首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Toxin-based identification procedures are useful for differentiating Pseudomonas syringae pathovars. A biological test on peptone-glucose-NaCl agar in which the yeast Rhodotorula pilimanae was used proved to be more reliable for detecting lipodepsipeptide-producing strains of P. syringae than the more usual test on potato dextrose agar in which Geotrichum candidum is used. A PCR test performed with primers designed to amplify a 1,040-bp fragment in the coding sequence of the syrD gene, which was assumed to be involved in syringomycin and syringopeptin secretion, efficiently detected the gene in pathovars that produce the lipodepsipeptides. Comparable results were obtained in both tests performed with strains of the syringomycin-producing organisms P. syringae pv. syringae, P. syringae pv. atrofaciens, and P. syringae pv. aptata, but the PCR test failed with a syringotoxin-producing Pseudomonas fuscovaginae strain. The specificity of the test was verified by obtaining negative PCR test results for related pathovars or species that do not produce the toxic lipodepsipeptides. P. syringae pv. syringae was detected repeatedly in liquid medium inoculated with diseased vegetative tissue and assayed by the PCR test. Our procedure was also adapted to detect P. syringae pv. morsprunorum with a cfl gene-based PCR test.  相似文献   

2.
The rulAB locus confers tolerance to UV radiation and is borne on plasmids of the pPT23A family in Pseudomonas syringae. We sequenced 14 rulA alleles from P. syringae strains representing seven pathovars and found sequence differences of 1 to 12% within pathovar syringae, and up to 15% differences between pathovars. Since the sequence variation within rulA was similar to that of P. syringae chromosomal alleles, we hypothesized that rulAB has evolved over a long time period in P. syringae. A phylogenetic analysis of the deduced amino acid sequences of rulA resulted in seven clusters. Strains from the same plant host grouped together in three cases; however, strains from different pathovars grouped together in two cases. In particular, the rulA alleles from P. syringae pv. lachrymans and P. syringae pv. pisi were grouped but were clearly distinct from the other sequenced alleles, suggesting the possibility of a recent interpathovar transfer. We constructed chimeric rulAB expression clones and found that the observed sequence differences resulted in significant differences in UV (wavelength) radiation sensitivity. Our results suggest that specific amino acid changes in RulA could alter UV radiation tolerance and the competitiveness of the P. syringae host in the phyllosphere.  相似文献   

3.
The leaf colonization strategies of two bacterial strains were investigated. The foliar pathogen Pseudomonas syringae pv. syringae strain B728a and the nonpathogen Pantoea agglomerans strain BRT98 were marked with a green fluorescent protein, and surface (epiphytic) and subsurface (endophytic) sites of bean and maize leaves in the laboratory and the field were monitored to see if populations of these strains developed. The populations were monitored using both fluorescence microscopy and counts of culturable cells recovered from nonsterilized and surface-sterilized leaves. The P. agglomerans strain exclusively colonized epiphytic sites on the two plant species. Under favorable conditions, the P. agglomerans strain formed aggregates that often extended over multiple epidermal cells. The P. syringae pv. syringae strain established epiphytic and endophytic populations on asymptomatic leaves of the two plant species in the field, with most of the P. syringae pv. syringae B728a cells remaining in epiphytic sites of the maize leaves and an increasing number occupying endophytic sites of the bean leaves in the 15-day monitoring period. The epiphytic P. syringae pv. syringae B728a populations appeared to originate primarily from multiplication in surface sites rather than from the movement of cells from subsurface to surface sites. The endophytic P. syringae pv. syringae B728a populations appeared to originate primarily from inward movement through the stomata, with higher levels of multiplication occurring in bean than in maize. A rainstorm involving a high raindrop momentum was associated with rapid growth of the P. agglomerans strain on both plant species and with rapid growth of both the epiphytic and endophytic populations of the P. syringae pv. syringae strain on bean but not with growth of the P. syringae pv. syringae strain on maize. These results demonstrate that the two bacterial strains employed distinct colonization strategies and that the epiphytic and endophytic population dynamics of the pathogenic P. syringae pv. syringae strain were dependent on the plant species, whereas those of the nonpathogenic P. agglomerans strain were not.  相似文献   

