首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The synthesis, transport and localization of a nuclear coded 22-kd heat-shock protein (HSP) in the chloroplast membranes was studied in pea plants and Chlamydomonas reinhardi. HSPs were detected in both systems by in vivo labeling and in vitro translation of poly(A)+RNA, using the wheat-germ and reticulocyte lysate systems. Heat-shock treatment of pea plants for 2 h at 42-45°C induces the expression of ˜10 nuclear coded proteins, among which several (18 kd, 19 kd, 22 kd) are predominant. A 22-kd protein is synthesized as a 26-kd precursor protein and is localized in a chloroplast membrane fraction in vivo. Following post-translational transport into intact chloroplasts in vitro of the 26-kd precursor, the protein is processed but the resulting 22-kd mature protein is localized in the chloroplast stroma. If, however, the in vitro transport is carried out with chloroplasts from heat-shocked plants, the 22-kd protein is preferentially transported to the chloroplast membrane fraction. In C. reinhardi the synthesis of poly(A)+RNAs coding for several HSPs is progressively and sequentially induced when raising the temperature for 1.5 h from 36°C to 42°C, while that of several preexisting RNAs is reduced. Various pre-existing poly(A)+RNAs endure in the cells at 42°C up to 5 h but are no longer translated in vivo, whereas some poly(A)RNAs persist and are translated. As in pea, a poly(A)+RNA coded 22-kd HSP is localized in the chloroplast membranes in vivo, although it is translated as a 22-kd protein in vitro. The in vitro translated protein is not transported in isolated pea chloroplast which, however, processes and transports other nuclear coded chloroplast proteins of Chlamydomonas. The poly(A)+RNA coding for the 22-kd HSP appears after 1 h at 36°C. Its synthesis increases with the temperature of incubation up to 42°C, although it decreases after ˜2 h of heat treatment and the already synthesized RNA is rapidly degraded. The degradation is faster upon return of the cells to 26°C. None of the heat-induced proteins is identical to the light-inducible proteins of the chloroplast membranes.  相似文献   

2.
3.
1. Superovulated rat ovary slices from rats treated with 20μg. of luteininzing hormone/100g. body wt. 2hr. before death and from control animals have been incubated in vitro. Output of Δ4-3-oxo steroids (0·2μmole/g. wet wt./hr. in control tissue) was linear for 4hr., and was increased by approx. 70% in slices from luteinizing hormone-treated rats. Rate of oxygen consumption (90·0±4·6μmoles/g. wet wt./hr.) was linear for 3hr. and unaltered by luteinizing hormone treatment or addition of glucose (1mg./ml.) to the medium. 2. In slices from control animals, steady-state rate of glucose uptake was 78·0±2·9μg. atoms of carbon/g. wet wt./hr.; steady-state rates of lactate output, pyruvate output and incorporation of [U-14C]-glucose carbon atoms into carbon dioxide and total lipid extract were 60·7±0·9, 2·4±0·1, 18·0±1·1 and 0·7±0·1μg. atom of carbon/g. wet wt./hr. and accounted for 104·5±1·9% of the glucose uptake. In slices from luteinizing hormone-treated rats, glucose uptake and outputs of lactate, pyruvate and [14C]carbon dioxide were increased by approx. 25%, and 108·4±3·2% of the glucose uptake could be accounted for. 3. The total lipid extract was separated by thin-layer chromatography and saponification. Of the 14C incorporated into this fraction during incubation with [U-14C]glucose 97% was found in the fractions containing glyceride glycerol and less than 3% in the fractions containing sterols, steroids or fatty acids. Appreciable quantities of 14C were incorporated into these lipid fractions from [1-14C]acetate. 4. From a consideration of the tissue glycogen content, the specific activities of [14C]lactate and glucose 6-phosphate (C-1) derived from [1-14C]-, [6-14C]- and [U-14C]-glucose, and the ratio of [14C]carbon dioxide yields from [1-14C]glucose and [6-14C]glucose, it was concluded that there was no appreciable glycogenolysis or flow through the pentose phosphate cycle. 5. In ovary slices from both control and luteinizing hormone-treated animals, glucose in vitro raised the incorporation rate of 14C from [1-14C]acetate into sterols and steroids. Luteinizing hormone in vivo stimulated the incorporation rate in vitro but only in the presence of glucose. 6. In slices incubated in medium containing [3H]water, [14C]sorbitol and glucose (1mg./ml.), the total water space (865±7·1μl./g.) and the extracellular water space (581±22μl./g.) were unchanged by luteinizing hormone treatment in vivo but the glucose space was raised from 540±23·6μl./g. to 639±31·3μl./g. 7. Luteinizing hormone treatment was found to lower the tissue concentration of the hexose monophosphates and to increase the total activity of hexokinase, glucose 6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase and possibly of phosphofructokinase. 8. The kinetic properties of a partially purified preparation of phosphofructokinase were found to be qualitatively similar to those from other mammalian tissues. 9. The results are discussed with reference to both the role of glucose metabolism in steroidogenesis and the mechanism by which luteinizing hormone increases the rate of glucose uptake.  相似文献   

