首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Chk1 is an essential mediator of the DNA damage response and cell cycle checkpoint. However, how exactly Chk1 transduces the checkpoint signaling is not fully understood. Here we report the identification of the heterohexamic minichromosome maintenance (MCM) complex that interacts with Chk1 by mass spectrometry. The interaction between Chk1 and the MCM complex was reduced by DNA damage treatment. We show that the MCM complex, at least partially, contributes to the chromatin association of Chk1, allowing for immediate phosphorylation of Chk1 by ataxia telangiectasia mutated and Rad3-related (ATR) in the presence of DNA damage. Further, phosphorylation of Chk1 at ATR sites reduces the interaction between Chk1 and the MCM complex, facilitating chromatin release of phosphorylated Chk1, a critical step in the initiation and amplification of cell cycle checkpoint. Together, these data provide novel insights into the activation of Chk1 in response to DNA damage.  相似文献   

3.
DNA damage promotes the activation of a signal transduction cascade referred to as the DNA damage checkpoint. This pathway initiates with the Mec1/ATR kinase, which then phosphorylates the Rad53/Chk2 kinase. Mec1 phosphorylation of Rad53 is then thought to promote Rad53 autophosphorylation, ultimately leading to a fully active Rad53 molecule that can go on to phosphorylate substrates important for DNA damage resistance. In the absence of DNA repair, this checkpoint is eventually downregulated in a Cdc5-dependent process referred to as checkpoint adaptation. Recently, we showed that overexpression of Cdc5 leads to checkpoint inactivation and loss of the strong electrophoretic shift associated with Rad53 inactivation. Interestingly, this same overexpression did not strongly inhibit Rad53 autophosphorylation activity as measured by the in situ assay (ISA). The ISA involves incubating the re-natured Rad53 protein with γ 32P labeled ATP after electrophoresis and western blotting. Using a newly identified Rad53 target, we show that despite strong ISA activity, Rad53 does not maintain phosphorylation of this substrate. We hypothesize that, during adaptation, Rad53 may be in a unique state in which it maintains some Mec1 phosphorylation but does not have the auto-phosphorylations required for full activity towards exogenous substrates.Key words: DNA damage, checkpoint, adaptation, CDC5, RAD53, ISA  相似文献   

4.
5.
At clinically relevant doses, chemotherapeutic SN1 DNA methylating agents induce an ATR-mediated checkpoint response in human cells that is dependent on functional MutSα and MutLα. Deficiency of either mismatch repair activity renders cells highly resistant to this class of drug, but the mechanisms linking mismatch repair to checkpoint activation have remained elusive. In this study we have systematically examined the interactions of human MutSα and MutLα with proteins of the ATR-Chk1 pathway using both nuclear extracts and purified proteins. Using nuclear co-immunoprecipitation, we have detected interaction of MutSα with ATR, TopBP1, Claspin, and Chk1 and interaction of MutLα with TopBP1 and Claspin. We were unable to detect interaction of MutSα or MutLα with Rad17, Rad9, or replication protein A in the extract system. Use of purified proteins confirmed direct interaction of MutSα with ATR, TopBP1, and Chk1 and of MutLα with TopBP1. MutSα-Claspin and MutLα-Claspin interactions were not demonstrable with purified proteins, suggesting that extract interactions are indirect or depend on post-translational modification. Use of a modified chromatin immunoprecipitation assay showed that proliferating cell nuclear antigen, ATR, TopBP1, and Chk1 are recruited to chromatin in a MutLα- and MutSα-dependent fashion after N-methyl-N′-nitro-N-nitrosoguanidine treatment. However, chromatin enrichment of replication protein A, Claspin, Rad17-RFC, and Rad9-Rad1-Hus1 was not detected in these experiments. Although our failure to observe enrichment of the latter activities could be due to sensitivity limitations, these observations may indicate a novel mechanism for ATR activation.  相似文献   