4.
The production of peptide siderophores and the variation in siderophore production among strains of Pseudomonas syringae and Pseudomonas viridiflava were investigated. An antibiose test was used to select a free amino acid-containing agar medium favorable for production of fluorescent siderophores by two P. syringae strains. A culture technique in which both liquid and solid asparagine-containing culture media were used proved to be reproducible and highly effective for inducing production of siderophores in a liquid medium by the fluorescent Pseudomonas strains investigated. Using asparagine as a carbon source appeared to favor siderophore production, and relatively high levels of siderophores were produced when certain amino acids were used as the sole carbon and energy sources. Purified chelated siderophores of strains of P. syringae pv. syringae, P. syringae pv. aptata, P. syringae pv. morsprunorum, P. syringae pv. tomato, and P. viridiflava had the same amino acid composition and spectral characteristics and were indiscriminately used by these strains. In addition, nonfluorescent strains of P. syringae pv. aptata and P. syringae pv. morsprunorum were able to use the siderophores in biological tests. Our results confirmed the proximity of P. syringae and P. viridiflava; siderotyping between pathovars of P. syringae was not possible. We found that the spectral characteristics of the chelated peptide siderophores were different from the spectral characteristics of typical pyoverdins. Our results are discussed in relation to the ecology of the organisms and the conditions encountered on plant surfaces.  相似文献   

5.
6.
In this study, Pseudomonas syringe pathovars isolated from olive, tomato and bean were identified by species-specific PCR and their genetic diversity was assessed by repetitive extragenic palindromic (REP)-PCR. Reverse universal primers for REP-PCR were designed by using the bases of A, T, G or C at the positions of 1, 4 and 11 to identify additional polymorphism in the banding patterns. Binding of the primers to different annealing sites in the genome revealed additional fingerprint patterns in eight isolates of P. savastanoi pv. savastanoi and two isolates of P. syringae pv. tomato. The use of four different bases in the primer sequences did not affect the PCR reproducibility and was very efficient in revealing intra-pathovar diversity, particularly in P. savastanoi pv. savastanoi. At the pathovar level, the primer BOX1AR yielded shared fragments, in addition to five bands that discriminated among the pathovars P. syringae pv. phaseolicola, P. savastanoi pv. savastanoi and P. syringae pv. tomato. REP-PCR with a modified primer containing C produced identical bands among the isolates in a pathovar but separated three pathovars more distinctly than four other primers. Although REP- and BOX-PCRs have been successfully used in the molecular identification of Pseudomonas isolates from Turkish flora, a PCR based on inter-enterobacterial repetitive intergenic concensus (ERIC) sequences failed to produce clear banding patterns in this study.  相似文献   

7.
Pseudomonas syringae is a plant pathogen whose pathogenicity and host specificity are thought to be determined by Hop/Avr effector proteins injected into plant cells by a type III secretion system. P. syringae pv. syringae B728a, which causes brown spot of bean, is a particularly well-studied strain. The type III secretion system in P. syringae is encoded by hrp (hypersensitive response and pathogenicity) and hrc (hrp conserved) genes, which are clustered in a pathogenicity island with a tripartite structure such that the hrp/hrc genes are flanked by a conserved effector locus and an exchangeable effector locus (EEL). The EELs of P. syringae pv. syringae B728a, P. syringae strain 61, and P. syringae pv. tomato DC3000 differ in size and effector gene composition; the EEL of P. syringae pv. syringae B728a is the largest and most complex. The three putative effector proteins encoded by the P. syringae pv. syringae B728a EEL--HopPsyC, HopPsyE, and HopPsyV--were demonstrated to be secreted in an Hrp-dependent manner in culture. Heterologous expression of hopPsyC, hopPsyE, and hopPsyV in P. syringae pv. tabaci induced the hypersensitive response in tobacco leaves, demonstrating avirulence activity in a nonhost plant. Deletion of the P. syringae pv. syringae B728a EEL strongly reduced virulence in host bean leaves. EELs from nine additional strains representing nine P. syringae pathovars were isolated and sequenced. Homologs of avrPphE (e.g., hopPsyE) and hopPsyA were particularly common. Comparative analyses of these effector genes and hrpK (which flanks the EEL) suggest that the EEL effector genes were acquired by horizontal transfer after the acquisition of the hrp/hrc gene cluster but before the divergence of modern pathovars and that some EELs underwent transpositions yielding effector exchanges or point mutations producing effector pseudogenes after their acquisition.  相似文献   

