首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The metabolism of vitamin E involves oxidation of the phytyl chain to generate the terminal metabolite 7,8-dimethyl-2-(beta-carboxyethyl)-6-hydroxychroman (CEHC) via intermediate formation of 13'-hydroxychromanol and long-chain carboxychromanols. Conjugated (including sulfated) metabolites were reported previously but were limited to CEHCs. Here, using electrospray and inductively coupled plasma mass spectrometry, we discovered that gamma-tocopherol (gamma-T) and delta-T were metabolized to sulfated 9'-, 11'-, and 13'-carboxychromanol (9'S, 11'S, and 13'S) in human A549 cells. To further study the metabolites, we developed a HPLC assay with fluorescence detection that simultaneously analyzes sulfated and nonconjugated intermediate metabolites. Using this assay, we found that sulfated metabolites were converted to nonconjugated carboxychromanols by sulfatase digestion. In cultured cells, approximately 45% long-chain carboxychromanols from gamma-T but only 10% from delta-T were sulfated. Upon supplementation with gamma-T, rats had increased tissue levels of 9'S, 11'S, and 13'S, 13'-hydroxychromanol, 13'-carboxychromanol, and gamma-CEHC. The plasma concentrations of combined sulfated long-chain metabolites were comparable to or exceeded those of CEHCs and increased proportionally with the supplement dosages of gamma-T. Our study identifies sulfated long-chain carboxychromanols as novel vitamin E metabolites and provides evidence that sulfation may occur parallel with beta-oxidation. In addition, the HPLC fluorescence assay is a useful tool for the investigation of vitamin E metabolism.  相似文献   

2.
Natural forms of vitamin E are metabolized by ω-hydroxylation and β-oxidation of the hydrophobic side chain to generate urinary-excreted 2-(β-carboxyethyl)-6-hydroxychroman (CEHC) and CEHC conjugates (sulfate, glucuronide, or glucoside). We recently showed that sulfated long-chain carboxychromanols, the conjugated intermediate β-oxidation products, are formed from tocopherols and tocotrienols in human cells and in rats. CEHC conjugates have been quantified after being converted to its unconjugated counterpart by sulfatase/glucuronidase. Although the enzymatic hydrolysis is critical for appropriate quantification of conjugated CEHC, it is not clear whether brief incubation of the plasma with sulfatases/glucuronidases results in complete deconjugation of conjugated CEHC. Here we show that quantitative hydrolysis of the conjugated vitamin E metabolites in the plasma requires an extraction procedure using methanol/hexane (2 ml/5 ml) and an overnight sulfatase/glucuronidase hydrolysis. Using this procedure, we demonstrate that conjugated γ-CEHC and some sulfated long-chain carboxychromanols are fully deconjugated. In contrast, direct enzymatic hydrolysis of the whole plasma underestimates the conjugated metabolites by at least threefold. This protocol may be also useful for the analysis of other conjugated phenolic compounds in complicated biological matrices such as plasma.  相似文献   

3.
The vitamin E family consists of four tocopherols and four tocotrienols. α-Tocopherol (αT) is the predominant form of vitamin E in tissues and its deficiency leads to ataxia in humans. However, results from many clinical studies do not support a protective role of αT in disease prevention in people with adequate nutrient status. On the other hand, recent mechanistic studies indicate that other forms of vitamin E, such as γ-tocopherol (γT), δ-tocopherol, and γ-tocotrienol, have unique antioxidant and anti-inflammatory properties that are superior to those of αT in prevention and therapy against chronic diseases. These vitamin E forms scavenge reactive nitrogen species, inhibit cyclooxygenase- and 5-lipoxygenase-catalyzed eicosanoids, and suppress proinflammatory signaling such as NF-κB and STAT3/6. Unlike αT, other vitamin E forms are significantly metabolized to carboxychromanols via cytochrome P450-initiated side-chain ω-oxidation. Long-chain carboxychromanols, especially 13′-carboxychromanols, are shown to have stronger anti-inflammatory effects than unmetabolized vitamins and may therefore contribute to the beneficial effects of vitamin E forms in vivo. Consistent with mechanistic findings, animal and human studies show that γT and tocotrienols may be useful against inflammation-associated diseases. This review focuses on non-αT forms of vitamin E with respect to their metabolism, anti-inflammatory effects and mechanisms, and in vivo efficacy in preclinical models as well as human clinical intervention studies.  相似文献   

4.

