首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Lipid and cholesterol metabolism in the postprandial phase is associated with both quantitative and qualitative remodeling of HDL particle subspecies that may influence their anti-atherogenic functions in the reverse cholesterol transport pathway. We evaluated the capacity of whole plasma or isolated HDL particles to mediate cellular free cholesterol (FC) efflux, cholesteryl ester transfer protein (CETP)-mediated cholesteryl ester (CE) transfer, and selective hepatic CE uptake during the postprandial phase in subjects displaying type IIB hyperlipidemia (n = 16). Postprandial, large HDL2 displayed an enhanced capacity to mediate FC efflux via both scavenger receptor class B type I (SR-BI)-dependent (+12%; P < 0.02) and ATP binding cassette transporter G1 (ABCG1)-dependent (+31%; P < 0.008) pathways in in vitro cell systems. In addition, the capacity of whole postprandial plasma (4 h and 8 h postprandially) to mediate cellular FC efflux via the ABCA1-dependent pathway was significantly increased (+19%; P < 0.0003). Concomitantly, postprandial lipemia was associated with elevated endogenous CE transfer rates from HDL2 to apoB lipoproteins and with attenuated capacity (−17%; P < 0.02) of total HDL to deliver CE to hepatic cells. Postprandial lipemia enhanced SR-BI and ABCG1-dependent efflux to large HDL2 particles. However, postprandial lipemia is equally associated with deleterious features by enhancing formation of CE-enriched, triglyceride-rich lipoprotein particles through the action of CETP and by reducing the direct return of HDL-CE to the liver.  相似文献   

2.
This study was designed to establish the mechanism responsible for the increased apolipoprotein (apo) A-II levels caused by the cholesteryl ester transfer protein inhibitor torcetrapib. Nineteen subjects with low HDL cholesterol (<40 mg/dl), nine of whom were also treated with 20 mg of atorvastatin daily, received placebo for 4 weeks, followed by 120 mg of torcetrapib daily for the next 4 weeks. Six subjects in the nonatorvastatin cohort participated in a third phase, in which they received 120 mg of torcetrapib twice daily for 4 weeks. At the end of each phase, subjects underwent a primed-constant infusion of [5,5,5-2H3]l-leucine to determine the kinetics of HDL apoA-II. Relative to placebo, torcetrapib significantly increased apoA-II concentrations by reducing HDL apoA-II catabolism in the atorvastatin (−9.4%, P < 0.003) and nonatorvastatin once- (−9.9%, P = 0.02) and twice- (−13.2%, P = 0.02) daily cohorts. Torcetrapib significantly increased the amount of apoA-II in the α-2-migrating subpopulation of HDL when given as monotherapy (27%, P < 0.02; 57%, P < 0.003) or on a background of atorvastatin (28%, P < 0.01). In contrast, torcetrapib reduced concentrations of apoA-II in α-3-migrating HDL, with mean reductions of −14% (P = 0.23), −18% (P < 0.02), and −18% (P < 0.01) noted during the atorvastatin and nonatorvastatin 120 mg once- and twice-daily phases, respectively. Our findings indicate that CETP inhibition increases plasma concentrations of apoA-II by delaying HDL apoA-II catabolism and significantly alters the remodeling of apoA-II-containing HDL subpopulations.  相似文献   

