首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The phyllosphere of floating macrophytes in paddy soil ecosystems, a unique habitat, may support large microbial communities but remains largely unknown. We took Wolffia australiana as a representative floating plant and investigated its phyllosphere bacterial community and the underlying driving forces of community modulation in paddy soil ecosystems using Illumina HiSeq 2000 platform-based 16S rRNA gene sequence analysis. The results showed that the phyllosphere of W. australiana harbored considerably rich communities of bacteria, with Proteobacteria and Bacteroidetes as the predominant phyla. The core microbiome in the phyllosphere contained genera such as Acidovorax, Asticcacaulis, Methylibium, and Methylophilus. Complexity of the phyllosphere bacterial communities in terms of class number and α-diversity was reduced compared to those in corresponding water and soil. Furthermore, the bacterial communities exhibited structures significantly different from those in water and soil. These findings and the following redundancy analysis (RDA) suggest that species sorting played an important role in the recruitment of bacterial species in the phyllosphere. The compositional structures of the phyllosphere bacterial communities were modulated predominantly by water physicochemical properties, while the initial soil bacterial communities had limited impact. Taken together, the findings from this study reveal the diversity and uniqueness of the phyllosphere bacterial communities associated with the floating macrophytes in paddy soil environments.  相似文献   

2.
The tendency for chlorinated aliphatics and aromatic hydrocarbons to accumulate in environments such as groundwater and sediments poses a serious environmental threat. In this study, the metabolic capacity of hydrocarbon (aromatics and chlorinated aliphatics)-contaminated groundwater in the KwaZulu-Natal province of South Africa has been elucidated for the first time by analysis of pyrosequencing data. The taxonomic data revealed that the metagenomes were dominated by the phylum Proteobacteria (mainly Betaproteobacteria). In addition, Flavobacteriales, Sphingobacteria, Burkholderiales, and Rhodocyclales were the predominant orders present in the individual metagenomes. These orders included microorganisms (Flavobacteria, Dechloromonas aromatica RCB, and Azoarcus) involved in the degradation of aromatic compounds and various other hydrocarbons that were present in the groundwater. Although the metabolic reconstruction of the metagenome represented composite cell networks, the information obtained was sufficient to address questions regarding the metabolic potential of the microbial communities and to correlate the data to the contamination profile of the groundwater. Genes involved in the degradation of benzene and benzoate, heavy metal-resistance mechanisms appeared to provide a survival strategy used by the microbial communities. Analysis of the pyrosequencing-derived data revealed that the metagenomes represent complex microbial communities that have adapted to the geochemical conditions of the groundwater as evidenced by the presence of key enzymes/genes conferring resistance to specific contaminants. Thus, pyrosequencing analysis of the metagenomes provided insights into the microbial activities in hydrocarbon-contaminated habitats.  相似文献   

3.
Biological nitrification/denitrification is frequently used to remove nitrogen from tannery wastewater containing high concentrations of ammonia. However, information is limited about the bacterial nitrifiers and denitrifiers and their functional genes in tannery wastewater treatment plants (WWTPs) due to the low-throughput of the previously used methods. In this study, 454 pyrosequencing and Illumina high-throughput sequencing, combined with molecular methods, were used to comprehensively characterize structures and functions of nitrification and denitrification bacterial communities in aerobic and anaerobic sludge of two full-scale tannery WWTPs. Pyrosequencing of 16S rRNA genes showed that Proteobacteria and Synergistetes dominated in the aerobic and anaerobic sludge, respectively. Ammonia-oxidizing bacteria (AOB) amoA gene cloning revealed that Nitrosomonas europaea dominated the ammonia-oxidizing community in the WWTPs. Metagenomic analysis showed that the denitrifiers mainly included the genera of Thauera, Paracoccus, Hyphomicrobium, Comamonas and Azoarcus, which may greatly contribute to the nitrogen removal in the two WWTPs. It is interesting that AOB and ammonia-oxidizing archaea had low abundance although both WWTPs demonstrated high ammonium removal efficiency. Good correlation between the qPCR and metagenomic analysis is observed for the quantification of functional genes amoA, nirK, nirS and nosZ, indicating that the metagenomic approach may be a promising method used to comprehensively investigate the abundance of functional genes of nitrifiers and denitrifiers in the environment.  相似文献   

