D3], possesses a hydroxypropoxy substituent at the 2β-position of 1,25(OH)2D3. ED-71 has potent biological effects on bone and is currently under phase III clinical studies for bone fracture prevention. It is well-known that the synthesis and secretion of parathyroid hormone (PTH) is regulated by 1,25(OH)2D3. Interestingly, during clinical development of ED-71, serum intact PTH in osteoporotic patients did not change significantly upon treatment with ED-71. The reason remains unclear, however. Brown et al. reported that 3-epi-1,25(OH)2D3, an epimer of 1,25(OH)2D3 at the 3-position, shows equipotent and prolonged activity compared to 1,25(OH)2D3 at suppressing PTH secretion. Since ED-71 has a bulky hydroxypropoxy substituent at the 2-position, epimerization at the adjacent and sterically hindered 3-position might be prevented, which may account for its weak potency in PTH suppression observed in clinical studies. We have significant interest in ED-71 epimerization at the 3-position and the biological potency of 3-epi-ED-71 in suppressing PTH secretion. In the present studies, synthesis of 3-epi-ED-71 and investigations of in vitro suppression of PTH using bovine parathyroid cells are described. The inhibitory potency of vitamin D3 analogs were found to be 1,25(OH)2D3 > ED-71 ≥ 3-epi-1,25(OH)2D3  3-epi-ED-71. ED-71 and 3-epi-ED-71 showed weak activity towards PTH suppression in our assays.  相似文献   

3.
The biologically active metabolite of vitamin D3, 1α,25-dihydroxyvitamin D3 [1α,25(OH)2D3], acts through vitamin D receptors, which were found in rheumatoid tissues in the present study. IL-1β-activated rheumatoid synovial fibroblasts and human articular chondrocytes were shown to respond differently to exposure to 1α,25(OH)2D3, which has different effects on the regulatory pathways of specific matrix metalloproteinases and prostaglandin E2.  相似文献   

4.
A human myeloid leukemia cell line [HL-60] could be induced to differentiate into mature myeloid cells by 1α,25-dihydroxyvitamin D3 [1α,25(OH)2D3], the active form of vitamin D3. At 10?10–10?8 M, 1α,25(OH)2D3 suppressed cell growth in a dose-dependent manner and markedly induced phagocytosis and C3 rosette formation. The potency of 1α,25(OH)2D3 in inducing differentiation was nearly equivalent to that of known synthetic inducers such as dimethyl sulfoxide, actinomycin D or a phorbol ester (12-o-tetra-decanoyl-phorbol-13-acetate). These results clearly indicate that 1α,25(OH)2D3, besides its well known biological effect in enhancing intestinal calcium transport and bone mineral mobilization activities, is involved in the cell grwoth and differentiation of HL-60 cells.  相似文献   

5.
《Endocrine practice》2012,18(3):399-402
ObjectiveTo examine the effect of 50 000 IU-vitamin D2 supplementation in a clinical setting on serum total 25-hydroxyvitamin D (25[OH]D), 25-hydroxyvitamin D2 (25[OH]D2), and 25-hydroxyvitamin D3 (25[OH]D3).MethodsThis retrospective cohort study was performed in an urban tertiary referral hospital in Boston, Massachusetts. Patients who had been prescribed 50 000 IU vitamin D2 repletion and maintenance programs were identified through a search of our electronic medical record. Baseline and follow-up total serum 25(OH)D, 25(OH)D2, and 25(OH)D3 levels were compared.ResultsWe examined the medical records of 48 patients who had been prescribed 50 000 IU vitamin D2 in our clinic. Mean ± standard deviation baseline total 25(OH) D was 31.0 ± 10.6 ng/mL and rose to 48.3 ± 13.4 ng/mL after treatment (P <.001). 25(OH)D2 increased from 4.2 ± 4.3 ng/mL to 34.6 ± 12.3 ng/mL after treatment (P <.001), for an average of 158 days (range, 35-735 days). Serum 25(OH)D3 decreased from 26.8 ± 10.8 ng/mL to 13.7 ± 7.9 ng/mL (P <.001).ConclusionsFifty thousand IU vitamin D2 repletion and maintenance therapy substantially increases total 25(OH)D and 25(OH)D2 despite a decrease in serum 25(OH)D3. This treatment program is an appropriate and effective strategy to treat and prevent vitamin D deficiency.(Endocr Pract. 2012;18:399-402)  相似文献   

6.