Background

Vitamin E compounds exhibit prostate cancer preventive properties experimentally, but serologic investigations of tocopherols, and randomized controlled trials of supplementation in particular, have been inconsistent. Many studies suggest protective effects among smokers and for aggressive prostate cancer, however.

Methods

We conducted a nested case-control study of serum α-tocopherol and γ-tocopherol and prostate cancer risk in the Prostate, Lung, Colorectal and Ovarian Cancer Screening Trial, with 680 prostate cancer cases and 824 frequency-matched controls. Multivariate-adjusted, conditional logistic regression models were used to estimate odds ratios (OR) and 95% confidence intervals (CIs) for tocopherol quintiles.

Results

Serum α-tocopherol and γ-tocopherol were inversely correlated (r = −0.24, p<0.0001). Higher serum α-tocopherol was associated with significantly lower prostate cancer risk (OR for the highest vs. lowest quintile = 0.63, 95% CI 0.44–0.92, p-trend 0.05). By contrast, risk was non-significantly elevated among men with higher γ-tocopherol concentrations (OR for the highest vs. lowest quintile = 1.35, 95% CI 0.92–1.97, p-trend 0.41). The inverse association between prostate cancer and α-tocopherol was restricted to current and recently former smokers, but was only slightly stronger for aggressive disease. By contrast, the increased risk for higher γ-tocopherol was more pronounced for less aggressive cancers.

Conclusions

Our findings indicate higher α-tocopherol status is associated with decreased risk of developing prostate cancer, particularly among smokers. Although two recent controlled trials did not substantiate an earlier finding of lower prostate cancer incidence and mortality in response to supplementation with a relatively low dose of α-tocopherol, higher α-tocopherol status may be beneficial with respect to prostate cancer risk among smokers. Determining what stage of prostate cancer development is impacted by vitamin E, the underlying mechanisms, and how smoking modifies the association, is needed for a more complete understanding of the vitamin E-prostate cancer relation.  相似文献   

5.
Steroids are primarily present in human fluids in their sulfated forms. Profiling of these compounds is important from both diagnostic and physiological points of view. Here, we present a novel method for the quantification of 11 intact steroid sulfates in human serum by LC-MS/MS. The compounds analyzed in our method, some of which are quantified for the first time in blood, include cholesterol sulfate, pregnenolone sulfate, 17-hydroxy-pregnenolone sulfate, 16-α-hydroxy-dehydroepiandrosterone sulfate, dehydroepiandrosterone sulfate, androstenediol sulfate, androsterone sulfate, epiandrosterone sulfate, testosterone sulfate, epitestosterone sulfate, and dihydrotestosterone sulfate. The assay was conceived to quantify sulfated steroids in a broad range of concentrations, requiring only 300 μl of serum. The method has been validated and its performance was studied at three quality controls, selected for each compound according to its physiological concentration. The assay showed good linearity (R2 > 0.99) and recovery for all the compounds, with limits of quantification ranging between 1 and 80 ng/ml. Averaged intra-day and between-day precisions (coefficient of variation) and accuracies (relative errors) were below 10%. The method has been successfully applied to study the sulfated steroidome in diseases such as steroid sulfatase deficiency, proving its diagnostic value. This is, to our best knowledge, the most comprehensive method available for the quantification of sulfated steroids in human blood.  相似文献   

6.
The measurements of the serum/plasma concentrations of vitamin D metabolites are widely used for the diagnostic assessment and follow-up of several diseases, such as chronic renal failure and osteoporosis. These metabolites have usually been measured by protein binding assays, such as radioimmunoassay and radioreceptor assay. Although these techniques will doubtless continue to be the methods of choice for routine use in the clinical field, their specificity and accuracy are sometimes poor due to interference from other metabolites and lipids. Among the alternative methods, liquid chromatography (LC) coupled with mass spectrometry (MS) has been used for the analysis of these metabolites and even synthetic vitamin D analogues (therapeutic agents) due to its sensitivity and selectivity. This article reviews recent advances in the determination of vitamin D metabolites and related compounds in biological samples using LC–MS.  相似文献   