4.
The ability of an organism to tolerate seasonal temperature changes, such as extremely cold temperatures during the winter, can be influenced by their pathogens. We tested how exposure to a virulent fungal pathogen, Batrachochytrium dendrobatidis (Bd), affected the critical thermal minimum (CTmin) of two frog species, Hyla versicolor (gray treefrog) and Lithobates palustris (pickerel frog). The CTmin is the minimum thermal performance point of an organism, which we estimated via righting response trials. For both frog species, we compared the righting response of Bd‐exposed and Bd‐unexposed individuals in either a constant (15ºC) environment or with decreasing temperatures (−1°C/2.5 min) starting from 15°C. The CTmin for both species was higher for Bd‐exposed frogs than unexposed frogs, and the CTmin of H. versicolor was higher than L. palustris. We also found that Bd‐exposed frogs of both species righted themselves significantly fewer times in both decreasing and constant temperature trials. Our findings show that pathogen exposure can reduce cold tolerance and limit the thermal performance range of hosts, which may lead to increased overwintering mortality.  相似文献   

5.
6.
Type I cGMP-dependent protein kinases (PKGIs) are important components of various signaling pathways and are canonically activated by nitric oxide– and natriuretic peptide–induced cGMP generation. However, some reports have shown that PKGIα can also be activated in vitro by oxidizing agents. Using in vitro kinase assays, here, we found that purified PKGIα stored in PBS with Flag peptide became oxidized and activated even in the absence of oxidizing agent; furthermore, once established, this activation could not be reversed by reduction with DTT. We demonstrate that activation was enhanced by addition of Cu2+ before storage, indicating it was driven by oxidation and mediated by trace metals present during storage. Previous reports suggested that PKGIα Cys43, Cys118, and Cys196 play key roles in oxidation-induced kinase activation; we show that activation was reduced by C118A or C196V mutations, although C43S PKGIα activation was not reduced. In contrast, under the same conditions, purified PKGIβ activity only slightly increased with storage. Using PKGIα/PKGIβ chimeras, we found that residues throughout the PKGIα-specific autoinhibitory loop were responsible for this activation. To explore whether oxidants activate PKGIα in H9c2 and C2C12 cells, we monitored vasodilator-stimulated phosphoprotein phosphorylation downstream of PKGIα. While we observed PKGIα Cys43 crosslinking in response to H2O2 (indicating an oxidizing environment in the cells), we were unable to detect increased vasodilator-stimulated phosphoprotein phosphorylation under these conditions. Taken together, we conclude that while PKGIα can be readily activated by oxidation in vitro, there is currently no direct evidence of oxidation-induced PKGIα activation in vivo.  相似文献   