Background

Hypocalcemia is a frequent abnormality that has been associated with disease severity and outcome in hospitalized foals. However, the pathogenesis of equine neonatal hypocalcemia is poorly understood. Hypovitaminosis D in critically ill people has been linked to hypocalcemia and mortality; however, information on vitamin D metabolites and their association with clinical findings and outcome in critically ill foals is lacking. The goal of this study was to determine the prevalence of vitamin D deficiency (hypovitaminosis D) and its association with serum calcium, phosphorus, and parathyroid hormone (PTH) concentrations, disease severity, and mortality in hospitalized newborn foals.

Methods and Results

One hundred newborn foals ≤72 hours old divided into hospitalized (n = 83; 59 septic, 24 sick non-septic [SNS]) and healthy (n = 17) groups were included. Blood samples were collected on admission to measure serum 25-hydroxyvitamin D3 [25(OH)D3], 1,25-dihydroxyvitamin D3 [1,25(OH) 2D3], and PTH concentrations. Data were analyzed by nonparametric methods and univariate logistic regression. The prevalence of hypovitaminosis D [defined as 25(OH)D3 <9.51 ng/mL] was 63% for hospitalized, 64% for septic, and 63% for SNS foals. Serum 25(OH)D3 and 1,25(OH) 2D3 concentrations were significantly lower in septic and SNS compared to healthy foals (P<0.0001; P = 0.037). Septic foals had significantly lower calcium and higher phosphorus and PTH concentrations than healthy and SNS foals (P<0.05). In hospitalized and septic foals, low 1,25(OH)2D3 concentrations were associated with increased PTH but not with calcium or phosphorus concentrations. Septic foals with 25(OH)D3 <9.51 ng/mL and 1,25(OH) 2D3 <7.09 pmol/L were more likely to die (OR=3.62; 95% CI = 1.1-12.40; OR = 5.41; 95% CI = 1.19-24.52, respectively).

Conclusions

Low 25(OH)D3 and 1,25(OH)2D3 concentrations are associated with disease severity and mortality in hospitalized foals. Vitamin D deficiency may contribute to a pro-inflammatory state in equine perinatal diseases. Hypocalcemia and hyperphosphatemia together with decreased 1,25(OH)2D3 but increased PTH concentrations in septic foals indicates that PTH resistance may be associated with the development of these abnormalities.  相似文献   

7.
The actions of the hormonal form of vitamin D, 1α,25-dihydroxyvitamin D3 [1α,25-(OH)2D3], are mediated by both genomic and nongenomic mechanisms. Several vitamin D synthetic analogs have been developed in order to identify and characterize the site(s) of action of 1α,25-(OH)2D3 in many cell types including osteoblastic cells. We have compared the effects of 1α,25-(OH)2D3 and a novel 1α,25-(OH)2D3 bromoester analog (1,25-(OH)2-BE) that covalently binds to vitamin D receptors. Rat osteosarcoma cells that possess (ROS 17/2.8) or lack (ROS 24/1) the classic intracellular vitamin D receptor were studied to investigate genomic and nongenomic actions. In ROS 17/2.8 cells plated at low density, the two vitamin D compounds (1 × 10−8 M) caused increased cell proliferation, as assessed by DNA synthesis and total cell counts. Northern blot analysis revealed that the mitogenic effect of both agents was accompanied by an increase in steady-state osteocalcin mRNA levels, but neither agent altered alkaline phosphatase mRNA levels in ROS 17/2.8 cells. ROS 17/2.8 cells responded to 1,25-(OH)2-BE but not the natural ligand with a significant increase in osteocalcin secretion after 72, 96, 120, and 144 hr of treatment. Treatment of ROS 17/2.8 cells with the bromoester analog also resulted in a significant decrease in alkaline phosphatase-specific activity. To compare the nongenomic effects of 1α,25-(OH)2D3 and 1,25-(OH)2-BE, intracellular calcium was measured in ROS 24/1 cells loaded with the fluorescent calcium indicator Quin 2. At 2 × 10−8 M, both 1α,25-(OH)2D3 and 1,25-(OH)2-BE increased intracellular calcium within 5 min. Both the genomic and nongenomic actions of 1,25-(OH)2-BE are similar to those of 1α,25-(OH)2D3, and since 1,25-(OH)2-BE has more potent effects on osteoblast function than the naturally occurring ligand due to more stable binding, this novel vitamin D analog may be useful in elucidating the structure and function of cellular vitamin D receptors. © 1996 Wiley-Liss, Inc.  相似文献   