3.
The capacity of HDL to remove cholesterol from macrophages is inversely associated with the severity of angiographic coronary artery disease. The effect of human immunodeficiency virus (HIV) infection or its treatment on the ability of HDL particles to stimulate cholesterol efflux from human macrophages has never been studied. We evaluated the capacity of whole plasma and isolated HDL particles from HIV-infected subjects (n = 231) and uninfected controls (n = 200), as well as in a subset of 41 HIV subjects receiving highly active antiretroviral therapy (HAART) to mediate cholesterol efflux from human macrophages. Plasma cholesterol efflux capacity was reduced (−12%; P = 0.001) in HIV patients as compared with controls. HIV infection reduced by 27% (P < 0.05) the capacity of HDL subfractions to promote cholesterol efflux from macrophages. We observed a reduced ABCA1-dependent efflux capacity of plasma (−27%; P < 0.0001) from HIV-infected subjects as a result of a reduction in the efflux capacity of HDL3 particles. HAART administration restored the capacity of plasma from HIV patients to stimulate cholesterol efflux from human macrophages (9.4%; P = 0.04). During HIV infection, the capacity of whole plasma to remove cholesterol from macrophages is reduced, thus potentially contributing to the increased coronary heart disease in the HIV population. HAART administration restored the removal of cholesterol from macrophages by increasing HDL functionality.  相似文献   

4.
Apolipoprotein M (apoM) is a novel apolipoprotein that is reportedly necessary for preβ HDL formation; however, its detailed function remains unknown. We investigated the biogenesis and properties of apoM and its effects on the initial steps of nascent preβ HDL assembly by ABCA1 in HEK293 cells. Transiently transfected apoM was localized primarily in the endomembrane compartment. Pulse-chase analyses demonstrated that apoM is inefficiently secreted, relative to human serum albumin, and that ∼50% remains membrane-associated after extraction with sodium carbonate, pH 11.5. To investigate the role of apoM in nascent preβ HDL formation, ABCA1-expressing or control cells, transfected with empty vector, apoM, or C-terminal epitope-tagged apoM (apoM-C-FLAG), were incubated with 125I-apoA-I for 24 h. Conditioned media were harvested and fractionated by fast-protein liquid chromatography (FPLC) to monitor HDL particle size. Preβ HDL particles were formed effectively in the absence of apoM expression; however, increased apoM expression stimulated the formation of larger-sized nascent preβ HDLs. Immunoprecipitation with anti-apoA-I antibody followed by apoM Western blot analysis revealed that little secreted apoM was physically associated with preβ HDL. Our results suggest that apoM is an atypical secretory protein that is not necessary for ABCA1-dependent preβ HDL formation but does stimulate the formation of larger-sized preβ HDL. We propose that apoM may function catalytically at an intracellular site to transfer lipid onto preβ HDL during or after their formation by ABCA1.  相似文献   

5.

Objective

Increasing plasma glucose levels are associated with increasing risk of vascular disease. We tested the hypothesis that there is a glycaemia-mediated impairment of reverse cholesterol transport (RCT). We studied the influence of plasma glucose on expression and function of a key mediator in RCT, the ATP binding cassette transporter-A1 (ABCA1) and expression of its regulators, liver X receptor-α (LXRα) and peroxisome proliferator-activated receptor–γ (PPARγ).

Methods and Results

Leukocyte ABCA1, LXRα and PPARγ expression was measured by polymerase chain reaction in 63 men with varying degrees of glucose homeostasis. ABCA1 protein concentrations were measured in leukocytes. In a sub-group of 25 men, ABCA1 function was quantified as apolipoprotein-A1-mediated cholesterol efflux from 2–3 week cultured skin fibroblasts. Leukocyte ABCA1 expression correlated negatively with circulating HbA1c and glucose (rho = −0.41, p<0.001; rho = −0.34, p = 0.006 respectively) and was reduced in Type 2 diabetes (T2DM) (p = 0.03). Leukocyte ABCA1 protein was lower in T2DM (p = 0.03) and positively associated with plasma HDL cholesterol (HDL-C) (rho = 0.34, p = 0.02). Apolipoprotein-A1-mediated cholesterol efflux correlated negatively with fasting glucose (rho = −0.50, p = 0.01) and positively with HDL-C (rho = 0.41, p = 0.02). It was reduced in T2DM compared with controls (p = 0.04). These relationships were independent of LXRα and PPARγ expression.