7.
Understanding the requirements for protection against pneumococcal carriage and pneumonia will greatly benefit efforts in controlling these diseases. Several proteins and polysaccharide capsule have recently been implicated in the virulence of and protective immunity against Streptococcus pneumonia. Pneumococcal surface protein A (PspA) is highly conserved among S. pneumonia strains, inhibits complement activation, binds lactoferrin, elicits protective systemic immunity against pneumococcal infection, and is necessary for full pneumococcal virulence. Identification of PspA peptides that optimally bind human leukocyte antigen (HLA) would greatly contribute to global vaccine efforts, but this is hindered by the multitude of HLA polymorphisms. Here, we have used an experimental data set of 54 PspA peptides and in silico methods to predict peptide binding to HLA and murine major histocompatibility complex (MHC) class II. We also characterized spleen- and cervical lymph node (CLN)-derived helper T lymphocyte (HTL) cytokine responses to these peptides after S. pneumonia strain EF3030-challenge in mice. Individual, yet overlapping peptides, 15 amino acids in length revealed residues 199 to 246 of PspA (PspA199–246) consistently caused the greatest IFN-γ, IL-2, IL-5 and proliferation as well as moderate IL-10 and IL-4 responses by ex vivo stimulated splenic and CLN CD4+ T cells isolated from S. pneumonia strain EF3030-challeged F1 (B6×BALB/c) mice. IEDB, RANKPEP, SVMHC, MHCPred, and SYFPEITHI in silico analysis tools revealed peptides in PspA199–246 also interact with a broad range of HLA-DR, -DQ, and -DP allelles. These data suggest that predicted MHC class II-peptide binding affinities do not always correlate with T helper (Th) cytokine or proliferative responses to PspA peptides, but when used together with in vivo validation can be a useful tool to choose candidate pneumococcal HTL epitopes.  相似文献   

8.
Phase changes in Bacteroides fragilis, a member of the human colonic microbiota, mediate variations in a vast array of cell surface molecules, such as capsular polysaccharides and outer membrane proteins through DNA inversion. The results of the present study show that outer membrane vesicle (OMV) formation in this anaerobe is also controlled by DNA inversions at two distantly localized promoters, IVp-I and IVp-II that are associated with extracellular polysaccharide biosynthesis and the expression of outer membrane proteins. These promoter inversions are mediated by a single tyrosine recombinase encoded by BF2766 (orthologous to tsr19 in strain NCTC9343) in B. fragilis YCH46, which is located near IVp-I. A series of BF2766 mutants were constructed in which the two promoters were locked in different configurations (IVp-I/IVp-II = ON/ON, OFF/OFF, ON/OFF or OFF/ON). ON/ON B. fragilis mutants exhibited hypervesiculating, whereas the other mutants formed only a trace amount of OMVs. The hypervesiculating ON/ON mutants showed higher resistance to treatment with bile, LL-37, and human β-defensin 2. Incubation of wild-type cells with 5% bile increased the population of cells with the ON/ON genotype. These results indicate that B. fragilis regulates the formation of OMVs through DNA inversions at two distantly related promoter regions in response to membrane stress, although the mechanism underlying the interplay between the two regions controlled by the invertible promoters remains unknown.  相似文献   