8.
This study examines the effect of 1,25-dihydroxyvitamin D3 [1,25(OH)2D3], 24,25-dihydroxyvitamin D3 [24,25(OH)2D3], two vitamin D analogues (KH 1060 and EB 1089, which are 20-epi-22-oxa and 22,24-diene-analogues, respectively), 9-cis retinoic acid and all-trans retinoic acid on proliferation of SH-SY5Y human neuroblastoma cells, after treatment for 7 days. Cell number did not change when the cells were incubated with 1, 10 or 100 nM 1,25(OH)2D3 or its derivatives, but significantly decreased in the presence of the two retinoids (0.001–10 μM final concentration). A synergistic inhibition was observed, when SH-SY5Y cells were treated combining 0.1 μM 9-cis retinoic acid and 10 nM 1,25(OH)2D3 or 10 nM KH 1060, and 1 μM 9-cis retinoic acid and 10 nM 1,25(OH)2D3 or 10 nM EB 1089. Acetylcholinesterase activity showed a significant increase, in comparison with controls, after treatment of the cells for 7 days with 0.1 or 1 μM 9-cis retinoic acid, alone or combined with 10 nM 1,25(OH)2D3 or 10 nM KH 1060 or 10 nM EB 1089. This increase was synergistic, combining 1 μM 9-cis retinoic acid and 10 nM 1,25(OH)2D3 or EB 1089. The levels of the c-myc encoded protein remarkably decreased after treatment of SH-SY5Y cells for 1, 3, 7 days with 0.1 and 1 μM 9-cis retinoic acid, alone or combined with 10 nM 1,25(OH)2D3 or 10 nM KH 1060 or 10 nM EB 1089. In particular, the association of 1 μM 9-cis retinoic acid and 10 nM 1,25(OH)2D3 or 10 nM EB 1089 resulted in a synergistic c-myc inhibition, in comparison with that obtained in the presence of the retinoid alone. These findings may have therapeutic implications in human neuroblastoma.  相似文献   

9.

Background

Interpretation of parathyroid hormone (iPTH) requires knowledge of vitamin D status that is influenced by season.

Objective

Characterize the temporal relationship between 25-hydroxyvitamin D3 levels [25(OH)D3] and intact iPTH for several seasons, by gender and latitude in the U.S. and relate 25-hydrovitamin D2 [25(OH)D2] levels with PTH levels and total 25(OH)D levels.

Method

We retrospectively determined population weekly-mean concentrations of unpaired [25(OH)D2 and 25(OH)D3] and iPTH using 3.8 million laboratory results of adults. The 25(OH)D3 and iPTH distributions were normalized and the means fit with a sinusoidal function for both gender and latitudes: North >40, Central 32–40 and South <32 degrees. We analyzed PTH and total 25(OH)D separately in samples with detectable 25(OH)D2 (≥4 ng/mL).

Findings

Seasonal variation was observed for all genders and latitudes. 25(OH)D3 peaks occurred in September and troughs in March. iPTH levels showed an inverted pattern of peaks and troughs relative to 25(OH)D3, with a delay of 4 weeks. Vitamin D deficiency and insufficiency was common (33% <20 ng/mL; 60% <30 ng/mL) as was elevated iPTH levels (33%>65 pg/mL). The percentage of patients deficient in 25(OH)D3 seasonally varied from 21% to 48% and the percentage with elevated iPTH reciprocally varied from 28% to 38%. Patients with detectable 25(OH)D2 had higher PTH levels and 57% of the samples with a total 25(OH)D > 50 ng/mL had detectable 25(OH)D2.