Conclusions

ABCA1 expression and protein concentrations in leukocytes, as well as function in cultured skin fibroblasts, are reduced in T2DM. ABCA1 protein concentration and function are associated with HDL-C levels. These findings indicate a glycaemia- related, persistent disruption of a key component of RCT.  相似文献   

6.
To evaluate functional and compositional properties of HDL in subjects from a kindred of genetic apoA-I deficiency, two homozygotes and six heterozygotes, with a nonsense mutation at APOA1 codon -2, Q[-2]X, were recruited together with age- and sex-matched healthy controls (n = 11). Homozygotes displayed undetectable plasma levels of apoA-I and reduced levels of HDL-cholesterol (HDL-C) and apoC-III (5.4% and 42.6% of controls, respectively). Heterozygotes displayed low HDL-C (21 ± 9 mg/dl), low apoA-I (79 ± 24 mg/dl), normal LDL-cholesterol (132 ± 25 mg/dl), and elevated TG (130 ± 45 mg/dl) levels. Cholesterol efflux capacity of ultracentrifugally isolated HDL subpopulations was reduced (up to −25%, P < 0.01, on a glycerophospholipid [GP] basis) in heterozygotes versus controls. Small, dense HDL3 and total HDL from heterozygotes exhibited diminished antioxidative activity (up to −48%, P < 0.001 on a total mass basis) versus controls. HDL subpopulations from both homozygotes and heterozygotes displayed altered chemical composition, with depletion in apoA-I, GP, and cholesteryl ester; enrichment in apoA-II, free cholesterol, and TG; and altered phosphosphingolipidome. The defective atheroprotective activities of HDL were correlated with altered lipid and apo composition. These data reveal that atheroprotective activities of HDL particles are impaired in homozygous and heterozygous apoA-I deficiency and are intimately related to marked alterations in protein and lipid composition.  相似文献   

7.
8.
Accelerated atherosclerosis is the leading cause of death in type 1 diabetes, but the mechanism of type 1 diabetes-accelerated atherosclerosis is not well understood, in part due to the lack of a good animal model for the long-term studies required. In an attempt to create a model for studying diabetic macrovascular disease, we have generated type 1 diabetic Akita mice lacking the low density lipoprotein receptor (Ins2AkitaLdlr−/−). Ins2AkitaLdlr−/− mice were severely hyperglycemic with impaired glucose tolerance. Compared with Ldlr−/− mice, 20-week-old Ins2AkitaLdlr−/− mice fed a 0.02% cholesterol AIN76a diet showed increased plasma triglyceride and cholesterol levels, and increased aortic root cross-sectional atherosclerotic lesion area [224% (P < 0.001) in males and 30% (P < 0.05) in females]. Microarray and quantitative PCR analyses of livers from Ins2AkitaLdlr−/− mice revealed altered expression of lipid homeostatic genes, including sterol-regulatory element binding protein (Srebp)1, liver X receptor (Lxr)α, Abca1, Cyp7b1, Cyp27a1, and Lpl, along with increased expression of pro-inflammatory cytokine genes, including interleukin (Il)1α, Il1β, Il2, tumor necrosis factor (Tnf)α, and Mcp1. Immunofluorescence staining showed that the expression levels of Mcp1, Tnfα, and Il1β were also increased in the atherosclerotic lesions and artery walls of Ins2AkitaLdlr−/− mice. Thus, the Ins2AkitaLdlr−/− mouse appears to be a promising model for mechanistic studies of type 1 diabetes-accelerated atherosclerosis.  相似文献   

