首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Zusammenfassung An Hand der Erkenntnisse, die aus der elektronenmikroskopischen Untersuchung der Blattepidermis vonPenstemon barbatus gewonnen wurden, wird die Anordnung, der Bau und die Feinstruktur der zweierlei Eiweißkörper in den Zellkernen geschildert.Der eine Körper liegt meist als unvollkommen kristallisiertes, ± kugelförmiges Gebilde oder als polyedrischer Kristall vor und steht mit dem Nukleolus in enger räumlicher Beziehung.Der andere Körper tritt als Stapel von 800 bis 1000 parallel zueinander angeordneter Lamellen auf. Die Einzellamelle ist 70 Å dick und der Abstand der Lamellen voneinander beträgt 70 bis 80 Å. Die Kristallbildung erfolgt in diesem Fall nicht simultan, sondern sukzedan.Beide Körper befinden sich frei eingebettet in die Kerngrundsubstanz; eine Abgrenzung durch eine Membran ist also nicht vorhanden.Der Vergleich mit anderen Pflanzenarten lehrt, daß die Frage nach der Herkunft dieser Eiweißkörper noch nicht eindeutig gelöst ist.
Summary The two protein bodies in the nuclei of the epidermal cells ofPenstemon barbatus were investigated with the electron microscope.One of them is located in the center of the nucleus and is in close contact with the nucleolus. It is present either in a not completly crystallized spherical form or as a polyhedron-like crystal.The other one forms a pile of 800 to 1000 lamellae. They are arranged parallel with an interspace of 70 to 80 Å. The thickness of one lamella is 70 Å. In this case the crystallization takes place successively.Both protein bodies are embedded freely in the karyolymph that is without a surrounding membran.The question about the origin of these protein crystals is still not completely solved.
  相似文献   

2.
Zusammenfassung Der Periplast der begeißelten Trypanosomen (Trypanosoma Cruzi) und der Leishmaniaform besteht aus einer 130 Å dicken, dreigeschichteten Membran und den unmittelbar daruntergelegenen Fibrillen. Jede der beiden osmiophilen Membranschichten des Periplasten ist 45 Å dick; die osmiophobe Mittelschicht mißt 40 Å. Die Fibrillen sind 200–210 Å dick und liegen als wandverstärkende Röhrchen unmittelbar an der Innenfläche der Hüllmembran. Der helle röhrenförmige Innenraum der Fibrillen hat einen Querdurchmesser von 90–100 Å. Der seitliche Abstand der Fibrillen mißt etwa 320 Å.Der Blepharoplast ist ein etwas gekrümmter, scheibenförmiger Körper mit einem Längsdurchmesser von 0,75–1,35 und einem Querdurchmesser von 0,2–0,3 . Er liegt gemeinsam mit dem Basalkörperchen an der Geißelbasis. Der Blepharoplast gibt eine positive Feulgen-Nuklealreaktion und enthält Desoxyribonukleinsäure. Elektronenmikroskopisch finden sich im Innern des Blepharoplasten helixförmig angeordnete 125 Å dicke Fibrillen, die einen 35 Å im Querdurchmesser messenden helleren Innenraum aufweisen. Die Hülle des Blepharoplasten besteht aus einer mitochondrienähnlichen Doppelmembran, die an einigen Stellen auch Cristae bildet. An der zur Geißelbasis gerichteten Oberfläche des Blepharoplasten kommen knospenförmige und länglich ausgezogene mitochondrienähnliche Fortsätze vor, von denen wir vermuten, daß sie Mitochondrien nach Abschnürung vom Blepharoplasten darstellen. In diesen Fortsätzen finden sich zahlreiche Innenmembranen, die manchmal stark ineinander verzahnt sind. Offenbar werden sie von der Hüllmembran des Blepharoplasten gebildet. Es wird angenommen, daß der Blepharoplast ein mit Desoxyribonukleinsäure und Lipoproteinen, möglicherweise auch mit Atmungsfermenten besonders ausgestattetes Zellorganell ist, das sich zu teilen vermag, den Zellkern und die Zellteilung beeinflußt sowie produktiv an der Bildung der Mitochondrien beteiligt ist.Die Zellteilung der Parasiten beginnt mit einer Bildung von Tochterkörperchen durch die Basalkörperchen und der Ausbildung einer zweiten Geißel. Die Filamente der zweiten Geißel werden im Zytoplasma der Mutterzelle gebildet. Danach teilt sich der Blepharoplast quer zur Längsachse. Der Blepharoplast ist vor der Teilung etwa 1,35 lang und schwalbenförmig. Nach der Querteilung des Blepharoplasten erfolgt erst die Kernteilung und die Längsteilung des Zytoplasmas.Die Befunde wurden auf der 28. Tagung der Deutschen Gesellschaft für Hygiene und Mikrobiologie in Düsseldorf am 2. 5. 1961 von H. Schulz vorgetragen.  相似文献   

3.