8.
The lemA gene is conserved among strains and pathovars of Pseudomonas syringae. In P. syringae pv. syringae B728a, a causal agent of bacterial brown spot disese of bean, the lemA gene is required for lesion formation on leaves and pods. Using lemA-containing DNA as a probe, we determined that 80 P. syringae pv. syringae strains isolated from bean leaves could be grouped into seven classes based on restriction fragment length polymorphism. Marker exchange mutagenesis showed that the lemA gene was required for lesion formation by representative strains from each restriction fragment length polymorphism class. Hybridization to the lemA locus was detected within six different P. syringae pathovars and within Pseudomonas aeruginosa. Interestingly, a lemA homolog was present and functional within the nonpathogenic strain P. syringae Cit7. We cloned a lemA homolog from a genomic library of P. syringae pv. phaseolicola NPS3121, a causal agent of halo blight of bean, that restored lesion formation to a P. syringae pv. syringae lemA mutant. However, a lemA mutant P. syringae pv. phaseolicola strain retained the ability to produce halo blight disease symptoms on bean plants. Therefore, the lemA gene played an essential role in disease lesion formation by P. syringae pv. syringae isolates, but was not required for pathogenicity of a P. syringae pv. phaseolicola strain.  相似文献   

9.
Ribotyping was evaluated as a method to differentiate between Pseudomonas syringae pv. phaseolicola and pv. syringae strains causing bacterial brown spot and halo blight diseases in Phaseolus vulgaris L. Ribotyping, with restriction enzymes BglI and SalI and using the Escherichia coli rrnB operon as the probe, differentiated 11 and 14 ribotypes, respectively, and a combination of data from both procedures yielded 19 combined ribotypes. Cluster analysis of the combined ribotypes differentiated the pathovars phaseolicola and syringae, as well as different clonal lineages within these pathovars. The potential of ribotyping to screen for correlations between lineages and factors such as geographical region and/or bean varieties is also reported.  相似文献   

10.
The effect of the plasmid-encoded rulAB (resistance to ultraviolet radiation) determinant on responses of Pseudomonas syringae to ultraviolet-B (UV-B) radiation and the distribution of rulAB among pathovars of P. syringae were determined. The cloned rulAB determinant and the native rulAB + plasmid pPSR1 both conferred approximately a 10-fold increase in survival on P. syringae pv. syringae FF5 following increasing doses of UV-B radiation. rulAB + P. syringae strains also maintained significantly larger epiphytic populations on leaf surfaces irradiated with UV-B. rulAB -insertional mutants, constructed in two native rulAB + strains, were from 10- to 100-fold more sensitive to UV-B radiation. The UV tolerance phenotype and the rulAB genes were widely distributed among P. syringae pathovars isolated from varied plant hosts throughout the world and within a broad range of genotypic backgrounds of P. syringae pv. syringae. With one exception, the rulAB determinant was harboured on pPT23A-like plasmids; these replicons are indigenous residents of the species P. syringae and also tend to encode determinants of importance in host–pathogen interactions.  相似文献   

11.
A bacterial leaf streak disease characterized by reddish, narrow (1–2 mm wide) streaks of variable size, and occasionally with bleached centers, was found in sugarcane (Saccharum, interspecific hybrid) fields in northern Iran. The incitant bacterium was identified as Pseudomonas syringae pv. syringae (P. s. syringae). The disease is similar in aetiology to the sugarcane ‘red streak’ disease reported recently from Japan. Cultivardependent variations in symptoms were noted., Difference in pathogenicity as well as in electrophoretic profile of cell proteins between strains of P.s. syringae causing red streak in sugarcane and those causing canker on stone fruit trees, were observed.  相似文献   