9.
Subnormal HDL-cholesterol (HDL-C) and apolipoprotein (apo)AI levels are characteristic of familial hypercholesterolemia (FH), reflecting perturbed intravascular metabolism with compositional anomalies in HDL particles, including apoE enrichment. Does LDL-apheresis, which reduces HDL-cholesterol, apoAI, and apoE by adsorption, induce selective changes in HDL subpopulations, with relevance to atheroprotection? Five HDL subpopulations were fractionated from pre- and post-LDL-apheresis plasmas of normotriglyceridemic FH subjects (n = 11) on regular LDL-apheresis (>2 years). Apheresis lowered both plasma apoE (−62%) and apoAI (−16%) levels, with preferential, genotype-independent reduction in apoE. The mass ratio of HDL2:HDL3 was lowered from ∼1:1 to 0.72:1 by apheresis, reflecting selective removal of HDL2 mass (80% of total HDL adsorbed). Pre-LDL-apheresis, HDL2 subpopulations were markedly enriched in apoE, consistent with ∼1 copy of apoE per 4 HDL particles. Large amounts (50-66%) of apoE-HDL were removed by apheresis, preferentially in the HDL2b subfraction (−50%); minor absolute amounts of apoE-HDL were removed from HDL3 subfractions. Furthermore, pre-β1-HDL particle levels were subnormal following removal (−53%) upon apheresis, suggesting that cellular cholesterol efflux may be defective in the immediate postapheresis period. In LDL-receptor (LDL-R) deficiency, LDL-apheresis may enhance flux through the reverse cholesterol transport pathway and equally attenuate potential biglycan-mediated deposition of apoE-HDL in the arterial matrix.  相似文献   

10.
The capacity of HDL to induce cell cholesterol efflux is considered one of its main antiatherogenic properties. Little is known about the impact of such HDL function on vascular physiology. We investigated the relationship between ABCA1-dependent serum cholesterol efflux capacity (CEC), an HDL functionality indicator, and pulse wave velocity (PWV), an indicator of arterial stiffness. Serum of 167 healthy subjects was used to conduct CEC measurement, and carotid-femoral PWV was measured with a high-fidelity tonometer. J774 macrophages, labeled with [3H]cholesterol and stimulated to express ABCA1, were exposed to sera; the difference between cholesterol efflux from stimulated and unstimulated cells provided specific ABCA1-mediated CEC. PWV is inversely correlated with ABCA1-dependent CEC (r = −0.183; P = 0.018). Moreover, controlling for age, sex, body mass index, mean arterial pressure, serum LDL, HDL-cholesterol, and fasting plasma glucose, PWV displays a significant negative regression on ABCA1-dependent CEC (β = −0.204; 95% confidence interval, −0.371 to −0.037). The finding that ABCA1-dependent CEC, but not serum HDL cholesterol level (r = −0.002; P = 0.985), is a significant predictor of PWV in healthy subjects points to the relevance of HDL function in vascular physiology and arterial stiffness prevention.  相似文献   

11.
Recently, we showed in APOE*3-Leiden cholesteryl ester transfer protein (E3L.CETP) mice that anacetrapib attenuated atherosclerosis development by reducing (V)LDL cholesterol [(V)LDL-C] rather than by raising HDL cholesterol. Here, we investigated the mechanism by which anacetrapib reduces (V)LDL-C and whether this effect was dependent on the inhibition of CETP. E3L.CETP mice were fed a Western-type diet alone or supplemented with anacetrapib (30 mg/kg body weight per day). Microarray analyses of livers revealed downregulation of the cholesterol biosynthesis pathway (P < 0.001) and predicted downregulation of pathways controlled by sterol regulatory element-binding proteins 1 and 2 (z-scores −2.56 and −2.90, respectively; both P < 0.001). These data suggest increased supply of cholesterol to the liver. We found that hepatic proprotein convertase subtilisin/kexin type 9 (Pcsk9) expression was decreased (−28%, P < 0.01), accompanied by decreased plasma PCSK9 levels (−47%, P < 0.001) and increased hepatic LDL receptor (LDLr) content (+64%, P < 0.01). Consistent with this, anacetrapib increased the clearance and hepatic uptake (+25%, P < 0.001) of [14C]cholesteryl oleate-labeled VLDL-mimicking particles. In E3L mice that do not express CETP, anacetrapib still decreased (V)LDL-C and plasma PCSK9 levels, indicating that these effects were independent of CETP inhibition. We conclude that anacetrapib reduces (V)LDL-C by two mechanisms: 1) inhibition of CETP activity, resulting in remodeled VLDL particles that are more susceptible to hepatic uptake; and 2) a CETP-independent reduction of plasma PCSK9 levels that has the potential to increase LDLr-mediated hepatic remnant clearance.  相似文献   