4.
A 20-day trial was conducted to reveal bacterial community dynamics in a commercial nursery of larval Litopenaeus vannamei larvae. The bacterial communities in the ambient water were profiled by high-throughput sequencing of the V4–V5 hypervariable region of the 16S rRNA gene. The results indicated that the dominant bacterial phyla between the metamorphosis stage and postlarval stage were Bacteroidetes, Proteobacteria, Cyanobacteria, and Firmicutes, representing more than 80.09% of the bacterial operational taxonomic units. The relative abundance among bacterial phyla notably differed between the two stages. The relative abundance of Cyanobacteria was higher in the metamorphosis stage, while that of Bacteroidetes was higher and more stable in the postlarval stage. At the class level, the relative abundance of Sphingobacteriia and Alphaproteobacteria increased markedly in the postlarval stage, while that of Flavobacteriia decreased. Redundancy analysis showed that bacterial composition in the metamorphosis stage was positively correlated with salinity, alkalinity, and pH, while in the postlarval stage, it was positively correlated with ammonium nitrogen and nitrite nitrogen. Thus, microbial community diversity in the nursery phase varies per rearing stage.  相似文献   

5.

Background

Rodents are major reservoirs of pathogens responsible for numerous zoonotic diseases in humans and livestock. Assessing their microbial diversity at both the individual and population level is crucial for monitoring endemic infections and revealing microbial association patterns within reservoirs. Recently, NGS approaches have been employed to characterize microbial communities of different ecosystems. Yet, their relative efficacy has not been assessed. Here, we compared two NGS approaches, RNA-Sequencing (RNA-Seq) and 16S-metagenomics, assessing their ability to survey neglected zoonotic bacteria in rodent populations.

Methodology/Principal Findings

We first extracted nucleic acids from the spleens of 190 voles collected in France. RNA extracts were pooled, randomly retro-transcribed, then RNA-Seq was performed using HiSeq. Assembled bacterial sequences were assigned to the closest taxon registered in GenBank. DNA extracts were analyzed via a 16S-metagenomics approach using two sequencers: the 454 GS-FLX and the MiSeq. The V4 region of the gene coding for 16S rRNA was amplified for each sample using barcoded universal primers. Amplicons were multiplexed and processed on the distinct sequencers. The resulting datasets were de-multiplexed, and each read was processed through a pipeline to be taxonomically classified using the Ribosomal Database Project. Altogether, 45 pathogenic bacterial genera were detected. The bacteria identified by RNA-Seq were comparable to those detected by 16S-metagenomics approach processed with MiSeq (16S-MiSeq). In contrast, 21 of these pathogens went unnoticed when the 16S-metagenomics approach was processed via 454-pyrosequencing (16S-454). In addition, the 16S-metagenomics approaches revealed a high level of coinfection in bank voles.

Conclusions/Significance

We concluded that RNA-Seq and 16S-MiSeq are equally sensitive in detecting bacteria. Although only the 16S-MiSeq method enabled identification of bacteria in each individual reservoir, with subsequent derivation of bacterial prevalence in host populations, and generation of intra-reservoir patterns of bacterial interactions. Lastly, the number of bacterial reads obtained with the 16S-MiSeq could be a good proxy for bacterial prevalence.  相似文献   