7.
Cholesterol oxides, in particular 7-ketocholesterol, are proatherogenic compounds that induce cell death in the vascular wall when localized in lipid raft domains of the cell membrane. Deleterious effects of 7-ketocholesterol can be prevented by vitamin E, but the molecular mechanism involved is unclear. In this study, unlike γ-tocopherol, the α-tocopherol vitamin E form was found to prevent 7-ketocholesterol-mediated apoptosis of A7R5 smooth muscle cells. To be operative, α-tocopherol needed to be added to the cells before 7-ketocholesterol, and its anti-apoptotic effect was reduced and even suppressed when added together or after 7-ketocholesterol, respectively. Both pre- and co-treatment of the cells with α-tocopherol resulted in the redistribution of 7-ketocholesterol out of the sphingolipid/cholesterol-enriched (lipid raft) domains. In turn, fewer amounts of α-tocopherol associated with lipid rafts on 7-ketocholesterol-pretreated cells compared with untreated cells, with no prevention of cell death in this case. In further support of the implication of lipid raft domains, the dephosphorylation/inactivation of Akt-PKB was involved in the 7-ketocholesterol-induced apoptosis. Akt-PKB dephosphorylation was prevented by α-tocopherol, but not γ-tocopherol pretreatment.It has been suggested that cholesterol oxide-induced apoptosis is a key event in the initiation and progression of atherosclerosis lesions (1, 2). In the initial step of the disease, cholesterol oxides in modified low density lipoproteins were found to promote the death of endothelial cells lining the intravascular lumen (1, 2). In more advanced stages and as the atherosclerotic lesion progresses, cholesterol oxides could also contribute to the destruction of foam cells and vascular smooth muscle cells, to the formation of the lipid core, to the reduction of cell proliferation, and eventually to plaque destabilization (1, 2). Among cholesterol oxides that are mainly synthesized during oxidation of low density lipoproteins, 7-ketocholesterol is one of the most abundant in plasma and atherosclerotic lesions (3). Moreover, in a number of cell models, it has been established that 7-ketocholesterol is one of the cholesterol oxide derivatives with the highest pro-apoptotic potential (4, 5). The 7-ketocholesterol derivative associates preferentially with membrane lipid raft domains (6), which are characterized by the lateral packing of glycosphingolipids, sphingolipids, and cholesterol. Because of their insolubility in cold non-ionic detergents, rafts are also called detergent-resistant membranes (7). These structures are thought to be involved in cellular signaling mechanisms (8, 9). It is worthy of note that 7-ketocholesterol has been shown to induce cell death through inactivation of the phosphatidylinositol 3-kinase/Akt signaling pathway (10), which is known to be highly specific to lipid raft domains (9).Vitamin E is composed of closely related molecules, i.e. tocopherols and tocotrienols, which are each composed of four α, β, γ, and δ analogues. Although vitamin E was widely studied for its ability to prevent cellular damage by reactive oxygen species, it has recently been the subject of intense research for its putative, non-antioxidant functions (11, 12). Among the various forms of vitamin E, α-tocopherol is most abundant in the body as it is specifically recognized by the liver α-tocopherol transfer protein. Although several studies have shown that vitamin E has the ability to counteract the pro-apoptotic effect of 7-ketocholesterol in cultured cells (10, 13), the underlying molecular mechanism is unclear.In the present study the molecular mechanism involved in the vitamin E-mediated protection against apoptosis induced by 7-ketocholesterol was investigated on the well known A7R5 aortic smooth muscle cell model. It is reported here that α-tocopherol, but not γ-tocopherol, effectively protects the cells against 7-ketocholesterol-induced apoptosis when applied as a pretreatment before the addition of 7-ketocholesterol. Unlike γ-tocopherol, α-tocopherol was able to activate the Akt-PKB anti-apoptotic signaling pathway in the lipid raft domains (14), leading to phosphorylation and, thus, inactivation of Bad (15). Most importantly, the protective effect of α-tocopherol is shown to operate through its prior incorporation into the lipid raft domains of the plasma membrane, which leads to the subsequent exclusion and, thus, inactivation of 7-ketocholesterol.  相似文献   