12.
The objective of this study was to establish the role of apoA-IV, ABCA1, and LCAT in the biogenesis of apoA-IV-containing HDL (HDL-A-IV) using different mouse models. Adenovirus-mediated gene transfer of apoA-IV in apoA-I−/− mice did not change plasma lipid levels. ApoA-IV floated in the HDL2/HDL3 region, promoted the formation of spherical HDL particles as determined by electron microscopy, and generated mostly α- and a few pre-β-like HDL subpopulations. Gene transfer of apoA-IV in apoA-I−/− × apoE−/− mice increased plasma cholesterol and triglyceride levels, and 80% of the protein was distributed in the VLDL/IDL/LDL region. This treatment likewise generated α- and pre-β-like HDL subpopulations. Spherical and α-migrating HDL particles were not detectable following gene transfer of apoA-IV in ABCA1−/− or LCAT−/− mice. Coexpression of apoA-IV and LCAT in apoA-I−/− mice restored the formation of HDL-A-IV. Lipid-free apoA-IV and reconstituted HDL-A-IV promoted ABCA1 and scavenger receptor BI (SR-BI)-mediated cholesterol efflux, respectively, as efficiently as apoA-I and apoE. Our findings are consistent with a novel function of apoA-IV in the biogenesis of discrete HDL-A-IV particles with the participation of ABCA1 and LCAT, and may explain previously reported anti-inflammatory and atheroprotective properties of apoA-IV.  相似文献   

13.
Inhibitors of HMG-CoA reductase (statins) are widely used medications for reduction of cholesterol levels. Statin use significantly reduces risk of cardiovascular disease but has also been associated with lower risk of other diseases and conditions, including dementia. However, some reports suggest that statins also have detrimental effects on the brain. We provide evidence that simvastatin and pravastatin have significantly different effects on expression of genes related to neurodegeneration in astrocytes and neuroblastoma (SK-N-SH) cells in culture. Simvastatin significantly reduced expression of ABCA1 in astrocytes and neuroblastoma cells (by 79% and 97%, respectively; both P < 0.001). Pravastatin had a similar but attenuated effect on ABCA1 in astrocytes (−54%, P < 0.001) and neuroblastoma cells (−70%, P < 0.001). Simvastatin reduced expression of apolipoprotein E in astrocytes (P < 0.01). Furthermore, both statins reduced expression of microtubule-associated protein tau in astrocytes (P < 0.01), while both statins increased its expression in neuroblastoma cells (P < 0.01). In SK-N-SH cells, simvastatin significantly increased cyclin-dependent kinase 5 and glycogen synthase kinase 3β expression, while pravastatin increased amyloid precursor protein expression. Our data suggest that simvastatin and pravastatin differentially affect expression of genes involved in neurodegeneration and that statin-dependent gene expression regulation is cell type specific.—Dong, W., S. Vuletic, and J. J. Albers. Differential effects of simvastatin and pravastatin on expression of Alzheimer’s disease-related genes in human astrocytes and neuronal cells.  相似文献   

