首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Aim

The aim of this work was to assess the suitability of the use of a Gafchromic EBT2 film for the measurement of anisotropy function for microSelectron HDR 192Ir (classic) source with a comparative dosimetry method using a Gafchromic EBT2 film and thermoluminescence dosimeters (TLDs).

Background

Sealed linear radiation sources are commonly used for high dose rate (HDR) brachytherapy treatments. Due to self-absorption and oblique filtration of radiation in the source capsule material, an inherent anisotropy is present in the dose distribution around the source which can be described by a measurable two-dimensional anisotropy function, F(r, θ).

Materials and methods

Measurements were carried out in a specially designed and locally fabricated PMMA phantom with provisions to accommodate miniature LiF TLD rods and EBT2 film dosimeters at identical radial distances with respect to the 192Ir source.

Results

The data of anisotropy function generated by the use of the Gafchromic EBT2 film method are in agreement with their TLD measured values within 4%. The produced data are also consistent with their experimental and Monte Carlo calculated results for this source available in the literature.

Conclusion

Gafchromic EBT2 film was found to be a feasible dosimeter in determining anisotropy in the dose distribution of 192Ir source. It offers high resolution and is a viable alternative to TLD dosimetry at discrete points. The method described in this paper is useful for comparing the performances of detectors and can be applied for other brachytherapy sources as well.  相似文献   

2.

Aim

Stepping source in brachytherapy systems is used to treat a target lesion longer than the effective treatment length of the source. Cancerous lesions in the cervix, esophagus and rectum are examples of such a target lesion.

Background

In this study, the stepping source of a GZP6 afterloading intracavitary brachytherapy unit was simulated using Monte Carlo (MC) simulation and the results were used for the validation of the GZP6 treatment planning system (TPS).

Materials and methods

The stepping source was simulated using MCNPX Monte Carlo code. Dose distributions in the longitudinal plane were obtained by using a matrix shift method for esophageal tumor lengths of 8 and 10 cm. A mesh tally has been employed for the absorbed dose calculation in a cylindrical water phantom. A total of 5 × 108 photon histories were scored and the MC statistical error obtained was at the range of 0.008–3.5%, an average of 0.2%.

Results

The acquired MC and TPS isodose curves were compared and it was shown that the dose distributions in the longitudinal plane were relatively coincidental. In the transverse direction, a maximum dose difference of 7% and 5% was observed for tumor lengths of 8 and 10 cm, respectively.

Conclusion

Considering that the certified source activity is given with ±10% uncertainty, the obtained difference is reasonable. It can be concluded that the accuracy of the dose distributions produced by GZP6 TPS for the stepping source is acceptable for its clinical applications.  相似文献   

3.
AimThe purpose of this study is to calculate radiation dose around a brachytherapy source in a water phantom for different seed locations or rotation the sources by the matrix summation method.BackgroundMonte Carlo based codes like MCNP are widely used for performing radiation transport calculations and dose evaluation in brachytherapy. But for complicated situations, like using more than one source, moving or rotating the source, the routine Monte Carlo method for dose calculation needs a long time running.Materials and methodsThe MCNPX code has been used to calculate radiation dose around a 192Ir brachytherapy source and saved in a 3D matrix. Then, we used this matrix to evaluate the absorbed dose in any point due to some sources or a source which shifted or rotated in some places by the matrix summation method.ResultsThree dimensional (3D) dose results and isodose curves were presented for 192Ir source in a water cube phantom shifted for 10 steps and rotated for 45 and 90° based on the matrix summation method. Also, we applied this method for some arrays of sources.ConclusionThe matrix summation method can be used for 3D dose calculations for any brachytherapy source which has moved or rotated. This simple method is very fast compared to routine Monte Carlo based methods. In addition, it can be applied for dose optimization study.  相似文献   

4.
PurposeThe purpose of the present study was to perform an independent calculation of dosimetric parameters associated with a new 192Ir brachytherapy source model, IRAsource.Materials and methodsThe parameters of air kerma strength (AKS), dose rate constant (DRC), geometry function (GF), radial dose function (RDF), as well as two-dimensional (2D) anisotropy function (AF) of IRAsource 192Ir source model were calculated in this study. The MC n-particle extended (MCNPX) code was also employed for simulating high dose rate (HDR), IRAsource and 192Ir source; and formalism was used for calculating dosimetry parameters based on task group number 43 updated report (TG-43 U1).ResultsThe results of this study were consistent with the ones reported about the IRAsource source by Sarabiasl et al. The AKS per 1 mCi activity and the DRC values were also equal to 3.65 cGycm2 h–1 mCi–1 and 1.094 cGyh–1U–1; respectively. The comparison of the results of the DRC and the RDF reported by Sarabiasl et al. also validated the 192Ir IRAsource simulation in this study. Moreover, the AFs of IRAsource source model were in a good agreement with those of Sarabiasl et al. at different distances, which could be attributed to identical geometries.ConclusionIn line with those reported by Sarabiasl et al., the results of this study confirmed the IRAsource 192Ir source for clinical uses. The calculated dosimetric parameters of the IRAsource source could be utilized in clinical practices as input data sets or for validation of treatment planning system calculations.  相似文献   