Zusammenfassung Die Variatonsbreite der Merkmale von vegetativen Zellen und von Gametangien ist beiChl. suboogama größer als es nach früheren Untersuchungen schien.Vegetative Zellen können ellipsoidische, eiförmige oder zylindrische Gestalt haben.—Die Oberfläche des Chromatophors herangewachsener vegetativer Zellen ist durch kurze, längs verlaufende Rippen gegliedert.Außer in Gruppen von drei Makrogametangien und einem Spermatogon (was die Regel bildet) bzw. einem Makrogametangien und einem Spermatogon, können die Gametangien auch isoliert vorkommen; sie sind dann relativ groß und entstehen höchstwahrscheinlich durch direkte Umwandlung aus einer Gametangienmutterzelle. In den großen Spermatogonen entsthen 16 oder 32 Spermein (sonst 4 oder 8).Die frisch entleerten Spermein besitzen eine Wand. Diese wird—früher oder später—vor der Befruchtung abgestreift.An den Makrogameten, jungen Zygoten sowie an den mitunger stellenweise abgehobenen Protoplasten vegetativer Zellen ist ein hyaliner Saum ausgebildet, dessen Natur sich nicht klären ließ.Der Entwicklungsgang der Gametangien und Gameten ist tagezeitlich gebunden. Unter den Beleuchtungs-und Temperaturverhältnissen, wie sie in der ersten Hälfte Mai herrschen, zerlegen sich die Gametangienmutterzellen in den Nachmittags-und Nachtstungen in vier Tochterzellen; diese reifen am folgenden Vormittag zu drei Makrogametangien und einem spermatogon heran und entlassen die Hauptmasse der Gameten in den Mittagsstunden.Mit 5 Textabbildungen  相似文献   

4.
Georg Pandazis 《Zoomorphology》1930,18(1-2):114-169
Zusammenfassung Obwohl die Gehirne der verschiedenen Ameisenarten im Prinzip gleichartig gebaut sind, so zeigen doch die einzelnen Gehirnteile Unterschiede in ihren Größenverhältnissen. Die Ausbildung der verschiedenen Gehirnzentren ist von der Lebensweise abhängig; während die primären Sinneszentren von dieser direkt in ihrer Entwicklung beeinflußt werden, ist these Abhängigkeit bei den gssoziativen Zentren eine indirekte.Die relative Größe der Corpora pedunculata rimmt bei steigender Höhe der Instinktbetätigung zu, these Gebilde scheinen also wirklich ein Zentrum höherer psychischer Funktionen zu sein.Von den drei Kasten des Ameisenstaates besitzen die M ännehen die kleinsten pilzförmigen Körper, die Arbeiterinnen die größten, während die Weibchen eine Mittelstellung einnehmen.Bei polymorphen Arten besitzen die mittelgroßen Arbeiterinnen die bestentwickelten Corpora pedunculata, während Makrergaten und Mikrer-gaten eine geringere Ausbildung dieser Zentren aufweisen. Die Soldaten haben stets kleinere pilzförmige Körper als die Arbeiterinnen.  相似文献   

5.