9.
BackgroundSchistosomiasis affects over 200 million people worldwide but only praziquantel is available for treatment and control. Drug discovery is often based on phenotypic drug screening, involving different parasite stages retrieved from infected mice. Aiming to reduce animal use, we validated an in vitro growth method for juvenile Schistosoma mansoni for the purpose of drug sensitivity assays.Methodology/Principal findingsWe compared inter–batch variability of serum, worm size and organ development, gender distribution, and drug sensitivity between in vitro and in vivo grown worms over different life stages. In vitro developed S. mansoni in Hybridoma medium supplemented with 20% human serum were similar in size as in vivo worms until 28 days of incubation (males 1.4 ± 0.2 mm, females 1.1 ± 0.5 mm long). qPCR analysis revealed similar gender distribution both on newly transformed schistosomula and worms grown for 21 days. Worms developed in vitro and in vivo were similarly sensitive to praziquantel from 7 to 35 days of development with the exception of 21 days of development, where a slightly lower activity was observed for the in vitro grown worms (IC50: 0.54 μM in vitro, 0.14 μM in vivo 72 hours post-incubation). The evaluation of five additional drugs revealed a similar sensitivity on worms developed for 21 days, with the exception of mefloquine, where we observed a 10-fold lower sensitivity on in vitro developed schistosomes when compared to in vivo grown (IC50: 4.43 μM in vitro, 0.48 μM in vivo).ConclusionA large number of juvenile S. mansoni worms can be grown in vitro, which show similar drug sensitivity, gender distribution, size and morphology as the worms recovered from rodents, supporting the use of this method in drug screening efforts.  相似文献   

10.
Background and Aims Conservation of the genetic diversity afforded by recalcitrant seeds is achieved by cryopreservation, in which excised embryonic axes (or, where possible, embryos) are treated and stored at temperatures lower than −180 °C using liquid nitrogen. It has previously been shown that intracellular ice forms in rapidly cooled embryonic axes of Acer saccharinum (silver maple) but this is not necessarily lethal when ice crystals are small. This study seeks to understand the nature and extent of damage from intracellular ice, and the course of recovery and regrowth in surviving tissues.Methods Embryonic axes of A. saccharinum, not subjected to dehydration or cryoprotection treatments (water content was 1·9 g H2O g−1 dry mass), were cooled to liquid nitrogen temperatures using two methods: plunging into nitrogen slush to achieve a cooling rate of 97 °C s−1 or programmed cooling at 3·3 °C s−1. Samples were thawed rapidly (177 °C s−1) and cell structure was examined microscopically immediately, and at intervals up to 72 h in vitro. Survival was assessed after 4 weeks in vitro. Axes were processed conventionally for optical microscopy and ultrastructural examination.Key Results Immediately following thaw after cryogenic exposure, cells from axes did not show signs of damage at an ultrastructural level. Signs that cells had been damaged were apparent after several hours of in vitro culture and appeared as autophagic decomposition. In surviving tissues, dead cells were sloughed off and pockets of living cells were the origin of regrowth. In roots, regrowth occurred from the ground meristem and procambium, not the distal meristem, which became lethally damaged. Regrowth of shoots occurred from isolated pockets of surviving cells of peripheral and pith meristems. The size of these pockets may determine the possibility for, the extent of and the vigour of regrowth.Conclusions Autophagic degradation and ultimately autolysis of cells following cryo-exposure and formation of small (0·2–0·4 µm) intracellular ice crystals challenges current ideas that ice causes immediate physical damage to cells. Instead, freezing stress may induce a signal for programmed cell death (PCD). Cells that form more ice crystals during cooling have faster PCD responses.  相似文献   

11.
Faithful translation of the genetic code is critical for the viability of all living organisms. The trans-editing enzyme ProXp-ala prevents Pro to Ala mutations during translation by hydrolyzing misacylated Ala-tRNAPro that has been synthesized by prolyl-tRNA synthetase. Plant ProXp-ala sequences contain a conserved C-terminal domain (CTD) that is absent in other organisms; the origin, structure, and function of this extra domain are unknown. To characterize the plant-specific CTD, we performed bioinformatics and computational analyses that provided a model consistent with a conserved α-helical structure. We also expressed and purified wildtype Arabidopsis thaliana (At) ProXp-ala in Escherichia coli, as well as variants lacking the CTD or containing only the CTD. Circular dichroism spectroscopy confirmed a loss of α-helical signal intensity upon CTD truncation. Size-exclusion chromatography with multiangle laser-light scattering revealed that wildtype At ProXp-ala was primarily dimeric and CTD truncation abolished dimerization in vitro. Furthermore, bimolecular fluorescence complementation assays in At protoplasts support a role for the CTD in homodimerization in vivo. The deacylation rate of Ala-tRNAPro by At ProXp-ala was also significantly reduced in the absence of the CTD, and kinetic assays indicated that the reduction in activity is primarily due to a tRNA binding defect. Overall, these results broaden our understanding of eukaryotic translational fidelity in the plant kingdom. Our study reveals that the plant-specific CTD plays a significant role in substrate binding and canonical editing function. Through its ability to facilitate protein–protein interactions, we propose the CTD may also provide expanded functional potential for trans-editing enzymes in plants.  相似文献   