6.
Bacterial diversity in sediments obtained along the Chilean margin from areas containing methane seeps, and a hydrate mound were explored by cloning and sequencing and multitag pyrosequencing (MTPS). These libraries were statistically compared to determine the robustness of taxonomic assignment derived from multiplexed pyrosequencing strategies targeting variable regions V1 and V2 of the small subunit rRNA gene for environmental studies. There was no statistical difference in the composition of the libraries, thus, MTPS was utilized to describe diversity in three geochemical zones in these environments. Unidentified Cyanobacteria isolates were abundant in the sulfate reduction zone (SRZ), Deltaproteobacteria were concentrated at the sulfate methane transition zone (SMTZ) and Chloroflexi/GNS dominated methanogenesis zone (MGZ). Although there was variation among specific groups, communities in the SRZ and MGZ did not differ significantly. However, the community dominated by Deltaproteobacteria differentiates the SMTZ from the other zones. Supplemental materials are available for this article. Go to the publisher's online edition of Geomicrobiology Journal to view the free supplemental file.  相似文献   

7.
Following recent trends in environmental microbiology, food microbiology has benefited from the advances in molecular biology and adopted novel strategies to detect, identify, and monitor microbes in food. An in-depth study of the microbial diversity in food can now be achieved by using high-throughput sequencing (HTS) approaches after direct nucleic acid extraction from the sample to be studied. In this review, the workflow of applying culture-independent HTS to food matrices is described. The current scenario and future perspectives of HTS uses to study food microbiota are presented, and the decision-making process leading to the best choice of working conditions to fulfill the specific needs of food research is described.  相似文献   

8.
9.
高通量测序技术分析猪粪堆肥过程中微生物群落结构变化   总被引:4,自引:0,他引:4  
为了解猪粪堆肥过程中微生物群落结构组成及多样性的变化,采集猪粪堆肥过程的三个代表性样品—新鲜猪粪、高温堆肥、腐熟堆肥,利用Illumina Miseq高通量测序技术对16S rRNA V4~V5可变区序列进行测序,分别获得37 009、42 470、36 713条有效序列及328、280、160个操作分类单元(OTU)。Alpha多样性分析表明,在堆肥过程中微生物群落丰富度呈现降低趋势,而多样性呈现先上升后下降趋势。随着堆肥的进行,在门水平上,厚壁菌门、拟杆菌门和软壁菌门相对丰度降低,而变形菌门和放线菌门相对丰度升高;在属水平上,Turicibacter、Terrisporobacter、Parabacteroides、Clostridium sensu stricto、Corynebacterium等来自动物肠道的微生物相对丰度明显下降,Thermopolyspora、Thermomonospora、Thermobifida、Halocella等耐热耐盐微生物成为最主要优势菌。堆肥过程不同菌群优势度的变化是微生物与堆肥中各理化因子相互作用的结果。  相似文献   

10.
11.
Microbial growth on meat to unacceptable levels contributes significantly to change meat structure, color and flavor and to cause meat spoilage. The types of microorganisms initially present in meat depend on several factors and multiple sources of contamination can be identified. The aims of this study were to evaluate the microbial diversity in beefsteaks before and after aerobic storage at 4°C and to investigate the sources of microbial contamination by examining the microbiota of carcasses wherefrom the steaks originated and of the processing environment where the beef was handled. Carcass, environmental (processing plant) and meat samples were analyzed by culture-independent high-throughput sequencing of 16S rRNA gene amplicons. The microbiota of carcass swabs was very complex, including more than 600 operational taxonomic units (OTUs) belonging to 15 different phyla. A significant association was found between beef microbiota and specific beef cuts (P<0.01) indicating that different cuts of the same carcass can influence the microbial contamination of beef. Despite the initially high complexity of the carcass microbiota, the steaks after aerobic storage at 4°C showed a dramatic decrease in microbial complexity. Pseudomonas sp. and Brochothrix thermosphacta were the main contaminants, and Acinetobacter, Psychrobacter and Enterobacteriaceae were also found. Comparing the relative abundance of OTUs in the different samples it was shown that abundant OTUs in beefsteaks after storage occurred in the corresponding carcass. However, the abundance of these same OTUs clearly increased in environmental samples taken in the processing plant suggesting that spoilage-associated microbial species originate from carcasses, they are carried to the processing environment where the meat is handled and there they become a resident microbiota. Such microbiota is then further spread on meat when it is handled and it represents the starting microbial association wherefrom the most efficiently growing microbial species take over during storage and can cause spoilage.  相似文献   