12.
Osmoregulated periplasmic glucans (OPGs) are intrinsic components of the Gram-negative bacterial envelope and are important for bacterial-host interactions. The OPGs of Pseudomonas syringae pv. syringae have been known to be highly branched linear glucans ranging from 6 to 13 glucose residues devoid of any substituents, while having backbone structure similar to those of Escherichia coli and Erwinia chrysanthemi. Here, we report for the first time succinylated and large-sized OPGs from P. syringae pv. syringae. The glucans were isolated with trichloroacetic acid treatment and various chromatographic techniques. These were further characterized by thin-layer chromatography, matrix-assisted laser desorption/ionization time of flight mass spectrometer, and 1D 1H nuclear magnetic resonance spectroscopy. The results demonstrate that novel anionic glucans with one succinyl residue at the C-6 position of the glucose unit as well as neutral glucans including large-sized glucans with up to 28 degrees of polymerization are produced in P. syringae pv. syringae. Furthermore, the succinylated and large-sized OPGs of P. syringae pv. syringae are necessary for hypoosmotic adaptation.  相似文献   

13.
The molecular basis underlying the ability of pathogens to infect certain plant species and not others is largely unknown. Pseudomonas syringae is a useful model species for investigating this phenomenon because it comprises more than 50 pathovars which have narrow host range specificities. Tomato (Solanum lycopersicum) is a host for P. syringae pv. tomato, the causative agent of bacterial speck disease, but is considered a nonhost for other P. syringae pathovars. Host resistance in tomato to bacterial speck disease is conferred by the Pto protein kinase which acts in concert with the Prf nucleotide-binding lucine-rich repeat protein to recognize P. syringae pv. tomato strains expressing the type III effectors AvrPto or AvrPtoB (HopAB2). The Pto and Prf genes were isolated from the wild tomato species S. pimpinellifolium and functional alleles of both of these genes now are known to exist in many species of tomato and in other Solanaceous species. Here, we extend earlier reports that avrPto and avrPtoB genes are widely distributed among pathovars of P. syringae which are considered nonhost pathogens of tomato. This observation prompted us to examine the possibility that recognition of these type III effectors by Pto or Prf might contribute to the inability of many P. syringae pathovars to infect tomato species. We show that 10 strains from presumed nonhost P. syringae pathovars are able to grow and cause pathovar-unique disease symptoms in tomato leaves lacking Pto or Prf, although they did not reach the population levels or cause symptoms as severe as a control P. syringae pv. tomato strain. Seven of these strains were found to express avrPto or avrPtoB. The AvrPto- and AvrPtoB-expressing strains elicited disease resistance on tomato leaves expressing Pto and Prf. Thus, a gene-for-gene recognition event may contribute to host range restriction of many P. syringae pathovars on tomato species. Furthermore, we conclude that the diverse disease symptoms caused by different Pseudomonas pathogens on their normal plant hosts are due largely to the array of virulence factors expressed by each pathovar and not to specific molecular or morphological attributes of the plant host.  相似文献   

14.
The genome sequence of more than 100 Pseudomonas syringae strains has been sequenced to date; however only few of them have been fully assembled, including P. syringae pv. syringae B728a. Different strains of pv. syringae cause different diseases and have different host specificities; so, UMAF0158 is a P. syringae pv. syringae strain related to B728a but instead of being a bean pathogen it causes apical necrosis of mango trees, and the two strains belong to different phylotypes of pv.syringae and clades of P. syringae. In this study we report the complete sequence and annotation of P. syringae pv. syringae UMAF0158 chromosome and plasmid pPSS158. A comparative analysis with the available sequenced genomes of other 25 P. syringae strains, both closed (the reference genomes DC3000, 1448A and B728a) and draft genomes was performed. The 5.8 Mb UMAF0158 chromosome has 59.3% GC content and comprises 5017 predicted protein-coding genes. Bioinformatics analysis revealed the presence of genes potentially implicated in the virulence and epiphytic fitness of this strain. We identified several genetic features, which are absent in B728a, that may explain the ability of UMAF0158 to colonize and infect mango trees: the mangotoxin biosynthetic operon mbo, a gene cluster for cellulose production, two different type III and two type VI secretion systems, and a particular T3SS effector repertoire. A mutant strain defective in the rhizobial-like T3SS Rhc showed no differences compared to wild-type during its interaction with host and non-host plants and worms. Here we report the first complete sequence of the chromosome of a pv. syringae strain pathogenic to a woody plant host. Our data also shed light on the genetic factors that possibly determine the pathogenic and epiphytic lifestyle of UMAF0158. This work provides the basis for further analysis on specific mechanisms that enable this strain to infect woody plants and for the functional analysis of host specificity in the P. syringae complex.  相似文献   