5.
6.
The aim of this study is to determine effects of size deviations of brachytherapy seeds on two dimensional dose distributions around the seed. Although many uncertainties are well known, the uncertainties which stem from geometric features of radiation sources are weakly considered and predicted. Neither TG-43 report which is not completely in common consensus, nor individual scientific MC and experimental studies include sufficient data for geometric uncertainties. Sizes of seed and its components can vary in a manufacturing deviation. This causes geometrical uncertainties, too. In this study, three seeds which have different geometrical properties were modeled using EGSnrc-Code Packages. Seeds were designed with all their details using the geometry package. 5% deviations of seed sizes were assumed. Modified seeds were derived from original seed by changing sizes by 5%. Normalizations of doses which were calculated from three kinds of brachytherapy seed and their derivations were found to be about 3%–20%. It was shown that manufacturing differences of brachytherapy seed cause considerable changes in dose distribution.  相似文献   

7.
60Co sources are being used as an alternative to 192Ir sources in high dose rate brachytherapy treatments. In a recent document from AAPM and ESTRO, a consensus dataset for the 60Co BEBIG (model Co0.A86) high dose rate source was prepared by using results taken from different publications due to discrepancies observed among them. The aim of the present work is to provide a new calculation of the dosimetric characteristics of that 60Co source according to the recommendations of the AAPM and ESTRO report. Radial dose function, anisotropy function, air-kerma strength, dose rate constant and absorbed dose rate in water have been calculated and compared to the results of previous works. Simulations using the two different geometries considered by other authors have been carried out and the effect of the cable density and length has been studied.  相似文献   

8.

Aim

To calibrate Ir-192 high dose rate (HDR) brachytherapy source using different calibration methods and to determine the accuracy and suitability of each method for routine calibrations.

Background

The source calibration is an essential part of the quality assurance programme for dosimetry of brachytherapy sources. The clinical use of brachytherapy source requires an independent measurement of the air kerma strength according to the recommendations of medical physics societies.

Materials and methods

The Ir-192 HDR brachytherapy source from Gammamed plus machine (Varian Medical Systems, Palo Alto, CA) was calibrated using three different procedures, one using the well-type ionization chamber, second by the in-air calibration method and third using solid water phantoms. The reference air kerma rate (RAKR) of the source was determined using Deutsche Gesellschaft fur Medizinische Physik (DGMP) recommendations.

Results

The RAKR determined using different calibration methods are in good agreement with the manufacturer stated value. The mean percentage variations of 0.21, −0.94, −0.62 and 0.58 in RAKR values with respect to the manufacturer quoted values were observed with the well-type chamber, in-air calibration, cylindrical phantom and slab phantom measurements, respectively.

Conclusion

Measurements with a well-type chamber are relatively simple to perform. For in-air measurements, the indigenously designed calibration jig provides an accurate positioning of the source and chamber with minimum scatter contribution. The slab phantom system has an advantage that no additional phantom and chamber are required other than those used for external beam therapy dosimetry. All the methods of calibration discussed in this study are effective to be used for routine calibration purposes.  相似文献   

9.
10.
This work provides an improvement of the approach using Monte Carlo simulation for the Amersham Model 6711 125I brachytherapy seed source, which is well known by many theoretical and experimental studies. The source which has simple geometry was researched with respect to criteria of AAPM Tg-43 Report. The approach offered by this study involves determination of differential dose contributions that come from virtual partitions of a massive radioactive element of the studied source to a total dose at analytical calculation point. Some brachytherapy seeds contain multi-radioactive elements so the dose at any point is a total of separate doses from each element. It is momentous to know well the angular and radial dose distributions around the source that is located in cancerous tissue for clinical treatments. Interior geometry of a source is effective on dose characteristics of a distribution. Dose information of inner geometrical structure of a brachytherapy source cannot be acquired by experimental methods because of limits of physical material and geometry in the healthy tissue, so Monte Carlo simulation is a required approach of the study. EGSnrc Monte Carlo simulation software was used. In the design of a simulation, the radioactive source was divided into 10 rings, partitioned but not separate from each other. All differential sources were simulated for dose calculation, and the shape of dose distribution was determined comparatively distribution of a single-complete source. In this work anisotropy function was examined also mathematically.  相似文献   

11.