12.
The diversity of bacteria in soil is enormous, and soil bacterial communities can vary greatly in structure. Here, we employed a pyrosequencing-based analysis of the V2-V3 16S rRNA gene region to characterize the overall and horizon-specific (A and B horizons) bacterial community compositions in nine grassland soils, which covered three different land use types. The entire data set comprised 752,838 sequences, 600,544 of which could be classified below the domain level. The average number of sequences per horizon was 41,824. The dominant taxonomic groups present in all samples and horizons were the Acidobacteria, Betaproteobacteria, Actinobacteria, Gammaproteobacteria, Alphaproteobacteria, Deltaproteobacteria, Chloroflexi, Firmicutes, and Bacteroidetes. Despite these overarching dominant taxa, the abundance, diversity, and composition of bacterial communities were horizon specific. In almost all cases, the estimated bacterial diversity (H′) was higher in the A horizons than in the corresponding B horizons. In addition, the H′ was positively correlated with the organic carbon content, the total nitrogen content, and the C-to-N ratio, which decreased with soil depth. It appeared that lower land use intensity results in higher bacterial diversity. The majority of sequences affiliated with the Actinobacteria, Bacteroidetes, Cyanobacteria, Fibrobacteres, Firmicutes, Spirochaetes, Verrucomicrobia, Alphaproteobacteria, Betaproteobacteria, and Gammaproteobacteria were derived from A horizons, whereas the majority of the sequences related to Acidobacteria, Chloroflexi, Gemmatimonadetes, Nitrospira, TM7, and WS3 originated from B horizons. The distribution of some bacterial phylogenetic groups and subgroups in the different horizons correlated with soil properties such as organic carbon content, total nitrogen content, or microbial biomass.Soil is probably the most complex microbial environment on Earth with respect to species richness and community size. The microbial richness in soils exceeds that of other environments (44) and is higher by orders of magnitude than the biodiversity of plants and animals. Cultivated soil or grassland soil contains an estimated 2 × 109 prokaryotic cells per gram (12). Soil microbial communities are an important factor of agriculturally managed systems, as they are responsible for most nutrient transformations in soil and influence the above-ground plant diversity and productivity (53).To analyze the bacterial community in soils, most approaches target the 16S rRNA gene by PCR amplification and subsequent analysis employing sequencing of clone libraries (10, 24), denaturing gradient gel electrophoresis (DGGE) (38), or terminal restriction fragment length polymorphism (T-RFLP) (17, 52). Most of these approaches provided limited insights into the structure of soil bacterial communities, as the survey sizes and the number of compared sampling sites were small with respect to the enormous bacterial diversity present in different soil samples. For example, the reported clone libraries vary considerably in size, but small sample sizes (500 or fewer 16S rRNA gene sequences) are usually analyzed and employed for the theoretical estimation of species richness (39). This provides snapshots of the predominant bacterial community members, but phylogenetic groups that are present in a low abundance and which may possess important ecosystem functions are not assessed (47). In addition, it has been shown that rich sampling (several thousands of clones) of complex bacterial communities is required to perform robust measurements and estimations of community diversity parameters (37). Thus, the detection bias accompanying analyses of small sample sizes can lead to invalidated assumptions. Genetic profiling techniques such as DGGE and T-RFLP have high-throughput capability. These approaches allow researchers to unravel differences in community structure but are limited for assessing diversity (23, 40). To deeply survey the diversity and the composition of the bacterial communities within different soil samples, large-scale pyrosequencing of partial 16S rRNA genes has been employed recently. Previous pyrosequencing-based studies of soil (1, 30, 34, 43) have generated large data sets, which comprised 39,707 (30) to 152,359 (34) 16S rRNA partial gene sequences. Those studies provided comprehensive insights into the biogeography of bacterial soil communities and taxa that were present in a low abundance. However, all those studies focused on the analysis of microbial communities present in topsoil. The subsoil is also known to harbor an important part of the soil microbial biomass (18). It has been shown that the microbial population in the shallow subsurface is impacted by agricultural production to a similar extent as that in topsoil (5).In this study, we performed large-scale pyrosequencing-based analyses of 16S rRNA genes to assess the bacterial community composition in topsoil and the corresponding subsoil of nine different grassland sites in the Hainich region (Thuringia, Germany). To provide a high level of coverage at the species level (97% genetic distance) and minimize detection bias, we exceeded the above-described numbers of analyzed 16S rRNA gene sequences (752,838 in this study). To examine the impact of land use on bacterial diversity and community composition, the selected grassland sites covered a range of three different land use types, including samples from unfertilized pastures grazed by cattle, fertilized mown pastures grazed by cattle, and fertilized meadows. In many recent studies, surveys were focused on comprehensive analyses of a single soil or a few soil samples (1, 14, 37, 43). This allowed the determination of overall bacterial species richness and community composition, but the assessment of spatial patterns and environmental factors that drive these patterns is hampered by the limited number of examined soils. To assess spatial distribution and the impact of soil edaphic factors and land use on community structure, we used triplicate samples of each land use type from different locations. In addition, composite samples derived from five soil cores after the separation of soil horizons were employed.  相似文献   