15.
Significant amounts of ethylene were produced by Pseudomonas syringae pv. glycinea, pv. phaseolicola (which had been isolated from viny weed Pueraria lobata [Willd.] Ohwi [common name, kudzu]), and pv. pisi in synthetic medium. On the other hand, the bean strains of P. syringae pv. phaseolicola and strains of 17 other pathovars did not produce ethylene. P. syringae pv. glycinea and P. syringae pv. phaseolicola produced nearly identical levels of ethylene (about 5 x 10(sup-7) nl h(sup-1) cell(sup-1)), which were about 10 times higher than the ethylene level of P. syringae pv. pisi. Two 22-bp oligonucleotide primers derived from the ethylene-forming enzyme (efe) gene of P. syringae pv. phaseolicola PK2 were investigated for their ability to detect ethylene-producing P. syringae strains by PCR analysis. PCR amplification with this primer set resulted in a specific 0.99-kb fragment in all ethylene-producing strains with the exception of the P. syringae pv. pisi strains. Therefore, P. syringae pv. pisi may use a different biosynthetic pathway for ethylene production or the sequence of the efe gene is less conserved in this bacterium. P. syringae pv. phaseolicola isolated from kudzu and P. syringae pv. glycinea also produced ethylene in planta. It could be shown that the enhanced ethylene production in diseased tissue was due to the production of ethylene by the inoculated bacteria. Ethylene production in vitro and in planta was strictly growth associated.  相似文献   

16.
17.
From 33 Iranian fluorescent Pseudomonas isolates originating from symptomatic tissues of peach (Prunus persica), plum (Prunus domestica), sweet (Prunus avium) and sour cherry (Prunus cerasus), 27 were identified as Pseudomonas syringae using LOPAT tests. Further characterization of those isolates by GATTa and L‐lactate utilization tests and the detection of syringomycin and coronatine and yersiniabactin coding genes showed that five of them belonged to race 1 and four to race 2 of P. syringae pv. morsprunorum (Psm) and eighteen other isolates were identified as P. syringae pv. syringae (Pss). Based on the analysis of the fingerprint patterns generated by REP, ERIC and BOX‐PCR, the strains were differentiated into three main groups at the 67% similarity level. Strains of the groups 1, 2 and 3 belong to Psm race 1, Psm race 2 and Pss, respectively. Rep‐PCR analysis showed high intra‐pathovar variation within the Pss isolates, which grouped into four distinct clusters. Using the REP primers, the percentage of polymorphic loci was 74.61%, whereas with BOX and ERIC primers, it was 60.5 and 55.21%, respectively. Finally, this study is the first report of the isolation of P. syringae pv. morsprunorum race 1 and 2 strains from stone fruit trees in Iran.  相似文献   