12.

Background

Following injury, microglia become activated with subsets expressing nestin as well as other neural markers. Moreover, cerebral microglia can give rise to neurons in vitro. In a previous study, we analysed the proliferation potential and nestin re-expression of retinal macroglial cells such as astrocytes and Müller cells after optic nerve (ON) lesion. However, we were unable to identify the majority of proliferative nestin+ cells. Thus, the present study evaluates expression of nestin and other neural markers in quiescent and proliferating microglia in naïve retina and following ON transection in adult rats in vivo.

Methodology/Principal Findings

For analysis of cell proliferation and cells fates, rats received BrdU injections. Microglia in retinal sections or isolated cells were characterized using immunofluorescence labeling with markers for microglia (e.g., Iba1, CD11b), cell proliferation, and neural cells (e.g., nestin, vimentin, NG2, GFAP, Doublecortin etc.). Cellular analyses were performed using confocal laser scanning microscopy. In the naïve adult rat retina, about 60% of resting ramified microglia expressed nestin. After ON transection, numbers of nestin+ microglia peaked to a maximum at 7 days, primarily due to in situ cell proliferation of exclusively nestin+ microglia. After 8 weeks, microglia numbers re-attained control levels, but 20% were still BrdU+ and nestin+, although no further local cell proliferation occurred. In addition, nestin+ microglia co-expressed vimentin and NG2, but not GFAP or neuronal markers. Fourteen days after injury and following retrograde labeling of retinal ganglion cells (RGCs) with Fluorogold (FG), nestin+NG2+ microglia were positive for the dye indicating an active involvement of a proliferating cell population in phagocytosing apoptotic retinal neurons.

Conclusions/Significance

The current study provides evidence that in adult rat retina, a specific resident population of microglia expresses proteins of immature neural cells that are involved in injury-induced cell proliferation and phagocytosis while transdifferentiation was not observed.  相似文献   

13.
Contact-dependent growth inhibition is a mechanism of interbacterial competition mediated by delivery of the C-terminal toxin domain of CdiA protein (CdiA–CT) into neighboring bacteria. The CdiA–CT of enterohemorrhagic Escherichia coli EC869 (CdiA–CTEC869) cleaves the 3′-acceptor regions of specific tRNAs in a reaction that requires the translation factors Tu/Ts and GTP. Here, we show that CdiA–CTEC869 has an intrinsic ability to recognize a specific sequence in substrate tRNAs, and Tu:Ts complex promotes tRNA cleavage by CdiA–CTEC869. Uncharged and aminoacylated tRNAs (aa-tRNAs) were cleaved by CdiA–CTEC869 to the same extent in the presence of Tu/Ts, and the CdiA–CTEC869:Tu:Ts:tRNA(aa-tRNA) complex formed in the presence of GTP. CdiA–CTEC869 interacts with domain II of Tu, thereby preventing the 3′-moiety of tRNA to bind to Tu as in canonical Tu:GTP:aa-tRNA complexes. Superimposition of the Tu:GTP:aa-tRNA structure onto the CdiA–CTEC869:Tu structure suggests that the 3′-portion of tRNA relocates into the CdiA–CTEC869 active site, located on the opposite side to the CdiA–CTEC869 :Tu interface, for tRNA cleavage. Thus, CdiA–CTEC869 is recruited to Tu:GTP:Ts, and CdiA–CT:Tu:GTP:Ts recognizes substrate tRNAs and cleaves them. Tu:GTP:Ts serves as a reaction scaffold that increases the affinity of CdiA–CTEC869 for substrate tRNAs and induces a structural change of tRNAs for efficient cleavage by CdiA–CTEC869.  相似文献   