13.
454 Pyrosequencing was applied to examine bacterial communities in sediment samples collected from a river receiving effluent discharge from rural domestic sewage (RDS) and various factories, including a tannery (TNS), clothing plant (CTS), and button factory (BTS), respectively. For each sample, 4,510 effective sequences were selected and utilized to do the bacterial diversity and abundance analysis, respectively. In total, 1,288, 2,036, 1,800, and 2,150 operational taxonomic units were obtained at 3 % distance cutoff in TNS, CTS, BTS, and RDS, respectively. Bacterial phylotype richness in RDS was higher than the other samples, and TNS had the least richness. The most predominant class in the TNS, CTS, and BTS samples is Betaproteobacteria. Cyanobacteria (no_rank) is the most predominant one in the RDS sample. Circa 31 % sequences in TNS were affiliated with the Rhodocyclales order. In the four samples, Aeromonas, Arcobacter, Clostridium, Legionella, Leptospira, Mycobacterium, Pseudomonas, and Treponema genera containing pathogenic bacteria were detected. Characterization of bacterial communities in sediments from various downstream branches indicated that distinct wastewater effluents have similar potential to reduce the natural variability in river ecosystems and contribute to the river biotic homogenization.  相似文献   

14.
We investigated the bacterial community structure in an aerated plug-flow lagoon treating pulp and paper mill effluent. For this investigation, we developed a composite method based on analyses of PCR amplicons containing the ribosomal intergenic spacer (RIS) and its flanking partial 16S rRNA gene. Community percent similarity was determined on the basis of RIS length polymorphism. A community succession was evident in the lagoon, indicated by a progressive community transition through seven sample locations. The most abrupt changes in community structure were associated with a temperature change from 39 to 35°C and with increases in dissolved oxygen. The temporal differences in community structure, based on summer and winter samplings, were greater than the spatial differences during either season. Clone libraries of rDNA-RIS amplicons were constructed from each of three summer samples. Among 90 clones analyzed (30 clones from each sample), 56 phylotypes were distinguished by restriction fragment length polymorphism. Indices of phylotype richness, evenness, and diversity all increased in clone libraries from the beginning to the end of the lagoon. A representative clone of each phylotype was phylogenetically analyzed on the basis of its partial 16S rRNA gene sequence (ca. 450 bp). Phylogenetic analysis confirmed the increase in diversity and further indicated increasing richness of bacterial divisions. Pioneers in the community spatial succession appeared to include thermotolerant, microaerophilic methanol-oxidizing bacteria related to the genus Methylobacillus, as well as thermotolerant, microaerophilic nitrogen-fixing bacteria related to the genus Azospirillum.  相似文献   