Zusammenfassung Es wurde das Auge der Süßwasserturbellarien Dugesia lugubris und Dendrocoelum lacteum mit dem Elektronenmikroskop untersucht. Im Feinbau stimmen die Augen beider Arten im wesentlichen überein. Das eigentliche Auge besteht aus dem Pigmentbecher und den zur Photorezeption differenzierten Nervenendigungen der bipolaren Sehzellen, den sog. Sehkolben. Das Cytoplasma der Pigmentzellen wird von durchschnittlich 1 großen kugeligen, mehr oder weniger homogenen Pigmentkörnchen erfüllt. Der Zellkern liegt in der äußeren pigmentfreien Zone des Cytoplasmas. Vor allem dort können auch das endoplasmatische Reticulum und die Mitochondrien beobachtet werden. Der sog. Pigmentbecher ist ein allseitig geschlossenes Gebilde, dessen pigmentfreier Teil von einer Verschlußmembran, der sog. Cornealmembran, gebildet wird. Diese Verschlußmembran ist ein cytoplasmatischer, nichtpigmentierter, lamellar gebauter Fortsatz der Pigmentzellen. Der distale Fortsatz der Sehzellen dringt durch die Verschlußmembran in das Innere des Auges ein. Im Inneren des Pigmentbechers wird der Raum zwischen den Sehkolben vom homogenen Glaskörper ausgefüllt. Dieser zeigt in osmiumbehandelten Präparaten eine mittlere Dichte und mit stärkerer Vergrößerung eine sehr feine fibrilläre Struktur. Der kernhaltige Teil der Sehzellen liegt außerhalb des Pigmentbechers. Der Kern ist verhältnismäßig locker gebaut, enthält einen kleinen exzentrisch liegenden Nucleolus und wird von einer doppellamellär gebauten Kernmembran begrenzt. Das Perikaryon besitzt eine feinkörnige Grundstruktur. Die Durchmesser der Körnchen wechseln von 50 bis zu mehreren 100 Å; ihre Struktur zeigt einen Übergang über die Vesiculae zu den Vakuolen des Cytoplasmas. Die verschieden großen Vakuolen des Cytoplasmas sind von einer hellen, homogenen Substanz erfüllt. Das Perikaryon enthält auch Mitochondrien. Die Grundstruktur der distalen Fasern der Sehzellen ist ähnlich wie die des Perikaryons, enthält aber auch 100–120 Å dicke Neurofilamente. Die Nervenfasern sind nackt und recht verschieden dick. Die distale Faser der Sehzellen durchbohrt die Verschlußmembran und setzt sich in den Sehkolben fort. Der Stiel — bei Dugesia lugubris — ist prinzipiell ebenso gebaut wie die Nervenfaser; er ist ihre intraokulare Fortsetzung. Auf diesem Stielteil sitzt der eigentliche Sehkolben. Er besteht im allgemeinen aus 2 verschiedenen Teilen: aus der in der Fortsetzung des Stieles liegenden Achsenzone und aus der Zone des Bürstensaumes (Stiftchenkappe). In der Achse des Sehkolbens liegen viele Mitochondrien. Die Struktur des Cytoplasmas der Achsenzone ist ähnlich wie jene im Perikaryon bzw. in der Nervenfaser. Auffallend sind in der Achsenzone viele von einer hellen, homogenen Substanz erfüllte, verschieden große Vakuolen. Ihre Zahl hängt vom Funktionszustand des Auges ab. Die Randzone des Sehkolbens ist der Bürstensaum, der von cytoplasmatischen Mikrozotten gebildet wird. Die Breite der Mikrozotten wechselt von 200–1000 Å. Die Dicke der etwas dunkleren Grenzmembran beträgt 50–70 Å, der Inhalt der Mikrozotten erscheint homogen. Der Bürstensaum gibt im Polarisationsmikroskop eine positive Doppelbrechung. Die Bürstensaumzone, die eine Vergrößerung der Membranoberfläche bewirkt, dürfte im Dienste der Photorezeption stehen.  相似文献   

6.