Aim

The aim of this study is to assess the effect of the compositions of various soft tissues and tissue-equivalent materials on dose distribution in neutron brachytherapy/neutron capture therapy.

Background

Neutron brachytherapy and neutron capture therapy are two common radiotherapy modalities.

Materials and methods

Dose distributions were calculated around a low dose rate 252Cf source located in a spherical phantom with radius of 20.0 cm using the MCNPX code for seven soft tissues and three tissue-equivalent materials. Relative total dose rate, relative neutron dose rate, total dose rate, and neutron dose rate were calculated for each material. These values were determined at various radial distances ranging from 0.3 to 15.0 cm from the source.

Results

Among the soft tissues and tissue-equivalent materials studied, adipose tissue and plexiglass demonstrated the greatest differences for total dose rate compared to 9-component soft tissue. The difference in dose rate with respect to 9-component soft tissue varied with compositions of the materials and the radial distance from the source. Furthermore, the total dose rate in water was different from that in 9-component soft tissue.

Conclusion

Taking the same composition for various soft tissues and tissue-equivalent media can lead to error in treatment planning in neutron brachytherapy/neutron capture therapy. Since the International Commission on Radiation Units and Measurements (ICRU) recommends that the total dosimetric uncertainty in dose delivery in radiotherapy should be within ±5%, the compositions of various soft tissues and tissue-equivalent materials should be considered in dose calculation and treatment planning in neutron brachytherapy/neutron capture therapy.  相似文献   

12.
PurposeFor the TomoTherapy® system, longitudinal conformation can be improved by selecting a smaller field width but at the expense of longer treatment time. Recently, the TomoEdge® feature has been released with the possibility to move dynamically the jaws at the edges of the target volume, improving longitudinal penumbra and enabling faster treatments. Such delivery scheme requires additional modeling of treatment delivery. Using a previously validated Monte Carlo model (TomoPen), we evaluated the accuracy of the implementation of TomoEdge in the new dose engine of TomoTherapy for 15 clinical cases.MethodsTomoPen is based on PENELOPE. Particle tracking in the treatment head is performed almost instantaneously by 1) reading a particle from a phase-space file corresponding to the largest field and 2) correcting the weight of the particle depending on the actual jaw and MLC configurations using Monte Carlo pre-generated data. 15 clinical plans (5 head-and-neck, 5 lung and 5 prostate tumors) planned with TomoEdge and with the last release of the treatment planning system (VoLO®) were re-computed with TomoPen. The resulting dose-volume histograms were compared.ResultsGood agreement was achieved overall, with deviations for the target volumes typically within 2% (D95), excepted for small lung tumors (17 cm3) where a maximum deviation of 4.4% was observed for D95. The results were consistent with previously reported values for static field widths.ConclusionsFor the clinical cases considered in the present study, the introduction of TomoEdge did not impact significantly the accuracy of the computed dose distributions.  相似文献   

13.

Background

As a routine method for stepping source simulation, a Monte Carlo program is run according to the number of steps and then the summation of dose from each run is taken to obtain total dose distribution. This method is time consuming.

Aim

As an alternative method, a matrix shift based technique was applied to simulate a stepping source for brachytherapy.

Materials and methods

The stepping source of GZP6 brachytherapy unit was simulated. In a matrix shift method, it is assumed that a radiation source is stationary and instead the data matrix is shifted based on the number of steps. In this study, by running MCNPX program for one point and calculation of the dose matrix using the matrix shift method, the isodose curves for the esophageal cancer tumor lengths of 4 and 6 cm were obtained and compared with the isodose curves obtained by running MCNPX programs in each step position separately (15 and 23 steps for esophageal cancer tumor lengths of 4 and 6 cm, respectively).

Results

The difference between the two dose matrixes for the stepping and matrix shift methods based on the average dose differences are 3.85 × 10−4 Gy and 5.19 × 10−4 Gy for treatment length of 4 cm and 6 cm, respectively. Dose differences are insignificant and these two methods are equally valid.

Conclusions

The matrix shift method presented in this study can be used for calculation of dose distribution for a brachytherapy stepping source as a quicker tool compared to other routine Monte Carlo based methods.  相似文献   

14.
PurposeFricke dosimetry has shown great potential in the direct measurement of the absolute absorbed dose for 192Ir sources used in HDR brachytherapy. This work describes the determination of the correction factors necessary to convert the absorbed dose in the Fricke solution to the absorbed dose to water. Methods: The experimental setup for Fricke irradiation using a 192Ir source was simulated. The holder geometry used for the Fricke solution irradiation was modelled for MC simulation, using the PENELOPE. Results: The values of the factors determined for validation purposes demonstrated differences of less than 0.2% when compared to the published values. Four factors were calculated to correct: the differences in the density of the solution (1.0004 ± 0.0004); the perturbations caused by the holder (0.9989 ± 0.0004); the source anisotropy and the water attenuation effects (1.0327 ± 0.0012); and the distance from the center of the detection volume to the source (7.1932 ± 0.0065). Conclusion: Calculated corrections in this work show that the largest correction comes from the inverse squared reduction of the dose due to the point of measurement shift from the reference position of 1 cm. This situation also causes the correction due to volume averaging and attenuation in water to be significant. Future versions of the holder will aim to reduce these effects by having a position of measurement closer to the reference point thus requiring smaller corrections.  相似文献   