8.
Sensitive assay for determining plasma tenofovir concentrations by LC/MS/MS   总被引:1,自引:0,他引:1  
An LC/MS/MS assay for the determination of tenofovir (TNF) was developed and validated for use with the EDTA anticoagulated human plasma matrix. Heparin-treated plasma and serum matrices were also validated. After addition of adefovir as an internal standard, trifluoroacetic acid was used to produce a protein-free extract. Chromatographic separation was achieved with a Polar-RP Synergi, 2.0 mm x 150 mm, reversed-phase analytical column. The mobile phase was 3% acetonitrile/1% acetic acid, aq. Detection of TNF and the internal standard was achieved by ESI MS/MS in the positive ion mode using 288/176 and 274/162 transitions, respectively. The method was linear from 10 to 750 ng/ml with a minimum quantifiable limit of 10 ng/ml when 250 microl aliquots were analyzed. The usefulness of this LC/MS/MS method to routinely monitor plasma concentrations of TNF was demonstrated along with its ability to assist in the performance of pharmacokinetic studies.  相似文献   

9.
Mitochondrial targeting of antioxidants has been an area of interest due to the mitochondria''s role in producing and metabolizing reactive oxygen species. Antioxidants, especially vitamin E (α-tocopherol), have been conjugated to lipophilic cations to increase their mitochondrial targeting. Synthetic vitamin E analogues have also been produced as an alternative to α-tocopherol. In this paper, we investigated the mitochondrial targeting of a vitamin E metabolite, 2,5,7,8-tetramethyl-2-(2′-carboxyethyl)-6-hydroxychroman (α-CEHC), which is similar in structure to vitamin E analogues. We report a fast and efficient method to conjugate the water-soluble metabolite, α-CEHC, to triphenylphosphonium cation via a lysine linker using solid phase synthesis. The efficacy of the final product (MitoCEHC) to lower oxidative stress was tested in bovine aortic endothelial cells. In addition the ability of MitoCEHC to target the mitochondria was examined in type 2 diabetes db/db mice. The results showed mitochondrial accumulation in vivo and oxidative stress decrease in vitro.  相似文献   

10.
This study aims to investigate in in vivo and in vitro models of nonalcoholic fatty liver disease (NAFLD) the enzymatic metabolism of α-tocopherol (vitamin E) and its relationship to vitamin E-responsive genes with key role in the lipid metabolism and detoxification of the liver. The experimental models included mice fed a high-fat diet combined or not with fructose (HFD+F) and HepG2 human hepatocarcinoma cells treated with the lipogenic agents palmitate, oleate or fructose. CYP4F2 protein, a cytochrome P-450 isoform with proposed α-tocopherol ω-hydroxylase activity, decreased in HFD and even more in HFD+F mice liver; this finding was associated with increased hepatic levels of α-tocopherol and decreased formation of the corresponding long-chain metabolites α-13-hydroxy and α-13-carboxy chromanols. A decreased expression was also observed for PPAR-γ and SREBP-1 proteins, two vitamin E-responsive genes with key role in lipid metabolism and CYP4F2 gene regulation. A transient activation of CYP4F2 gene followed by a repression response was observed in HepG2 cells during the exposure to increasing levels of the lipogenic and cytotoxic agent palmitic acid; such gene repression effect was further exacerbated by the co-treatment with oleic acid and α-tocopherol and was also observed for PPAR-γ and the SREBP isoforms 1 and 2. Such gene response was associated with increased uptake and ω-hydroxylation of α-tocopherol, which suggests a minor role of CYP4F2 in the enzymatic metabolism of vitamin E in HepG2 cells. In conclusion, the liver metabolism and gene response of α-tocopherol are impaired in experimental NAFLD.  相似文献   

11.

Background

Clinical studies of the associations of vitamin E with lung function have reported conflicting results. However, these reports primarily examine the α-tocopherol isoform of vitamin E and have not included the isoform γ-tocopherol which we recently demonstrated in vitro opposes the function of α-tocopherol. We previously demonstrated, in vitro and in animal studies, that the vitamin E isoform α-tocopherol protects, but the isoform γ-tocopherol promotes lung inflammation and airway hyperresponsiveness.