6.
The cellular response to DNA double‐strand breaks involves direct activation of ataxia telangiectasia mutated (ATM) and indirect activation of ataxia telangiectasia and Rad3 related (ATR) in an ATM/Mre11/cell‐cycle‐dependent manner. Here, we report that the crucial checkpoint signalling proteins—p53, structural maintainance of chromosomes 1 (SMC1), p53 binding protein 1 (53BP1), checkpoint kinase (Chk)1 and Chk2—are phosphorylated rapidly by ATR in an ATM/Mre11/cell‐cycle‐independent manner, albeit at low levels. We observed the sequential recruitment of replication protein A (RPA) and ATR to the sites of DNA damage in ATM‐deficient cells, which provides a mechanistic basis for the observed phosphorylations. The recruitment of ATR and consequent phosphorylations do not require Mre11 but are dependent on Exo1. We show that these low levels of phosphorylation are biologically important, as ATM‐deficient cells enforce an early G2/M checkpoint that is ATR‐dependent. ATR is also essential for the late G2 accumulation that is peculiar to irradiated ATM‐deficient cells. Interestingly, phosphorylation of KRAB associated protein 1 (KAP‐1), a protein involved in chromatin remodelling, is mediated by DNA‐dependent protein kinase catalytic subunit (DNA‐PKcs) in a spatio‐temporal manner in addition to ATM. We posit that ATM substrates involved in cell‐cycle checkpoint signalling can be minimally phosphorylated independently by ATR, while a small subset of proteins involved in chromatin remodelling are phosphorylated by DNA‐PKcs in addition to ATM.  相似文献   

7.
Differential activation of p53 by the various adducts of mitomycin C   总被引:1,自引:0,他引:1  
Mitomycin C (MC) is a cytotoxic chemotherapeutic agent that causes DNA damage in the form of DNA cross-links as well as a variety of DNA monoadducts and is known to induce p53. The various DNA adducts formed upon treatment of mouse mammary tumor cells with MC as well as 10-decarbamoyl MC (DMC) and 2,7-diaminomitosene (2,7-DAM), the major MC metabolite, have been elucidated. The cytotoxicity of DMC parallels closely that of MC in a number of rodent cell lines tested, whereas 2,7-DAM is relatively noncytotoxic. In this study, we investigate the ability of MC, DMC, and 2,7-DAM to activate p53 at equidose concentrations by treating tissue culture cell lines with the three mitomycins. Whereas MC and DMC induced p53 protein levels and increased the levels of p21 and Gadd45 mRNA, 2,7-DAM did not. Furthermore, MC and DMC, but not 2,7-DAM, were able to induce apoptosis efficiently in ML-1 cells. Therefore the 2,7-DAM monoadducts were unable to activate the p53 pathway. Interestingly, DMC was able to initiate apoptosis via a p53-independent pathway whereas MC was not. This is the first finding that adducts of a multiadduct type DNA-damaging agent are differentially recognized by DNA damage sensor pathways.  相似文献   

8.
Pyrrole–imidazole polyamides targeted to the androgen response element were cytotoxic in multiple cell lines, independent of intact androgen receptor signaling. Polyamide treatment induced accumulation of S-phase cells and of PCNA replication/repair foci. Activation of a cell cycle checkpoint response was evidenced by autophosphorylation of ATR, the S-phase checkpoint kinase, and by recruitment of ATR and the ATR activators RPA, 9-1-1, and Rad17 to chromatin. Surprisingly, ATR activation was accompanied by only a slight increase in single-stranded DNA, and the ATR targets RPA2 and Chk1, a cell cycle checkpoint kinase, were not phosphorylated. However, ATR activation resulted in phosphorylation of the replicative helicase subunit MCM2, an ATR effector. Polyamide treatment also induced accumulation of monoubiquitinated FANCD2, which is recruited to stalled replication forks and interacts transiently with phospho-MCM2. This suggests that polyamides induce replication stress that ATR can counteract independently of Chk1 and that the FA/BRCA pathway may also be involved in the response to polyamides. In biochemical assays, polyamides inhibit DNA helicases, providing a plausible mechanism for S-phase inhibition.  相似文献   

9.
Phosphorylation of histone H2AX by ATM and ATR establishes a chromatin recruitment platform for DNA damage response proteins. Phospho-H2AX (γH2AX) has been most intensively studied in the context of DNA double-strand breaks caused by exogenous clastogens, but recent studies suggest that DNA replication stress also triggers formation of γH2A (ortholog of γH2AX) in Schizosaccharomyces pombe. Here, a focused genetic screen in fission yeast reveals that γH2A is critical when there are defects in Replication Factor C (RFC), which loads proliferating cell nuclear antigen (PCNA) clamp onto duplex DNA. Surprisingly Chk1, Cds1/Chk2 and the Rad9-Hus1-Rad1 checkpoint clamp, which are crucial for surviving many genotoxins, are fully dispensable in RFC-defective cells. Immunoblot analysis confirms that Rad9-Hus1-Rad1 is not required for formation of γH2A by Rad3/ATR in S-phase. Defects in DNA polymerase epsilon, which binds PCNA in the replisome, also create an acute need for γH2A. These requirements for γH2A were traced to its role in docking with Brc1, which is a 6-BRCT-domain protein that is structurally related to budding yeast Rtt107 and mammalian PTIP. Brc1, which localizes at stalled replication forks by binding γH2A, prevents aberrant formation of Replication Protein A (RPA) foci in RFC-impaired cells, suggesting that Brc1-coated chromatin stabilizes replisomes when PCNA or DNA polymerase availability limits DNA synthesis.  相似文献   