15.
16.
PurposeThis work compares Monte Carlo dose calculations performed using the RayStation treatment planning system against data measured on a Varian Truebeam linear accelerator with 6 MV and 10 MV FFF photon beams.MethodsThe dosimetric performance of the RayStation Monte Carlo calculations was evaluated in a variety of irradiation geometries employing homogeneous and heterogeneous phantoms. Profile and depth dose comparisons against measurement were carried out in relative mode using the gamma index as a quantitative measure of similarity within the central high dose regions.ResultsThe results demonstrate that the treatment planning system dose calculation engine agrees with measurement to within 2%/1 mm for more than 95% of the data points in the high dose regions for all test cases. A systematic underestimation was observed at the tail of the profile penumbra and out of field, with mean differences generally <0.5 mm or 1% of curve dose maximum respectively. Out of field agreement varied between evaluated beam models.ConclusionsThe RayStation implementation of photon Monte Carlo dose calculations show good agreement with measured data for the range of scenarios considered in this work and is deemed sufficiently accurate for introduction into clinical use.  相似文献   

17.

Background

Task group number 40 (TG-40) of the American Association of Physicists in Medicine (AAPM) has recommended calibration of any brachytherapy source before its clinical use. GZP6 afterloading brachytherapy unit is a 60Co high dose rate (HDR) system recently being used in some of the Iranian radiotherapy centers.

Aim

In this study air kerma strength (AKS) of 60Co source number three of this unit was estimated by Monte Carlo simulation and in air measurements.

Materials and methods

Simulation was performed by employing the MCNP-4C Monte Carlo code. Self-absorption of the source core and its capsule were taken into account when calculating air kerma strength. In-air measurements were performed according to the multiple distance method; where a specially designed jig and a 0.6 cm3 Farmer type ionization chamber were used for the measurements. Monte Carlo simulation, in air measurement and GZP6 treatment planning results were compared for primary air kerma strength (as for November 8th 2005).

Results

Monte Carlo calculated and in air measured air kerma strength were respectively equal to 17240.01 μGym2 h−1 and 16991.83 μGym2 h−1. The value provided by the GZP6 treatment planning system (TPS) was “15355 μGym2 h−1”.

Conclusion

The calculated and measured AKS values are in good agreement. Calculated-TPS and measured-TPS AKS values are also in agreement within the uncertainties related to our calculation, measurements and those certified by the GZP6 manufacturer. Considering the uncertainties, the TPS value for AKS is validated by our calculations and measurements, however, it is incorporated with a large uncertainty.  相似文献   

18.
19.
PurposeTo compare, via Monte Carlo simulations, homogeneous and non-homogenous breast models adopted for mean glandular dose (MGD) estimates in mammography vs. patient specific digital breast phantoms.MethodsWe developed a GEANT4 Monte Carlo code simulating four homogenous cylindrical breast models featured as follows: (1) semi-cylindrical section enveloped in a 5-mm adipose layer; (2) semi-elliptical section with a 4-mm thick skin; (3) semi-cylindrical section with a 1.45-mm skin layer; (4) semi-cylindrical section in a 1.45-mm skin layer and 2-mm subcutaneous adipose layer. Twenty patient specific digital breast phantoms produced from a dedicated CT scanner were assumed as reference in the comparison. We simulated two spectra produced from two anode/filter combinations. An additional digital breast phantom was produced via BreastSimulator software.ResultsWith reference to the results for patient-specific breast phantoms and for W/Al spectra, models #1 and #3 showed higher MGD values by about 1% (ranges [–33%; +28%] and [−31%; +30%], respectively), while for model #4 it was 2% lower (range [−34%; +26%]) and for model #2 –11% (range [−39%; +14%]), on average. On the other hand, for W/Rh spectra, models #1 and #4 showed lower MGD values by 2% and 1%, while for model #2 and #3 it was 14% and 8% lower, respectively (ranges [−43%; +13%] and [−41%; +21%]). The simulation with the digital breast phantom produced with BreastSimulator showed a MGD overestimation of +33%.ConclusionsThe homogeneous breast models led to maximum MGD underestimation and overestimation of 43% and 28%, respectively, when compared to patient specific breast phantoms derived from clinical CT scans.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号