14.
15.
Down’s syndrome (DS) is a developmental disorder associated with intellectual disability (ID). We have previously shown that people with DS engage in very low levels of exercise compared to people with ID not due to DS. Many aspects of the DS phenotype, such as dementia, low activity levels and poor muscle tone, are shared with disorders of mitochondrial origin, and mitochondrial dysfunction has been demonstrated in cultured DS tissue. We undertook a phosphorus magnetic resonance spectroscopy (31P-MRS) study in the quadriceps muscle of 14 people with DS and 11 non-DS ID controls to investigate the post-exercise resynthesis kinetics of phosphocreatine (PCr), which relies on mitochondrial respiratory function and yields a measure of muscle mitochondrial function in vivo. We found that the PCr recovery rate constant was significantly decreased in adults with DS compared to non-DS ID controls (1.7±0.1 min−1 vs 2.1±0.1 min−1 respectively) who were matched for physical activity levels, indicating that muscle mitochondrial function in vivo is impaired in DS. This is the first study to investigate mitochondrial function in vivo in DS using 31P-MRS. Our study is consistent with previous in vitro studies, supporting a theory of a global mitochondrial defect in DS.  相似文献   

16.
In recent years, the diagnostic and therapeutic uses of radioisotopes have shown significant progress. Immunoglobulin (Ig) appears to be a promising tracer, particularly due to its ability to target selected antigens. The main objective of this study is to optimize and assess an Ig radiolabeling method with Technetium 99m (99mTc), an attractive radioelement used widely for diagnostic imaging. Monoclonal anti-CD20 IgG was retained to study in vitro and in vivo radiolabeling impact. After IgG derivatization with 2-iminothiolane, IgG-SH was radiolabeled by an indirect method, using a 99mTc-tricarbonyl core. Radiolabeling stability was evaluated over 24h by thin-layer chromatography. IgG integrity was checked by sodium dodecyl sulfate—polyacrylamide gel electrophoresis coupled with Western blot and autoradiography. The radiolabeled Ig’s immunoaffinity was assessed in vitro by a radioimmunoassay method and binding experiments with cells (EL4-hCD20 and EL4-WT). Biodistribution studies were performed in normal BALB/c mice. Tumor uptake was assessed in mice bearing EL4-hCD20 and EL4-WT subcutaneous xenografts. With optimized method, high radiolabeling yields were obtained (95.9 ± 3.5%). 99mTc-IgG-SH was stable in phosphate-buffered saline (4°C and 25°C) and in serum (37°C), even if important sensitivity to transchelation was observed. IgG was not degraded by derivatization and radiolabeling, as shown by Western blot and autoradiography results. 99mTc-anti-CD20 IgG-SH immunoaffinity was estimated with Kd = 35 nM by both methods. In vivo biodistribution studies for 48h showed significant accumulation of radioactivity in plasma, liver, spleen, lungs and kidneys. Planar scintigraphy of mice bearing tumors showed a significant uptake of 99mTc-anti-CD20 IgG-SH in CD20+ tumor versus CD20- tumor. Radiolabeling of derivatized IgG with 99mTc-tricarbonyl was effective, stable and required few antibody amounts. This attractive radiolabeling method is “antibody safe” and preserves Ig affinity for antigen, as shown by both in vitro and in vivo experiments. This method could easily be used with noncommercial IgG or other antibody isotypes.  相似文献   