Zusammenfassung Die Region des Nucleus supraopticus der Maus wurde elektronenmikroskopisch untersucht. Folgende Ergebnisse wurden erzielt:Die neurosekretorischen Zellen sind durch einen stark entwickelten Golgi-Apparat und durch osmiophile Granula in seiner Lumina charakterisiert. Die Ansammlungen dieser Granula entsprechen wahrscheinlich den lichtmikroskopisch sichtbaren Neurosekretgranula.Die Granula sind elliptoid bis ovoid gestaltet und durch eine zarte Grenzmembran gegen das Neuroplasma abgegrenzt. Man kann zwei Arten von Granula, kleinere (1. Typ) und größere (2. Typ), unterscheiden. Die kleineren Granula besitzen Durchmesser von 1000–2000 Å. Zwischen ihrem Zentrum und ihrer Grenzmembran befindet sich meistens eine helle Zone. Die größeren Granula haben Durchmesser von 4000–6000 Å; ihr Inhalt wird von der Grenzmembran eng umschlossen. Zwischen beiden Granula besteht kein Übergang. Außer diesen osmiophilen Granula sieht man im Golgi-Feld multivesicular bodies, wenn auch in geringer Zahl.Die kleineren Granula sind ähnlich strukturiert und geformt wie die Golgi-Granula. Vermutlich stehen beide Gebilde zueinander in inniger genetischer Beziehung. Es konnte nicht entschieden werden, ob die größeren Granula (2. Typ) aus multivesicular bodies oder aus anderen Organellen hervorgehen.In den neurosekretorischen Zellen treten vorwiegend kugelige oder stabförmige Mitochondrien auf. Sie kommen im Perikaryon und im Fortsatz vor, sind jedoch im Golgi-Feld besonders reichlich angehäuft. Der Zelleib — ausgenommen das Golgi-Feld — ist mit Ergastoplasma gefüllt, dessen sackartig erweiterte Räume keine Sekretgranula enthalten.In seltenen Fällen treten Zentralkörperchen im Golgi-Feld und im peripheren Teil des Zelleibes auf. Im Neuroplasma des Fortsatzes befinden sich kleine osmiophile Granula mit Durchmesser 1000 Å bis zu 2000 Å. Sie ähneln den im Hinterlappen vorkommenden Elementargranula (Bargmann), andererseits den Granula des 1. Typs. Dagegen sind die den Granula des 2. Typs vergleichbaren Gebilde im Neuroplasma des Fortsatzes niemals zu finden.Die Kapillaren im Kerngebiet sind von einer Basalmembran umgeben, deren Dicke etwa 700 Å beträgt. An der Außenfläche der Basalmembran setzen die neurosekretorischen Zellen und ihre Fortsätze unmittelbar an. Eine poröse Bauweise des Endothels wurde nicht nachgewiesen.In den auf der Basalmembran fußenden Nervenendigungen sind keine oder nur wenige Sekretgranula festzustellen. Die Hauptaufgabe der Kapillaren des Kerngebietes dürfte daher nicht in der Aufnahme des Neurosekrets bestehen.  相似文献   

7.
Zusammenfassung Die Feinstruktur der neurosekretorischen Nervenzellen des Nucleus praeopticus magnocellularis der Kröte (Bufo vulgaris formosus) und ihre Umgebung wurde untersucht.Die neurosekretorischen Zellen enthalten drei Arten von osmiophilen Gebilden: die neurosekretorischen Elementargranula, die neurosekretorischen Kügelchen und die Einschlußkörper.Die neurosekretorischen Elementargranula besitzen einen Durchmesser von 1000–3000 Å, durchschnittlich von 1300–1500 Å. Sie entstehen im Golgi-Apparat (Perikaryon) der betreffenden Zellen wie bei den schon beschriebenen anderen Tierarten.Die neurosekretorischen Kügelchen haben einen Durchmesser von 4000 Å bis zu mehreren . Sie kommen zuerst in den Ergastoplasmacisternen des Perikaryons vor und wandern dann innerhalb des Axons caudalwärts ab, ebenso wie die Elementargraunla, verlieren sich aber vor dem Erreichen der Neurohypophyse. Nach Lage und Gestalt entsprechen sie den Kolloidtropfen, die von vielen Lichtmikroskopikern für die neurosekretorischen Zellen niederer Vertebraten beschrieben wurden.Die Einschlußkörper treten vornehmlich im zentralen Bezirk des Perikaryons in Erscheinung. Sie sind so groß wie die Mitochondrien und besitzen verschiedene Innenstrukturen. Auf Grund der Struktur und der histochemischen Reaktion möchten wir diese Einschlußkörper den Lipofuscingranula mit saurer Phosphatase zuordnen.Die neurosekretorischen Nervenzellen schmiegen sich an den die Kapillare umgebenden Perivaskularraum unmittelbar an, innerhalb dessen die Basalmembran unvollkommen ausgebildet ist oder ganz fehlt.Stellenweise dehnt sich ein Abschnitt des Endothels durch den Perivaskularraum hindurch entlang der Außenfläche des Perivaskularraums aus, wobei sich die Endothelzellen der Kapillare und die neurosekretorischen Nervenzellen direkt berühren können. Eine poröse Bauweise des Endothels wurde nicht nachgewiesen. Zwischen den Ependymzellen des III. Ventrikels und den darunterliegenden neurosekretorischen Nervenzellen sind oftmals auffallend große Extrazellularräume zu beobachten, die durch den Spaltraum der benachbarten Ependymzellen mit dem Ventrikellumen kommunizieren. Sie enthalten mikrovilliartige Ausläufer der Ependymzellen und die geschilderten, neurosekretorische Bildungen führenden Axone. Eine Ausstoßung dieser Axone in den Ventrikel wurde nicht festgestellt.Diese Untersuchung wurde zum Teil mit finanzieller Unterstützung durch das Japanische Unterrichtsministerium im Jahre 1963 durchgeführt.Der kurze Inhalt dieser Arbeit wurde unter dem Thema 'Electron microscopic studies on the praeoptic nucleus in the toad am 5. und 6. September 1963 auf dem Kongreß für Endokrinologie in Gunma, Japan, vorgetragen.  相似文献   

8.