14.
The anti-inflammatory potential of eight indigenous probiotic Lactobacillus isolates was evaluated in vitro in terms of modulating the expression of tumor necrosis factor-alpha (TNF-α) and interleukin-6 (IL-6) in human acute monocytic leukemia (THP-1) cells under inflammatory conditions. Amongst these, Lactobacillus plantarum Lp91 was the most potent anti-inflammatory strain as it evoked a significant (P < 0.001) down-regulation of TNF-α by −1.45-fold relative to the control in THP-1 cells. However, in terms of IL-6 expression, all the strains could up-regulate its expression considerably at different levels. Hence, based on in vitro expression of TNF-α, Lp91 was selected for in vivo study in lipopolysaccharide (LPS)-induced mouse model to look at the expression of TNF-α, IL-6, monocyte chemotactic protein-1 (MCP-1), vascular cell adhesion molecule-1 (VCAM-1), intercellular adhesion molecule (ICAM-1) and E-selectin in mouse aorta. In LPS challenged (2 h) mice group fed with Lp91 for 10 days, TNF-α, IL-6, MCP-1, VCAM-1, ICAM-1 and E-selectin expressions were significantly down-regulated by 3.10-, 10.02-, 4.22-, −3.14-, 2.28- and 5.71-fold relative to control conditions. In conclusion, Lp91 could serve as a candidate probiotic strain to explore it as a possible biotherapeutic anti-inflammatory agent against inflammatory diseases including cardiovascular disease.

Electronic supplementary material

The online version of this article (doi:10.1007/s12263-013-0347-5) contains supplementary material, which is available to authorized users.  相似文献   

15.
Weight-loss interventions generally improve lipid profiles and reduce cardiovascular disease risk, but effects are variable and may depend on genetic factors. We performed a genetic association analysis of data from 2,993 participants in the Diabetes Prevention Program to test the hypotheses that a genetic risk score (GRS) based on deleterious alleles at 32 lipid-associated single-nucleotide polymorphisms modifies the effects of lifestyle and/or metformin interventions on lipid levels and nuclear magnetic resonance (NMR) lipoprotein subfraction size and number. Twenty-three loci previously associated with fasting LDL-C, HDL-C, or triglycerides replicated (P = 0.04–1×10−17). Except for total HDL particles (r = −0.03, P = 0.26), all components of the lipid profile correlated with the GRS (partial |r| = 0.07–0.17, P = 5×10−5–1×10−19). The GRS was associated with higher baseline-adjusted 1-year LDL cholesterol levels (β = +0.87, SEE±0.22 mg/dl/allele, P = 8×10−5, P interaction = 0.02) in the lifestyle intervention group, but not in the placebo (β = +0.20, SEE±0.22 mg/dl/allele, P = 0.35) or metformin (β = −0.03, SEE±0.22 mg/dl/allele, P = 0.90; P interaction = 0.64) groups. Similarly, a higher GRS predicted a greater number of baseline-adjusted small LDL particles at 1 year in the lifestyle intervention arm (β = +0.30, SEE±0.012 ln nmol/L/allele, P = 0.01, P interaction = 0.01) but not in the placebo (β = −0.002, SEE±0.008 ln nmol/L/allele, P = 0.74) or metformin (β = +0.013, SEE±0.008 nmol/L/allele, P = 0.12; P interaction = 0.24) groups. Our findings suggest that a high genetic burden confers an adverse lipid profile and predicts attenuated response in LDL-C levels and small LDL particle number to dietary and physical activity interventions aimed at weight loss.  相似文献   