15.
Leaf-associated microbiota is vital in plant-environment interactions and is the basis for micro-ecological regulation. However, there are no studies on the direct differences in microbial community composition between disease-susceptible and healthy walnut leaves. This study collected five samples of healthy and infected leaves (all leaves with abnormal spots were considered diseased leaves) from May to October 2018. Differences in fungal diversity (Chao1 index, Shannon index, and Simpson index) and community structure were observed by sequencing and analyzing diseased and healthy leaf microbial communities by Illumina HiSeq sequencing technology. The main fungal phyla of walnut leaf-associated were Ascomycota, Basidiomycota, and Glomeromycota. Diversity indices (Shannon and Chao1 index values) of healthy leaves differed significantly in the late stages of disease onset. The results showed that the fungal species that differed considerably between the healthy and infected groups differed, and the fungal species that differed significantly between the healthy and infected groups changed with the development of the leaf disease. Critical control time points were determined by analyzing the population dynamics of pathogenic fungi. Leaf-associated microorganisms are abundant and diverse, and fungal identification and diversity studies are helpful for developing more appropriate walnut management strategies Open in a separate window  相似文献   

16.
One of the first steps in characterizing an ecosystem is to describe the organisms inhabiting it. For microbial studies, experimental limitations have hindered the ability to depict diverse communities. Here we describe oligonucleotide fingerprinting of rRNA genes (OFRG), a method that permits identification of arrayed rRNA genes (rDNA) through a series of hybridization experiments using small DNA probes. To demonstrate this strategy, we examined the bacteria inhabiting two different soils. Analysis of 1,536 rDNA clones revealed 766 clusters grouped into five major taxa: Bacillus, Actinobacteria, Proteobacteria, and two undefined assemblages. Soil-specific taxa were identified and then independently confirmed through cluster-specific PCR of the original soil DNA. Near-species-level resolution was obtained by this analysis as clones with average sequence identities of 97% were grouped in the same cluster. A comparison of these OFRG results with the results obtained in a denaturing gradient gel electrophoresis analysis of the same two soils demonstrated the significance of this methodological advance. OFRG provides a cost-effective means to extensively analyze microbial communities and should have applications in medicine, biotechnology, and ecosystem studies.  相似文献   

17.
18.
19.
20.
Most of what is known about coastal free-living and attached bacterial diversity is based on open coasts, with high particulate and nutrient riverine supply, terrestrial runoffs, and anthropogenic activities. The Magdalen Islands in the Gulf of St. Lawrence (Canada) are dominated by shallow lagoons with small, relatively pristine catchments and no freshwater input apart from rain. Such conditions provided an opportunity to investigate coastal free-living and attached marine bacterial diversity in the absence of confounding effects of steep freshwater gradients. We found significant differences between the two communities and marked temporal patterns in both. Taxonomic richness and diversity were greater in the attached than in the free-living community, increasing over summer, especially within the least abundant bacterial phyla. The highest number of reads fell within the SAR 11 clade (Pelagibacter, Alphaproteobacteria), which dominated free-living communities. The attached communities had deeper phylum-level diversity than the free-living fraction. Distance-based redundancy analysis indicated that the particulate organic matter (POM) concentration was the main variable separating early and late summer samples with salinity and temperature changes also significantly correlated to bacterial community structure. Our approach using high-throughput sequencing detected differences in free-living versus attached bacteria in the absence of riverine input, in keeping with the concept that marine attached communities are distinct from cooccurring free-living taxa. This diversity likely reflects the diverse microhabitats of available particles, implying that the total bacterial diversity in coastal systems is linked to particle supply and variability, with implications for understanding microbial biodiversity in marine systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号