Interpretation

25(OH)D3 and iPTH levels vary in a sinusoidal pattern throughout the year, even in vitamin D2 treated patients; 25(OH)D3, being higher in the summer and lower in the winter months, with iPTH showing the reverse pattern. A large percentage of the tested population showed vitamin D deficiency and secondary hyperparathyroidism. These observations held across three latitudinal regions, both genders, multiple-years, and in the presence or absence of detectable 25(OH)D2, and thus are applicable for patient care.  相似文献   

10.
Kidney homogenates from vitamin D3-supplemented chicks incubated with 25-hydroxyvitamin D3 [25(OH)D3] produce significant quantities of a new, unknown vitamin D metabolite. This metabolite was isolated in pure form from such incubation mixtures by using Sephadex LH-20 column chromatography followed by high-pressure liquid chromatography. This metabolite has been identified as 23,25,26-trihydroxyvitamin D3 [23,25,26(OH)3D3] by loss of radioactivity from 25-hydroxy[23,24-3H]vitamin D3 and 25-hydroxy-[26,27-methyl-3H]vitamin D3, ultraviolet absorption spectrophotometry, mass spectrometry, and periodate cleavage oxidation followed by mass spectrometry. This same metabolite was also isolated from the serum of rats given large doses of vitamin D3, and structurally characterized as 23,25,26-trihydroxyvitamin D3. As yet, the stereochemistry at the C-23 and C-25 positions of the natural product remains unknown. A comparison of responses to a single dose level (500 ng) of 23,25,26(OH)3D3 or 25(OH)D3 over 96 h in vitamin D-deficient rats indicated that the new metabolite had no capability to mediate bone calcium mobilization and that it was only weakly active in stimulating intestinal calcium transport.  相似文献   

11.
The total serum concentration of 25-hydroxyvitamins D (25-hydroxyvitamin D3 and 25-hydroxyvitamin D2) is currently used as an indicator of vitamins D status. Vitamins D insufficiency is claimed to be associated with multiple diseases, thus accurate and precise reference methods for the quantification of 25-hydroxyvitamins D are needed. Here we present a novel enzyme-assisted derivatisation method for the analysis of vitamins D metabolites in adult serum utilising 25-[26,26,26,27,27,27-2H6]hydroxyvitamin D3 as the internal standard. Extraction of 25-hydroxyvitamins D from serum is performed with acetonitrile, which is shown to be more efficient than ethanol. Cholesterol oxidase is used to oxidize the 3β-hydroxy group in the vitamins D metabolites followed by derivatisation of the newly formed 3-oxo group with Girard P reagent. 17β-Hydroxysteroid dehydrogenase type 10 is shown to oxidize selectively the 3α-hydroxy group in the 3α-hydroxy epimer of 25-hydroxyvitamin D3. Quantification is achieved by isotope-dilution liquid chromatography–tandem mass spectrometry. Recovery experiments for 25-hydroxyvitamin D3 performed on adult human serum give recovery of 102–106%. Furthermore in addition to 25-hydroxyvitamin D3, 24,25-dihydroxyvitamin D3 and other uncharacterised dihydroxy metabolites, were detected in adult human serum.  相似文献   

12.
《Endocrine practice》2014,20(12):1258-1264
ObjectiveThe prevalence of vitamin D inadequacy is high in obese individuals. Determining the response of serum 25-hydroxyvitamin D (25[OH]D) to vitamin D3 supplementation in obese and nonobese individuals may lead to concurrent recommendations for optimal vitamin D intake in these populations. The objective of this study was to determine the dose response of vitamin D3 in subjects with a body mass index ≥ 35 kg/m2.MethodsRandomized, double-blind, placebo-controlled study. This study is an extension of our previous study of vitamin D dosing in healthy adults. After an assessment of baseline 25(OH)D levels, participants were randomized to a vitamin D supplementation arm (100 μg daily if baseline 25[OH]D was < 50 nmol/L, or 50 μg daily if baseline 25[OH]D was ≥ 50 nmol/L) or placebo arm. Subjects with baseline 25(OH)D level ≥ 80 nmol/L were excluded from the study. Two months following randomization, a repeat 25(OH)D measurement was done.ResultsFinal analysis included 25 subjects (14 placebo, 11 active). At 2 months, serum 25(OH)D concentration increased to a mean of 75 nmol/L in the active group. Mean slope (i.e., vitamin D3 response), defined as 25(OH) D change/baseline dose, was 0.398 nmol/L/μg/day.ConclusionThe dose response of vitamin D3 (slope) in obese subjects was significantly lower (P < .03) at 0.398 nmol/L/μg/day compared to the slope in the previous study of healthy subjects (0.66 nmol/L/μg/day). These results suggest that obese individuals may require 40% higher vitamin D intake than nonobese individuals to attain the same serum 25(OH)D concentration. (Endocr Pract. 2014;20:1258-1264)  相似文献   