16.
High density lipoprotein cholesterol is thought to represent a preferred source of sterols secreted into bile following hepatic uptake by scavenger receptor class B type I (SR-BI). The present study aimed to determine the metabolic effects of an endothelial lipase (EL)–mediated stimulation of HDL cholesterol uptake on liver lipid metabolism and biliary cholesterol secretion in wild-type, SR-BI knockout, and SR-BI overexpressing mice. In each model, injection of an EL expressing adenovirus decreased plasma HDL cholesterol (P < 0.001) whereas hepatic cholesterol content increased (P < 0.05), translating into decreased expression of sterol-regulatory element binding protein 2 (SREBP2) and its target genes HMG-CoA reductase and LDL receptor (each P < 0.01). Biliary cholesterol secretion was dependent on hepatic SR-BI expression, being decreased in SR-BI knockouts (P < 0.001) and increased following hepatic SR-BI overexpression (P < 0.001). However, in each model, biliary secretion of cholesterol, bile acids, and phospholipids as well as fecal bile acid and neutral sterol content, remained unchanged in response to EL overexpression. Importantly, hepatic ABCG5/G8 expression did not correlate with biliary cholesterol secretion rates under these conditions. These results demonstrate that an acute decrease of plasma HDL cholesterol levels by overexpressing EL increases hepatic cholesterol content but leaves biliary sterol secretion unaltered. Instead, biliary cholesterol secretion rates are related to the hepatic expression level of SR-BI. These data stress the importance of SR-BI for biliary cholesterol secretion and might have relevance for concepts of reverse cholesterol transport.  相似文献   

17.
Androgens are important regulators of bone mass but the relative importance of testosterone (T) versus dihydrotestosterone (DHT) for the activation of the androgen receptor (AR) in bone is unknown. 5α-reductase is responsible for the irreversible conversion of T to the more potent AR activator DHT. There are two well established isoenzymes of 5α-reductase (type 1 and type 2), encoded by separate genes (Srd5a1 and Srd5a2). 5α-reductase type 2 is predominantly expressed in male reproductive tissues whereas 5α-reductase type 1 is highly expressed in liver and moderately expressed in several other tissues including bone. The aim of the present study was to investigate the role of 5α-reductase type 1 for bone mass using Srd5a1−/− mice. Four-month-old male Srd5a1 −/− mice had reduced trabecular bone mineral density (−36%, p<0.05) and cortical bone mineral content (−15%, p<0.05) but unchanged serum androgen levels compared with wild type (WT) mice. The cortical bone dimensions were reduced in the male Srd5a1 −/− mice as a result of a reduced cortical periosteal circumference compared with WT mice. T treatment increased the cortical periosteal circumference (p<0.05) in orchidectomized WT mice but not in orchidectomized Srd5a1 −/− mice. Male Srd5a1 −/− mice demonstrated a reduced forelimb muscle grip strength compared with WT mice (p<0.05). Female Srd5a1 −/− mice had slightly increased cortical bone mass associated with elevated circulating levels of androgens. In conclusion, 5α-reductase type 1 inactivated male mice have reduced bone mass and forelimb muscle grip strength and we propose that these effects are due to lack of 5α-reductase type 1 expression in bone and muscle. In contrast, the increased cortical bone mass in female Srd5a1 −/− mice, is an indirect effect mediated by elevated circulating androgen levels.  相似文献   

18.
Wu H  Qi Q  Yu Z  Sun L  Li H  Lin X 《PloS one》2010,5(10):e13316

Background

Few data have been published on the associations of ferritin with trunk and leg fat depots. We aimed to investigate these associations in a Chinese population.

Methodology

Trunk fat mass and leg fat mass were determined in a cross-sectional sample of 1,150 Chinese (479 men and 671 women) aged 50–70 years by dual-energy X-ray absorptiometry scan. Fasting plasma ferritin was measured.

Principal Findings

Plasma ferritin was positively correlated with waist circumference, waist-to-hip ratio, total body fat and trunk fat mass, but inversely correlated with leg fat mass in men (r = 0.16, 0.26, 0.19, 0.22 and −0.12, respectively, all P<0.05) and women (r = 0.16, 0.16, 0.08, 0.17 and −0.12, respectively, all P<0.05). Multivariate regression analysis showed that ferritin levels increased with larger trunk fat mass (β = 0.33 ± 0.08 for men and β = 0.21 ± 0.05 for women, both P<0.001) while decreased with larger leg fat mass (β = −0.12 ± 0.09, P = 0.15 for men; and β = −0.14 ± 0.05, P = 0.005 for women). Moreover, plasma ferritin levels decreased with increasing tertile of leg fat mass among each tertile of trunk fat mass.