Tore Ekblom 《Chromosoma》1941,2(1):12-35
Zusammenfassung Alle 3 hier behandelten Arten stimmen insofern mit den meisten Hemipteren überein, als die Chromosomen der Geschlechtszellen nach der Teilung zu mehr oder weniger langen Pasern anwachsen. Am ausgeprägtesten in dieser Beziehung ist Mesovelia furcata.Die Anzahl der Chromosomen ist bei allen hoch; bei der Art Salda, littoralis diploid 32 + X, bei Calocoris chenopodii 30 + X + Y und bei Mesovelia furcata 30 + 4 X + Y. Diese große Zahl deutet darauf, daß sie genetisch betrachtet zu den primitiveren Arten gehören. Das eigenartige Verhalten, daß die beiden Partner des Mikrochromosomenpaares verschieden groß sein können, ist nur bei der Art Salda littoralis festzustellen, dagegen nicht bei den beiden anderen, die mehrere Geschlechtschromosomen haben.Das Spermatogonienstadium ist bei allen Arten sehr ähnlich und weist nur in bezug auf die Geschlechtschromosomen Variationen auf. Bei Salda littoralis verhält sich das Heterochromosom normal, während bei den beiden anderen Arten mit zwei oder mehreren Geschlechtschromosomen letztere beim Ausspinnen erst getrennt in 2 Gruppen auftreten, die sich später vereinigen und sich bei der Zusammenziehung der Allosomen wieder voneinander freimachen. Die Verbindung zwischen den Geschlechtschromosomen wird bei der Art Calocoris chenopodii niemals so vollständig wie bei Mesovelia furcata.Zu Beginn des Spermatozytenstadiums ist der Verlauf bei den 3 Arten recht gleich. Die Chromosomen setzen sich nicht in einem begrenzten Gebiet an der Kernmembran fest, sondern in allen Teilen des Kernes, obgleich sich die meisten an der einen Hälfte anhäufen. Aus diesem Grunde kann niemals ein schön ausgebildetes Bukettstadium entstehen. Die nach der Synapsis oft erfolgende Zusammenziehung der Allosomen ist bei Salda littoralis nicht nachweisbar, bei Mesovelia furcata gering, bei Calocoris chenopodii dagegen sehr ausgeprägt (Tafel III, 14).Die weiteren Entwicklungsstadien der Allosomen bis zum Spermatozoenstadium sind sehr gleich und stimmen mit dem bei Hemiptera-Heteroptera üblichen überein. Sie bilden sich zu feinen Fasern um, gleichzeitig damit, daß sie sich trennen. Dabei entwickelt sich bei der Art Salda littoralis ein schönes Strickleiterstadium (Tafel I, 20), wobei sich die Querriegel zwischen den Chromomeren herausbilden. Dadurch daß sie sich nach der Trennung nur am einen Ende aneinander festhalten und die Längsspalte zustande kommt, ergibt sich nach weiterer Zusammenziehung die typische Tetradenfigur. Bei der Spermatozoenbildung wachsen die Allosomen wieder und bilden ein feinmaschiges Netzwerk.Das Heterochromosom weist, abgesehen von seiner abweichenden Größe, bei der Art Salda littoralis keine besonderen nennenswerten Eigenheiten im Entwicklungsverlauf auf. Das einzige, was in die Augen fällt, ist, daß es bei der zweiten Reifeteilung nicht weiter in der Äquatorialplatte nach den Allosomen verweilt, sondern schon im Anfang zu dem einen Pol mitfolgt, was möglicherweise ein primitiver Zug ist (Tafel II, 39–41). Bei der Art Calocoris chenopodii vereinigen sich die beiden Heterochromosomen sofort nach der letzten Spermatogonienteilung und sind dann bis zur Diakinese zu einer Einheit zusammengeschlossen. Eigentümlicherweise verhält sich das Y-Chromosom in der ersten Reifeteilung wie das X-Chromosom bei anderen Arten bei der zweiten Reifeteilung, indem