13.
The analysis of 25-hydroxyvitamin D3 (25(OH)D3) and related metabolites represents a considerable challenge for both clinical and research laboratories worldwide. There is currently debate about the best methodology employed to assess vitamin D status and whether the 3-epi-25-hydroxyvitamin D3 (3-epi-25(OH)D3) should be separated and quantitated when measuring 25(OH)D3. Mass spectrometry techniques are generally regarded as the gold standard due to high specificity for vitamin D metabolites. However, many methods require high sample volumes for analysis. We have developed a new 2 dimensional (2D) ultra performance liquid chromatography (UPLC) separation coupled tandem mass spectrometry (MS/MS) detection to accurately quantitate 25(OH)D3, epi-25(OH)D3, and 25(OH)D2 in adults and children, requiring only 50 μL of human serum. The assay gives excellent separation of epi-25(OH)D3, and 25(OH)D2 from 25(OH)D3, has excellent precision with an intra-assay CV of 0.5 % at 74 nmol/L and can report down to 2 nmol/L for 25(OH)D3. Furthermore, the method shows excellent agreement with the vitamin D external quality assessment scheme (DEQAS) quality control program for vitamin D analysis. We present this approach as a candidate reference method for 25(OH)D3, epi-25(OH)D3, and 25(OH)D2 analysis in humans.  相似文献   

14.
Serum 25-hydroxyvitamin D3 [25(OH)D3] is produced in the skin in response to exposure to ultraviolet radiation, and is a good indicator of vitamin D nutritional status. The aim of this study was to determine summer/winter differences in serum 25(OH)D3 and parathyroid hormone (PTH) in Japanese women and how the summer and winter values are related. The subjects were 122 healthy Japanese women aged 45–81 years (average age: 65.7 years). They were medically examined twice, in September 1997 and February 1999. Serum 25(OH)D3 and intact PTH were determined by high-performance liquid chromatography and a two-site immunoradiometric assay respectively. Lifestyle information was obtained through an interview. The seasonal differences (winter minus summer) in 25(OH)D3 [Δ25(OH)D3] and intact PTH concentrations were –18.8 nmol/l (SD 19.2, P<0.0001) and 0.98pmol/l (SD 1.02, P<0.0001) respectively. The correlation coefficient between summer (x) and winter (y) 25(OH)D3 levels was 0.462 (P<0.0001), with a linearly fitted line of y=0.42x+26.4. This relationship was interpreted as subjects with higher summer 25(OH)D3 values having greater reductions in winter 25(OH)D3 concentrations. There were inter-individual differences in Δ25(OH)D3, although the summer and winter 25(OH)D3 concentrations were well-correlated. Since Δ25(OH)D3 was not associated with any of the lifestyle factors, seasonal differences in the 25(OH)D3 concentrations of an individual appeared to reflect her ability to produce 25(OH)D3 photochemically in the skin. Sun bathing would be a less effective means of attaining adequate vitamin D nutritional status in a person with a small seasonal difference in 25(OH)D3, i.e., one with a low 25(OH)D3 level. Received: 17 December 1999 / Revised: 24 April 2000 / Accepted: 10 May 2000  相似文献   