Methods

To translate these findings to humans, we conducted analysis of 4526 adults in the Coronary Artery Risk Development in Young Adults (CARDIA) multi-center cohort with available spirometry and tocopherol data in blacks and whites. Spirometry was obtained at years 0, 5, 10, and 20 and serum tocopherol was from years 0, 7 and 15 of CARDIA.

Results

In cross-sectional regression analysis at year 0, higher γ-tocopherol associated with lower FEV1 (p = 0.03 in blacks and p = 0.01 in all participants) and FVC (p = 0.01 in blacks, p = 0.05 in whites, and p = 0.005 in all participants), whereas higher α-tocopherol associated with higher FVC (p = 0.04 in blacks and whites and p = 0.01 in all participants). In the lowest quartile of α-tocopherol, higher γ-tocopherol associated with a lower FEV1 (p = 0.05 in blacks and p = 0.02 in all participants). In contrast, in the lowest quartile of γ-tocopherol, higher α-tocopherol associated with a higher FEV1 (p = 0.03) in blacks. Serum γ-tocopherol >10 μM was associated with a 175–545 ml lower FEV1 and FVC at ages 21–55 years.

Conclusion

Increasing serum concentrations of γ-tocopherol were associated with lower FEV1 or FVC, whereas increasing serum concentrations of α-tocopherol was associated with higher FEV1 or FVC. Based on the prevalence of serum γ-tocopherol >10 μM in adults in CARDIA and the adult U.S. population in the 2011 census, we expect that the lower FEV1 and FVC at these concentrations of serum γ-tocopherol occur in up to 4.5 million adults in the population.  相似文献   

12.
13.
The nucleotide analog adefovir is an important therapy for hepatitis B viral infection. The study of nucleoside/tide pharmacology has been hampered by difficulties encountered when trying to develop LC/MS/MS methods for these polar analytes. In an attempt to identify a more convenient, selective and sensitive alternative to the analysis of the metabolism of radiolabeled parent nucleotide traditionally used for in vitro cell culture studies, an LC/MS/MS method was developed for the quantitative detection of adefovir and its phosphorylated metabolites in cellular samples. Ion-pairing reversed phase LC using tetrabutylammonium (TBA) and ammonium phosphate had the best compromise between chromatographic separation and positive mode MS/MS detection. Using microbore reverse phase columns and a low flow acetonitrile gradient it was possible to quantitate adefovir, its metabolites and 2'-deoxyadenosine triphosphate. A cross-validation showed comparable levels of adefovir and its metabolites were determined using either LC/MS/MS or radioactivity detection. However, initial methods were conducted at high pH and utilized an acetonitrile step gradient causing unacceptable column life and unpredictable equilibration. Further method optimization lowered the concentration of TBA and phosphate, decreased pH and applied a linear gradient of acetonitrile. This work resulted in a method that was found to have sensitivity, accuracy and precision sufficient to be a useful tool in the study of the intracellular pharmacology of adefovir in vitro and may be more broadly applicable.  相似文献   

14.
Alpha- and gamma-tocopherol (alpha- and gamma-T, respectively) metabolite analysis is of key relevance in the study of vitamin E metabolism. Whilst there is information on urinary excretion of the two major metabolites of these vitamin E homologues, namely the 2,5,7,8-tetramethyl-2-(beta-carboxyethyl)-6-hydroxychroman (alpha-CEHC) and 2,7,8-trimethyl-2-(beta-carboxyethyl)-6-hydroxychroman (gamma-CEHC), their concentration and response to supplements in plasma remains poorly investigated. In this study we describe a gas chromatography-mass spectrometry (GC/MS)-based assay to measure both alpha- and gamma-T and their corresponding CEHC metabolites in human plasma. As an example of the application of this method we report data obtained following the supplemention of two healthy volunteers with 100 mg of deuterium-labeled gamma-T acetate (d(2)-gamma-TAC). Under routine analytical conditions a good linearity in the range 0.0025--1 microM was observed for both the alpha- and gamma-CEHC deuterated standards. In plasma samples, the detection limit for alpha- and gamma-CEHC was 2.5 and 5 nmol/l, respectively. The minimum amount of plasma required for the assay was 500 microl. The plasma concentrations of alpha-CEHC and gamma-CEHC in unsupplemented healthy subjects were 12.6 +/-7.5 and 160.7 +/- 44.9 nmol/l, respectively. In the two volunteers supplemented with 100 mg of d(2)-gamma-TAC, plasma d(2)-gamma-T concentrations increased 250 to 450-fold 6 h postsupplementation. Plasma and urinary d(2)-gamma-CEHC concentrations increased 20 to 40-fold 9--12 h postsupplementation. Interestingly, the acute increase in d(2) gamma-T did not significantly affect the baseline plasma concentrations of d(0)-gamma-T and only slight lowered alpha-T concentrations. Likewise, plasma alpha-CEHC levels were not influenced and urinary excretion of alpha-CEHC were unaltered. This GC/MS method provides a versatile and accurate mean for assessing carboxyethyl-hydroxychroman metabolites of vitamin E in plasma.  相似文献   