10.
ATR (ATM and Rad3-related) initiates a DNA damage signaling pathway in human cells upon DNA damage induced by UV and UV-mimetic agents and in response to inhibition of DNA replication. Genetic data with human cells and in vitro data with Xenopus egg extracts have led to the conclusion that the kinase activity of ATR toward the signal-transducing kinase Chk1 depends on the mediator protein Claspin. Here we have reconstituted a Claspin-mediated checkpoint system with purified human proteins. We find that the ATR-dependent phosphorylation of Chk1, but not p53, is strongly stimulated by Claspin. Similarly, DNA containing bulky base adducts stimulates ATR kinase activity, and Claspin acts synergistically with damaged DNA to increase phosphorylation of Chk1 by ATR. Mutations in putative phosphorylation sites in the Chk1-binding domain of Claspin abolish its ability to mediate ATR phosphorylation of Chk1. We also find that a fragment of Claspin containing the Chk1-binding domain together with a domain conserved in the yeast Mrc1 orthologs of Claspin is sufficient for its mediator activity. This in vitro system recapitulates essential components of the genetically defined ATR-signaling pathway.  相似文献   

11.
Replication protein A (RPA) plays essential roles in DNA metabolism, including replication, checkpoint, and repair. Recently, we described an in vitro system in which the phosphorylation of human Chk1 kinase by ATR (ataxia telangiectasia mutated and Rad3-related) is dependent on RPA bound to single-stranded DNA. Here, we report that phosphorylation of other ATR targets, p53 and Rad17, has the same requirements and that RPA is also phosphorylated in this system. At high p53 or Rad17 concentrations, RPA phosphorylation is inhibited and, in this system, RPA with phosphomimetic mutations cannot support ATR kinase function, whereas a non-phosphorylatable RPA mutant exhibits full activity. Phosphorylation of these ATR substrates depends on the recruitment of ATR and the substrates by RPA to the RPA-ssDNA complex. Finally, mutant RPAs lacking checkpoint function exhibit essentially normal activity in nucleotide excision repair, revealing RPA separation of function for checkpoint and excision repair.  相似文献   

12.
We show that DNA double-strand breaks (DSBs) induce complex subcompartmentalization of genome surveillance regulators. Chromatin marked by gamma-H2AX is occupied by ataxia telangiectasia-mutated (ATM) kinase, Mdc1, and 53BP1. In contrast, repair factors (Rad51, Rad52, BRCA2, and FANCD2), ATM and Rad-3-related (ATR) cascade (ATR, ATR interacting protein, and replication protein A), and the DNA clamp (Rad17 and -9) accumulate in subchromatin microcompartments delineated by single-stranded DNA (ssDNA). BRCA1 and the Mre11-Rad50-Nbs1 complex interact with both of these compartments. Importantly, some core DSB regulators do not form cytologically discernible foci. These are further subclassified to proteins that connect DSBs with the rest of the nucleus (Chk1 and -2), that assemble at unprocessed DSBs (DNA-PK/Ku70), and that exist on chromatin as preassembled complexes but become locally modified after DNA damage (Smc1/Smc3). Finally, checkpoint effectors such as p53 and Cdc25A do not accumulate at DSBs at all. We propose that subclassification of DSB regulators according to their residence sites provides a useful framework for understanding their involvement in diverse processes of genome surveillance.  相似文献   

13.
ATR/Rad3-like kinases promote the DNA damage checkpoint through regulating Chk1 that restrains the activation of cyclin-dependent kinases. In fission yeast, Crb2, a BRCT-domain protein that is similar to vertebrate 53BP1, plays a crucial role in establishing this checkpoint. We report here that Crb2 regulates DNA damage checkpoint through temporal and dynamic interactions with Rad3, Chk1 and replication factor Cut5. The active complex formation between Chk1 and Crb2 is regulated by Rad3 and became maximal during the checkpoint arrest. Chk1 activation seems to need two steps of interaction changes: the loss of Rad3-Chk1 and Rad3-Crb2 interactions, and the association between hyperphosphorylated forms of Chk1 and Crb2. Chk1 is the major checkpoint kinase for the arrest of DNA polymerase mutants. The in vitro assay of Chk1 showed that its activation requires the presence of Crb2 BRCT. Hyperphosphorylation of Crb2 is also dependent on its intact BRCT. Finally, we show direct interaction between Rad3 and Crb2, which is inhibitory to Rad3 activity. Hence, Crb2 is the first to interact with both Rad3 and Chk1 kinases.  相似文献   