15.
《Endocrine practice》2021,27(12):1242-1251
ObjectiveThe goal of this randomized, double-blinded, placebo-controlled clinical trial was to investigate the therapeutic efficacy of oral 25-hydroxyvitamin D3 (25(OH)D3) in improving vitamin D status in vitamin D–deficient/vitamin D–insufficient patients infected with the SARS-CoV-2 (COVID-19) virus.MethodsThis is a multicenter, randomized, double-blinded, placebo-controlled clinical trial. Participants were recruited from 3 hospitals that are affiliated to [Institution Blinded for Review] and [Institution Blinded for Review].ResultsA total 106 hospitalized patients who had a circulating 25(OH)D3 concentration of <30 ng/mL were enrolled in this study. Within 30 and 60 days, 76.4% (26 of 34) and 100% (24 of 24) of the patients who received 25(OH)D3 had a sufficient circulating 25(OH)D3 concentration, whereas ≤12.5% of the patients in the placebo group had a sufficient circulating 25(OH)D3 concentration during the 2-month follow-up.We observed an overall lower trend for hospitalization, intensive care unit duration, need for ventilator assistance, and mortality in the 25(OH)D3 group compared with that in the placebo group, but differences were not statistically significant. Treatment with oral 25(OH)D3 was associated with a significant increase in the lymphocyte percentage and decrease in the neutrophil-to-lymphocyte ratio in the patients. The lower neutrophil-to-lymphocyte ratio was significantly associated with reduced intensive care unit admission days and mortality.ConclusionOur analysis indicated that oral 25(OH)D3 was able to correct vitamin D deficiency/insufficiency in patients with COVID-19 that resulted in improved immune function by increasing blood lymphocyte percentage. Randomized controlled trials with a larger sample size and higher dose of 25(OH)D3 may be needed to confirm the potential effect of 25(OH)D3 on reducing clinical outcomes in patients with COVID-19.  相似文献   

16.
A competitive protein-binding radioassay for 24,25-dihydroxyvitamin D [24,25-(OH)2D] in human serum has been developed. Whereas small amounts of [3H]24,25-(OH)2D must be biosynthesized in order to trace the efficiency of the extraction and chromatographic procedures, tritiated 25-hydroxyvitamin D3 ([3H]25-OHD3) can be used as the assay tracer. Since 25-OHD3 and 24,25-(OH)2D3 are equipotent in their competitive displacement of [3H]25-OHD3 from rat serum, 25-OHD3 can be used as the assay standard. Liquid-gel partition chromatography on small columns of Sephadex LH-20 can reliably isolate 24,25-(OH)2D by batch elution. The purity of biosynthesized [3H]24,25-(OH)2D3 and the 24,25-(OH)2D fraction isolated from serum was confirmed by high-pressure chromatography on 0.2 × 50 cm columns of 10-μm silica. Serum 24,25-(OH)2D levels averaged 16% of the serum 25-OHD concentrations in normal subjects. Since chronic hemodialysis patients, without kidneys, had normal serum 24,25-(OH)2D levels, significant extrarenal 25-hydroxycalciferol 24-hydroxylase activity occurs in these subjects. Since the present assay represents a reasonably simple extension of 25-OHD assay methodology, it should prove to be a useful technique in the analysis of clinical disorders of vitamin D metabolism.  相似文献   

17.
Vitamin D3 (cholecalciferol) is endogenously produced in the skin of primates when exposed to the appropriate wavelengths of ultraviolet light (UV-B). Common marmosets (Callithrix jacchus) maintained indoors require dietary provision of vitamin D3 due to lack of sunlight exposure. The minimum dietary vitamin D3 requirement and the maximum amount of vitamin D3 that can be metabolized by marmosets is unknown. Observations of metabolic bone disease and gastrointestinal malabsorption have led to wide variation in dietary vitamin D3 provision amongst research institutions, with resulting variation in circulating 25-hydroxyvitamin D3 (25(OH)D3), the accepted marker for vitamin D sufficiency/deficiency. Multiple studies have reported serum 25(OH)D3 in captive marmosets, but 25(OH)D3 is not the final product of vitamin D3 metabolism. In addition to serum 25(OH)D3, we measured the most physiologically active metabolite, 1,25-dihydroxyvitamin D3 (1,25(OH)2D3), and the less well understood metabolite, 24,25-dihydroxyvitamin D3 (24,25(OH)2D3) to characterize the marmoset's ability to metabolize dietary vitamin D3. We present vitamin D3 metabolite and related serum chemistry value colony reference ranges in marmosets provided diets with 26,367 (Colony A, N = 113) or 8,888 (Colony B, N = 52) international units (IU) of dietary vitamin D3 per kilogram of dry matter. Colony A marmosets had higher serum 25(OH)D3 (426 ng/ml [SD 200] vs. 215 ng/ml [SD 113]) and 24,25(OH)2D3 (53 ng/ml [SD 35] vs. 7 ng/ml [SD 5]). There was no difference in serum 1,25(OH)2D3 between the colonies. Serum 1,25(OH)2D3 increased and 25(OH)D3 decreased with age, but the effect was weak. Marmosets tightly regulate metabolism of dietary vitamin D3 into the active metabolite 1,25(OH)2D3; excess 25(OH)D3 is metabolized into 24,25(OH)2D3. This ability explains the tolerance of high levels of dietary vitamin D3 by marmosets, however, our data suggest that these high dietary levels are not required.  相似文献   