15.
Vitamin E is an essential nutrient for human health, with an established function as a lipid-soluble antioxidant that protects cell membranes from free radical damage. Low vitamin E status has been linked to multiple health outcomes, including total mortality. With vitamin E being identified as a ‘shortfall nutrient’ because >90% of American adults are not consuming recommended amounts of vitamin E, we aimed to determine the prevalence of both clinical vitamin E deficiency (serum α-tocopherol concentration < 12 μmol/L) and failure to meet a criterion of vitamin E adequacy, serum α-tocopherol concentration of 30 μmol/L, based on the Estimated Average Requirement (EAR) and lowest mortality rate in the Alpha-Tocopherol Beta-Carotene (ATBC) study. The most recent nationally-representative cross-sectional data (2003–2006) among non-institutionalized US citizens with available serum concentrations of α-tocopherol from the National Health and Nutrition Examination Survey (NHANES); Centers for Disease Control and Prevention were analyzed. Serum α-tocopherol distributions were compared between those reporting consumption of food without supplement use (FOOD) and food and supplement use (FOOD+DS) by sex, age, and race/ethnicity. Only 1% of the US population is clinically deficient. FOOD consumers have lower average α-tocopherol levels (24.9± 0.2 μmol/L) than FOOD+DS users (33.7 ± 0.3 μmol/L), even when adjusted for total cholesterol. Using a criterion of adequacy of 30 μmol/L, 87% of persons 20-30y and 43% of those 51+y had inadequate vitamin E status (p<0.01). A significant greater prevalence of FOOD compared to FOOD+DS users did not meet the criterion of adequacy which was based on the EAR and low ATBC mortality rate consistently across age, sex, and race/ethnic groups. The prevalence of inadequate vitamin E levels is significantly higher among non-users of dietary supplements. With declining usage of vitamin E supplements, the population should be monitored for changes in vitamin E status and related health outcomes.  相似文献   

16.
An LC/ESI/MS/MS method for cyclic phosphatidic acid (cPA) quantification in serum is established in the present report. The limit of quantitation of the assay reaches low nanomolar level in human serum and the CV% are within 10%. Using this method, we successfully quantify the levels of two cPA species, 16:0 and 18:1, in human serum. We find that the concentrations of 16:0 cPA in the serum of normal subjects and post-surgery ovarian cancer patients are significantly higher than its corresponding concentration in pre-surgery ovarian cancer patients, supporting the observation that cPA has anti-cancer activity. Another discovery is that the addition of strong acids (such as hydrochloric acid) in human serum may lead to the production of artificial cPA. Therefore, strong acids should be avoided in the extraction of cPA present in a complex matrix. Based on this observation, a new lipid extraction method was developed and used to extract cPA. The extraction recovery is close to 80%, guaranteeing an accurate quantification of cPA by LC/ESI/MS/MS can be performed.  相似文献   

17.
Tocochromanols encompass a group of compounds with vitamin E activity essential for human nutrition. Structurally, natural vitamin E includes eight chemically distinct molecules: -, β-, γ- and δ-tocopherol; and -, β-, γ- and δ-tocotrienol. Symptoms caused by -tocopherol deficiency can be alleviated by tocotrienols. Thus, tocotrienols may be viewed as being members of the natural vitamin E family not only structurally but also functionally. Palm oil and rice bran oil represent two major nutritional sources of natural tocotrienol. Taken orally, tocotrienols are bioavailable to all vital organs. The tocotrienol forms of natural vitamin E possesses powerful hypocholesterolemic, anti-cancer and neuroprotective properties that are often not exhibited by tocopherols. Oral tocotrienol protects against stroke-associated brain damage in vivo. Disappointments with outcomes-based clinical studies testing the efficacy of -tocopherol need to be handled with caution and prudence recognizing the untapped opportunities offered by the other forms of natural vitamin E. Although tocotrienols represent half of the natural vitamin E family, work on tocotrienols account for roughly 1% of the total literature on vitamin E. The current state of knowledge warrants strategic investment into investigating the lesser known forms of vitamin E.  相似文献   