14.
A variety of environmental, carcinogenic, and chemotherapeutic agents form bulky lesions on DNA that activate DNA damage checkpoint signaling pathways in human cells. To identify the mechanisms by which bulky DNA adducts induce damage signaling, we developed an in vitro assay using mammalian cell nuclear extract and plasmid DNA containing bulky adducts formed by N-acetoxy-2-acetylaminofluorene or benzo(a)pyrene diol epoxide. Using this cell-free system together with a variety of pharmacological, genetic, and biochemical approaches, we identified the DNA damage response kinases DNA-dependent protein kinase (DNA-PK) and ataxia telangiectasia mutated (ATM) as bulky DNA damage-stimulated kinases that phosphorylate physiologically important residues on the checkpoint proteins p53, Chk1, and RPA. Consistent with these results, purified DNA-PK and ATM were directly stimulated by bulky adduct-containing DNA and preferentially associated with damaged DNA in vitro. Because the DNA damage response kinase ATM and Rad3-related (ATR) is also stimulated by bulky DNA adducts, we conclude that a common biochemical mechanism exists for activation of DNA-PK, ATM, and ATR by bulky adduct-containing DNA.  相似文献   

15.
The Fanconi anemia (FA) pathway is implicated in DNA repair and cancer predisposition. Central to this pathway is the FA core complex, which is targeted to chromatin by FANCM and FAAP24 following replication stress. Here we show that FANCM and FAAP24 interact with the checkpoint protein HCLK2 independently of the FA core complex. In addition to defects in FA pathway activation, downregulation of FANCM or FAAP24 also compromises ATR/Chk1-mediated checkpoint signaling, leading to defective Chk1, p53, and FANCE phosphorylation; 53BP1 focus formation; and Cdc25A degradation. As a result, FANCM and FAAP24 deficiency results in increased endogenous DNA damage and a failure to efficiently invoke cell-cycle checkpoint responses. Moreover, we find that the DNA translocase activity of FANCM, which is dispensable for FA pathway activation, is required for its role in ATR/Chk1 signaling. Our data suggest that DNA damage recognition and remodeling activities of FANCM and FAAP24 cooperate with ATR/Chk1 to promote efficient activation of DNA damage checkpoints.  相似文献   

16.
4-Hydroxynonenal (HNE) has been widely implicated in the mechanisms of oxidant-induced toxicity, but the detrimental effects of HNE associated with DNA damage or cell cycle arrest have not been thoroughly studied. Here we demonstrate for the first time that HNE caused G2/M cell cycle arrest of hepatocellular carcinoma HepG2 (p53 wild type) and Hep3B (p53 null) cells that was accompanied with decreased expression of CDK1 and cyclin B1 and activation of p21 in a p53-independent manner. HNE treatment suppressed the Cdc25C level, which led to inactivation of CDK1. HNE-induced phosphorylation of Cdc25C at Ser-216 resulted in its translocation from nucleus to cytoplasm, thereby facilitating its degradation via the ubiquitin-mediated proteasomal pathway. This phosphorylation of Cdc25C was regulated by activation of the ataxia telangiectasia and Rad3-related protein (ATR)/checkpoint kinase 1 (Chk1) pathway. The role of HNE in the DNA double strand break was strongly suggested by a remarkable increase in comet tail formation and H2A.X phosphorylation in HNE-treated cells in vitro. This was supported by increased in vivo phosphorylation of H2A.X in mGsta4 null mice that have impaired HNE metabolism and increased HNE levels in tissues. HNE-mediated ATR/Chk1 signaling was inhibited by ATR kinase inhibitor (caffeine). Additionally, most of the signaling effects of HNE on cell cycle arrest were attenuated in hGSTA4 transfected cells, thereby indicating the involvement of HNE in these events. A novel role of GSTA4-4 in the maintenance of genomic integrity is also suggested.  相似文献   