18.
《Organogenesis》2013,9(2):52-54
To characterize actions of vitamin D3 on metanephroi transplanted from rat embryos to adult recipients, we incubated metanephroi with or without 0.01, 0.1 or 1 ug/ml vitamin D3, 25-hydroxyvitamin D3 [25(OH)D3] or 1, 25-hydroxyvitamin D3 [1,25(OH)2D3] prior to implantation. The number of glomeruli in developed metanephroi three weeks post-transplantation that had been incubated with 1.0 ug/ml vitamin D3 was increased relative to the number in metanephroi that were not incubated with vitamin D3 (control), an effect that was not recapitulated by administration of vitamin D3 directly to hosts at the time of transplantation. Incubation of metanephroi with 1.0 ug/ml vitamin D3 also enhanced inulin clearances of metanephroi measured at 12 weeks post-transplantation. The hydroxylated derivative of vitamin D3, 25(OH)D3, increased glomerulus number when applied at 0.01 ug/ml but not at higher concentrations, while the twice-hydroxylated derivative 1,25(OH)2D3, failed to increase glomerulus number at any concentration tested. We conclude that incubation with vitamin D3 prior to implantation enhances inulin clearance possibly by increasing the number of glomeruli that develop post-transplantation.

Our findings suggest the vitamin D3 effect is mediated locally.  相似文献   

19.
To characterize actions of vitamin D3 on metanephroi transplanted from rat embryos to adult recipients, we incubated metanephroi with or without 0.01, 0.1 or 1 ug/ml vitamin D3, 25-hydroxyvitamin D3 [25(OH)D3] or 1, 25-hydroxyvitamin D3 [1,25(OH)2D3] prior to implantation. The number of glomeruli in developed metanephroi three weeks post-transplantation that had been incubated with 1.0 ug/ml vitamin D3 was increased relative to the number in metanephroi that were not incubated with vitamin D3 (control), an effect that was not recapitulated by administration of vitamin D3 directly to hosts at the time of transplantation. Incubation of metanephroi with 1.0 ug/ml vitamin D3 also enhanced inulin clearances of metanephroi measured at 12 weeks post-transplantation. The hydroxylated derivative of vitamin D3, 25(OH)D3, increased glomerulus number when applied at 0.01 ug/ml but not at higher concentrations, while the twice-hydroxylated derivative 1,25(OH)2D3, failed to increase glomerulus number at any concentration tested. We conclude that incubation with vitamin D3 prior to implantation enhances inulin clearance possibly by increasing the number of glomeruli that develop post-transplantation.Our findings suggest the vitamin D3 effect is mediated locally.Key Words: kidney, organogenesis, transplantation  相似文献   

20.
Ca2+ is absorbed across intestinal epithelial monolayers via transcellular and paracellular pathways, and an active form of vitamin D3, 1α,25-dihydroxyvitamin D3 [1α,25(OH)2D3], is known to promote intestinal Ca2+ absorption. However, the molecules driving the paracellular Ca2+ absorption and its vitamin D dependency remain obscure. Because the tight junction proteins claudins are suggested to form paracellular channels for selective ions between neighboring cells, we hypothesized that specific intestinal claudins might facilitate paracellular Ca2+ transport and that expression of these claudins could be induced by 1α,25(OH)2D3. Herein, we show, by using RNA interference and overexpression strategies, that claudin-2 and claudin-12 contribute to Ca2+ absorption in intestinal epithelial cells. We also provide evidence showing that expression of claudins-2 and -12 is up-regulated in enterocytes in vitro and in vivo by 1α,25(OH)2D3 through the vitamin D receptor. These findings strongly suggest that claudin-2- and/or claudin-12-based tight junctions form paracellular Ca2+ channels in intestinal epithelia, and they highlight a novel mechanism behind vitamin D-dependent calcium homeostasis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号