18.
Leukotrienes generated by 5-lipoxygenase (5-LOX)-catalyzed reaction are key regulators of inflammation. In ionophore-stimulated (A23187; 1-2.5 μM) human blood neutrophils or differentiated HL-60 cells, vitamin E forms differentially inhibited leukotriene B(4) (LTB(4)) with an IC(50) of 5-20 μM for γ-tocopherol, δ-tocopherol (δT), and γ-tocotrienol, but a much higher IC(50) for α-tocopherol. 13'-Carboxychromanol, a long-chain metabolite of δT, suppressed neutrophil- and HL-60 cell-generated LTB(4) with an IC(50) of 4-7 μM and potently inhibited human recombinant 5-LOX activity with an IC(50) of 0.5-1 μM. In contrast, vitamin E forms had no effect on human 5-LOX activity but impaired ionophore-induced intracellular calcium increase and calcium influx as well as the subsequent signaling including ERK1/2 phosphorylation and 5-LOX translocation from cytosol to the nucleus, a key event for 5-LOX activation. Further investigation showed that δT suppressed cytosolic Ca(2+) increase and/or LTB(4) formation triggered by ionophores, sphingosine 1-phosphate, and lysophosphatidic acid but not by fMLP or thapsigargin, whereas 13'-carboxychromanol decreased cellular production of LTB(4) regardless of different stimuli, consistent with its strong inhibition of the 5-LOX activity. These observations suggest that δT does not likely affect fMLP receptor-mediated signaling or store depletion-induced calcium entry. Instead, we found that δT prevented ionophore-caused cytoplasmic membrane disruption, which may account for its blocking of calcium influx. These activities by vitamin E forms and long-chain carboxychromanol provide potential molecular bases for the differential anti-inflammatory effects of vitamin E forms in vivo.  相似文献   

19.
The widely conserved preferential accumulation of α-tocopherol (α-TOH) in tissues occurs, in part, from selective postabsorptive catabolism of non-α-TOH forms via the vitamin E-ω-oxidation pathway. We previously showed that global disruption of CYP4F14, the major but not the only mouse TOH-ω-hydroxylase, resulted in hyper-accumulation of γ-TOH in mice fed a soybean oil diet. In the current study, supplementation of Cyp4f14−/− mice with high levels of δ- and γ-TOH exacerbated tissue enrichment of these forms of vitamin E. However, at high dietary levels of TOH, mechanisms other than ω-hydroxylation dominate in resisting diet-induced accumulation of non-α-TOH. These include TOH metabolism via ω-1/ω-2 oxidation and fecal elimination of unmetabolized TOH. The ω-1 and ω-2 fecal metabolites of γ- and α-TOH were observed in human fecal material. Mice lacking all liver microsomal CYP activity due to disruption of cytochrome P450 reductase revealed the presence of extra-hepatic ω-, ω-1, and ω-2 TOH hydroxylase activities. TOH-ω-hydroxylase activity was exhibited by microsomes from mouse and human small intestine; murine activity was entirely due to CYP4F14. These findings shed new light on the role of TOH-ω-hydroxylase activity and other mechanisms in resisting diet-induced accumulation of tissue TOH and further characterize vitamin E metabolism in mice and humans.  相似文献   

20.
LC/MS assays were developed to determine the plasma and intracellular concentrations of two aryl phosphoramidate prodrugs of the nucleotide analog 9-[2-R-(phosphonomethoxy)propyl]adenine. LC/MS was used to demonstrate the presence of high concentrations of PMPA in peripheral blood mononucleocytes following oral administration of prodrugs in dogs. High concentrations of PMPA and active metabolite were detected in MT-2 cells incubated with prodrug using an ion-pairing LC/MS assay.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号