17.
18.
Expression of the gastrin-releasing peptide receptor (GRPR) in prostate cancer suggests that this receptor can be used as a potential molecular target to visualize and treat these tumors. We have previously investigated an antagonist analog of bombesin (D-Phe-Gln-Trp-Ala-Val-Gly-His-Sta-Leu-NH2, RM26) conjugated to 1,4,7-triazacyclononane-N,N'',N''''-triacetic acid (NOTA) via a diethylene glycol (PEG2) spacer (NOTA-P2-RM26) labeled with 68Ga and 111In. We found that this conjugate has favorable properties for in vivo imaging of GRPR-expression. The focus of this study was to develop a 18F-labelled PET agent to visualize GRPR. NOTA-P2-RM26 was labeled with 18F using aluminum-fluoride chelation. Stability, in vitro binding specificity and cellular processing tests were performed. The inhibition efficiency (IC50) of the [natF]AlF-NOTA-P2-RM26 was compared to that of the natGa-loaded peptide using 125I-Tyr4-BBN as the displacement radioligand. The pharmacokinetics and in vivo binding specificity of the compound were studied. NOTA-P2-RM26 was labeled with 18F within 1 h (60-65% decay corrected radiochemical yield, 55 GBq/µmol). The radiopeptide was stable in murine serum and showed high specific binding to PC-3 cells. [natF]AlF-NOTA-P2-RM26 showed a low nanomolar inhibition efficiency (IC50=4.4±0.8 nM). The internalization rate of the tracer was low. Less than 14% of the cell-bound radioactivity was internalized after 4 h. The biodistribution of [18F]AlF-NOTA-P2-RM26 demonstrated rapid blood clearance, low liver uptake and low kidney retention. The tumor uptake at 3 h p.i. was 5.5±0.7 %ID/g, and the tumor-to-blood, -muscle and -bone ratios were 87±42, 159±47, 38±16, respectively. The uptake in tumors, pancreas and other GRPR-expressing organs was significantly reduced when excess amount of non-labeled peptide was co-injected. The low uptake in bone suggests a high in vivo stability of the Al-F bond. High contrast PET image was obtained 3 h p.i. The initial biological results suggest that [18F]AlF-NOTA-P2-RM26 is a promising candidate for PET imaging of GRPR in vivo.  相似文献   

19.

Objective

This study explores a new, non-invasive imaging method for the specific diagnosis of insulinoma by providing an initial investigation of the use of 125I-labelled molecules of the glucagon-like peptide-1 (GLP-1) analogue liraglutide for in vivo and in vitro small-animal SPECT/CT (single-photon emission computed tomography/computed tomography) imaging of insulinomas.

Methods

Liraglutide was labelled with 125I by the Iodogen method. The labelled 125I-liraglutide compound and insulinoma cells from the INS-1 cell line were then used for in vitro saturation and competitive binding experiments. In addition, in a nude mouse model, the use of 125I-liraglutide for the in vivo small-animal SPECT/CT imaging of insulinomas and the resulting distribution of radioactivity across various organs were examined.

Results

The labelling of liraglutide with 125I was successful, yielding a labelling rate of approximately 95% and a radiochemical purity of greater than 95%. For the binding between 125I-liraglutide and the GLP-1 receptor on the surface of INS-1 cells, the equilibrium dissociation constant (Kd) was 128.8±30.4 nmol/L(N = 3), and the half-inhibition concentration (IC50) was 542.4±187.5 nmol/L(N = 3). Small-animal SPECT/CT imaging with 125I-liraglutide indicated that the tumour imaging was clearest at 90 min after the 125I-liraglutide treatment. An examination of the in vivo distribution of radioactivity revealed that at 90 min after the 125I-liraglutide treatment, the target/non-target (T/NT) ratio for tumour and muscle tissue was 4.83±1.30(N = 3). Our study suggested that 125I-liraglutide was predominantly metabolised and cleared by the liver and kidneys.

Conclusion

The radionuclide 125I-liraglutide can be utilised for the specific imaging of insulinomas, representing a new non-invasive approach for the in vivo diagnosis of insulinomas.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号