Conclusion

This is the first study to report the opposite associations of trunk and leg fat depots with plasma ferritin levels.  相似文献   

19.
Apolipoprotein A-I (apoA-I) Nichinan, a naturally occurring variant with ΔE235 in the C terminus, is associated with low plasma HDL levels. Here, we investigated the tertiary structure, lipid-binding properties, and ability to induce cellular cholesterol efflux of apoA-I Nichinan and its C-terminal peptide. Thermal and chemical denaturation experiments demonstrated that the ΔE235 mutation decreased the protein stability compared with wild type (WT). ApoA-I Nichinan exhibited capabilities to bind to or solubilize lipid vesicles that are intermediate to that of WT and a L230P/L233P/Y236P variant in which the C-terminal α-helix folding is completely disrupted and forms relatively larger and unstable discoidal complexes, indicating that perturbation of the C-terminal α-helical structure by the ΔE235 mutation leads to reduced lipid binding. Supporting this, apoA-I 209-241/ΔE235 peptide showed significantly decreased ability to form α-helix both in the lipid-free and lipid-bound states, and reduced efficiency to solubilize vesicles. In addition, both apoA-I Nichinan and its C-terminal peptide exhibited reduced activity in ABCA1-mediated cellular cholesterol efflux. Thus, the disruption of the ability of the C-terminal region to form α-helix caused by the E235 deletion appears to be the important determinant of impaired lipid binding and cholesterol efflux ability and, consequently, the low plasma HDL levels of apoA-I Nichinan probands.  相似文献   

20.

Aim

ABCA1 protects against atherosclerosis by facilitating cholesterol efflux from macrophage foam cells in the arterial wall to extracellular apolipoprotein (apo) A-I. In contrast to apoA-I, apoE is secreted by macrophages and can, like apoA-I, induce ABCA1-mediated cholesterol efflux. Yet, the combined effect of macrophage ABCA1 and apoE on lesion development is unexplored.

Methods and Results

LDL receptor knockout (KO) mice were transplanted with bone marrow from ABCA1/apoE double KO (dKO) mice, their respective single KO''s, and wild-type (WT) controls and were challenged with a high-fat/high-cholesterol diet for 9 weeks. In vitro cholesterol efflux experiments showed no differences between ABCA1 KO and dKO macrophages. The serum non-HDL/HDL ratio in dKO transplanted mice was 1.7-fold and 2.4-fold (p<0.01) increased compared to WT and ABCA1 KO transplanted mice, respectively. The atherosclerotic lesion area in dKO transplanted animals (650±94×103 µm2), however, was 1.9-fold (p<0.01) and 1.6-fold (p<0.01) increased compared to single knockouts (ABCA1 KO: 341±20×103 µm2; apoE KO: 402±78×103 µm2, respectively) and 3.1-fold increased (p<0.001) compared to WT (211±20×103 µm2). When normalized for serum cholesterol exposure, macrophage ABCA1 and apoE independently protected against atherosclerotic lesion development (p<0.001). Moreover, hepatic expression levels of TNFα and IL-6 were highly induced in dKO transplanted animals (3.0-fold; p<0.05, and 4.3-fold; p<0.001, respectively). In agreement, serum IL-6 levels were also enhanced in ABCA1 KO transplanted mice (p<0.05) and even further enhanced in dKO transplanted animals (3.1-fold as compared to ABCA1 KO transplanted animals; p<0.05).

Conclusions

Combined deletion of macrophage ABCA1 and apoE results in a defect in cholesterol efflux and, compared to ABCA1 KO transplanted mice, elevated serum total cholesterol levels. Importantly, these mice also suffer from enhanced systemic and hepatic inflammation, together resulting in the observed augmented atherosclerotic lesion development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号