18.
Pseudomonas syringae pv. actinidiae is a reemerging pathogen which causes bacterial canker of kiwifruit (Actinidia sp.). Since 2008, a global outbreak of P. syringae pv. actinidiae has occurred, and in 2010 this pathogen was detected in New Zealand. The economic impact and the development of resistance in P. syringae pv. actinidiae and other pathovars against antibiotics and copper sprays have led to a search for alternative management strategies. We isolated 275 phages, 258 of which were active against P. syringae pv. actinidiae. Extensive host range testing on P. syringae pv. actinidiae, other pseudomonads, and bacteria isolated from kiwifruit orchards showed that most phages have a narrow host range. Twenty-four were analyzed by electron microscopy, pulse-field gel electrophoresis, and restriction digestion. Their suitability for biocontrol was tested by assessing stability and the absence of lysogeny and transduction. A detailed host range was performed, phage-resistant bacteria were isolated, and resistance to other phages was examined. The phages belonged to the Caudovirales and were analyzed based on morphology and genome size, which showed them to be representatives of Myoviridae, Podoviridae, and Siphoviridae. Twenty-one Myoviridae members have similar morphologies and genome sizes yet differ in restriction patterns, host range, and resistance, indicating a closely related group. Nine of these Myoviridae members were sequenced, and each was unique. The most closely related sequenced phages were a group infecting Pseudomonas aeruginosa and characterized by phages JG004 and PAK_P1. In summary, this study reports the isolation and characterization of P. syringae pv. actinidiae phages and provides a framework for the intelligent formulation of phage biocontrol agents against kiwifruit bacterial canker.  相似文献   

19.
Production of the chlorosis-inducing phytotoxin coronatine in the Pseudomonas syringae pathovars atropurpurea, glycinea, maculicola, morsprunorum, and tomato has been previously reported. DNA hybridization studies previously indicated that the coronatine biosynthetic gene cluster is highly conserved among P. syringae strains which produce the toxin. In the present study, two 17-bp oligonucleotide primers derived from the coronatine biosynthetic gene cluster of P. syringae pv. glycinea PG4180 were investigated for their ability to detect coronatine-producing P. syringae strains by PCR analysis. The primer set amplified diagnostic 0.65-kb PCR products from genomic DNAs of five different coronatine-producing pathovars of P. syringae. The 0.65-kb products were not detected when PCR experiments utilized nucleic acids of nonproducers of coronatine or those of bacteria not previously investigated for coronatine production. When the 0.65-kb PCR products were digested with ClaI, PstI, and SmaI, fragments of identical size were obtained for the five different pathovars of P. syringae. A restriction fragment length polymorphism was detected in the amplified region of P. syringae pv. atropurpurea, since this pathovar lacked a conserved PvuI site which was detected in the PCR products of the other four pathovars. The 0.65-kb PCR products from six strains comprising five different pathovars of P. syringae were cloned and sequenced. The PCR products from two different P. syringae pv. glycinea strains contained identical DNA sequences, and these showed relatedness to the sequence obtained for the pathovar morsprunorum. The PCR products obtained from the pathovars maculicola and tomato were the most similar to each other, which supports the hypothesis that these two pathovars are closely related.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
Pseudomonas syringae pv. tomato, the causal agent for bacterial speck of tomato, produces the phytotoxin coronatine. A 5.3-kilobase XhoI fragment from the chromosomal region controlling toxin production was cloned into the plasmid pGB2, and the resulting recombinant plasmid, pTPR1, was tested for its ability to serve as a diagnostic probe for P. syringae pv. tomato. In a survey of 75 plant-associated bacteria, pTPR1 hybridized exclusively to those strains that produced coronatine. The detection limit for this probe, which was labeled with the Chemiprobe nonradioactive reporter system, was approximately 4 × 103 CFU of lesion bacteria. During the 1989 growing season, a total of 258 leaf and fruit lesions from nine tomato fields were screened for P. syringae pv. tomato by using pTPR1 and the culture method of detection. The best agreement between the two methods, 90%, occurred early in the season with samples taken from relatively young (5-week-old) plants. Young plants also had a higher percentage of P. syringae pv. tomato-positive lesions. P. syringae pv. tomato was the only coronatine producer recovered from the nine tomato fields. All 244 P. syringae pv. tomato strains isolated during this study reacted strongly with the probe. The P. syringae pv. tomato population of healthy field tomato leaves was determined by a pTPR1 colony hybridization procedure. Every probe-positive colony that was isolated and characterized was identified as P. syringae pv. tomato. The pTPR1 probe should expedite disease diagnosis and facilitate epidemiological studies of this pathogen. It also should aid in screening transplant seedlings for bacterial speck infestation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号