17.
Lee J  Kumagai A  Dunphy WG 《Molecular cell》2003,11(2):329-340
Claspin is required for the ATR-dependent activation of Chk1 in Xenopus egg extracts containing incompletely replicated DNA. We show here that Claspin associates with chromatin in a regulated manner during S phase. Binding of Claspin to chromatin depends on the pre-replication complex (pre-RC) and Cdc45 but not on replication protein A (RPA). These dependencies suggest that binding of Claspin occurs around the time of initial DNA unwinding at replication origins. By contrast, both ATR and Rad17 require RPA for association with DNA. Claspin, ATR, and Rad17 all bind to chromatin independently. These findings suggest that Claspin plays a role in monitoring DNA replication during S phase. Claspin, ATR, and Rad17 may collaborate in checkpoint regulation by detecting different aspects of a DNA replication fork.  相似文献   

18.
The ataxia telangiectasia mutated (ATM) and ATR (ATM and Rad3-related) protein kinases exert cell cycle delay, in part, by phosphorylating Checkpoint kinase (Chk) 1, Chk2, and p53. It is well established that ATR is activated following UV light-induced DNA damage such as pyrimidine dimers and the 6-(1,2)-dihydro-2-oxo-4-pyrimidinyl-5-methyl-2,4-(1H,3H)-pyrimidinediones, whereas ATM is activated in response to double strand DNA breaks. Here we clarify the activation of these kinases in cells exposed to IR, UV, and hyperoxia, a condition of chronic oxidative stress resulting in clastogenic DNA damage. Phosphorylation on Chk1(Ser-345), Chk2(Thr-68), and p53(Ser-15) following oxidative damage by IR involved both ATM and ATR. In response to ultraviolet radiation-induced stalled replication forks, phosphorylation on Chk1 and p53 required ATR, whereas Chk2 required ATM. Cells exposed to hyperoxia exhibited growth delay in G1, S, and G2 that was disrupted by wortmannin. Consistent with ATM or ATR activation, hyperoxia induced wortmannin-sensitive phosphorylation of Chk1, Chk2, and p53. By using ATM- and ATR-defective cells, phosphorylation on Chk1, Chk2, and p53 was found to be ATM-dependent, whereas ATR also contributed to Chk1 phosphorylation. These data reveal activated ATM and ATR exhibit selective substrate specificity in response to different genotoxic agents.  相似文献   

19.
One of the main mechanisms for double stranded DNA break (DSB) repair is through the non-homologous end-joining (NHEJ) pathway. Using plasmid and chromosomal repair assays, we showed that deletion mutant strains for interacting proteins Pph3p and Psy2p had reduced efficiencies in NHEJ. We further observed that this activity of Pph3p and Psy2p appeared linked to cell cycle Rad53p and Chk1p checkpoint proteins. Pph3/Psy2 is a phosphatase complex, which regulates recovery from the Rad53p DNA damage checkpoint. Overexpression of Chk1p checkpoint protein in a parallel pathway to Rad53p compensated for the deletion of PPH3 or PSY2 in a chromosomal repair assay. Double mutant strains Δpph3/Δchk1 and Δpsy2/Δchk1 showed additional reductions in the efficiency of plasmid repair, compared to both single deletions which is in agreement with the activity of Pph3p and Psy2p in a parallel pathway to Chk1p. Genetic interaction analyses also supported a role for Pph3p and Psy2p in DNA damage repair, the NHEJ pathway, as well as cell cycle progression. Collectively, we report that the activity of Pph3p and Psy2p further connects NHEJ repair to cell cycle progression.  相似文献   

20.
Human claspin is required for replication checkpoint control   总被引:2,自引:0,他引:2  
Claspin is a newly identified protein that regulates Chk1 activation in Xenopus. In the present study we investigated the role of human Claspin in the DNA damage/replication checkpoint in mammalian cells. We observed that human Claspin is a cell cycle regulated protein that peaks at S/G2 phase. Claspin localizes in the nuclei, but it only associates with Chk1 following replication stress or other types of DNA damage. In addition, Claspin is phosphorylated in response to replication stress, and this phosphorylation appears to be required for its association with Chk1. Moreover, Claspin interacts with the checkpoint proteins ATR and Rad9. Given that both the ATR and Rad9-Rad1-Hus1 complexes are involved in Chk1 activation, it is possible that Claspin works as an adaptor molecule bringing these molecules together. Using small interfering RNA technology, we have shown that down-regulation of Claspin expression inhibits Chk1 activation in response to replication stress. More importantly, down-regulation of Claspin augments the premature chromatin condensation induced by hydroxyurea, inhibits the UV-induced reduction of DNA synthesis, and decreases cell survival. Taken together, these data imply a potentially critical role for Claspin in replication checkpoint control in mammalian cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号