es länger in der Äquatorialplatte verweilt (Tafel III, 36). In der folgenden zweiten Reifeteilung gehen die beiden Geschlechtschromosomen dagegen rascher zu den betreffenden Polen als die Allosomen. Bei der Art Mesovelia furcata sind die 5 Geschlechtschromosomen nach der letzten Spermatogonienteilung im Anfang zu einer einzigen Einheit zusammengeschlossen. Bei günstigen Gelegenheiten (Tafel IV, 16) kann man deutlich sehen, wie sie linear vereinigt liegen, wobei das größte am freien Ende gelegen ist, das kleinste zur Zellmembran hin. Sie liegen also in einer Größenkategorie. Ihre Stellung zueinander geht deutlicher aus Tafel IV, 17 hervor, auf der sie aus irgendeinem Grunde voneinander geglitten sind. Dieser Aufbau der zusammengesetzten Geschlechtschromosomen ist äußerst lehrreich, denn er zeigt, daß die bei den Hemipteren in gewissen Entwicklungsstadien so gewöhnliche Keulenform der Chromosomen auf rein morphologisch bedingten Größenunterschieden in den verschiedenen Teilen des Chromosoms beruhen muß. Er stützt auch die Reutersche Theorie (1930), nach der die Chromosomen genetisch durch Wachsen kleinerer Stücke zustande gekommen sind, die linear zusammengefügt waren. Die Geschlechtschromosomen bilden indes bald 2 Gruppen, eine größere, die wahrscheinlich aus den beiden größten besteht und einer kleineren, die die 3 kleineren bildet. Man sieht jetzt deutlich, daß die Chromosomen ringförmig sind. In diesem Zusammenhang kann darauf hingewiesen werden, daß man eine ähnliche Ringform bei der Art Calocoris chenopodii beobachten kann (Tafel III, 20). Mitunter bekommen die Geschlechtschromosomen Kugelform (Tafel IV, 31–33), die besonders während der Diakinese hervortritt, wo sie sich alle voneinander trennen. Dies beruht darauf, daß das ringförmige Chromosom sich in eine Spirale zusammenrollt. Bei der ersten Reifeteilung teilt sich das Y-Chromosom vor allen anderen.Die somatischen Chromosomen sind bei allen 3 Arten sehr ähnlich, keulenförmig, mitunter, z. B. bei der Art Salda littoralis, sind die Darmzellen etwas langgestreckt. Lange bandförmige fehlen bei allen. Die Kerne der Gehirnzellen sind wie gewöhnlich am einfachsten gebaut und nur bei Salda, littoralis kann das Heterochromosom in diesem Gewebe sicher von den Allosomen unterschieden werden, da es ja das größte von allen ist. Es behält bei dieser Art seine gewöhnliche langgestreckte Form bei, während es bei anderen Geweben schwillt und mehr oder weniger abgerundet ist. Die großen Gehirnzellen des Calocoris chenopodii, bei welchen die Geschlechtschromosomen durch ihre schärferen Konturen gut zu unterscheiden sind, weisen Abweichungen auf.  相似文献   

9.
Zusammenfassung Eine Untersuchung der Karpelle vonDrimys piperata, membranea, insipida, lanceolata und vickeriana, die alle der SektionTasmannia angehören, hat ergeben, daß ihre Spreiten keineswegs in ihrer ganzen Länge konduplikat gefaltet sind. Diese Bauweise ist ihnen nämlich vonBailey und seinen Mitarbeitern zugeschrieben worden, die von diesen primitiven Karpellen alle übrigen Angiospermen-Karpelle ableiten wollen. Die Spreitenbasis aller hier untersuchten Karpelle ist vielmehr schlauchförmig gebaut, was auch bündelmorphologisch durch das häufige Auftreten eines Ventralmedianus bestätigt wird. Der Schlauchteil der Spreite ist allerdings meist niedrig — nur beiDrimys vickeriana nimmt er ungefähr die halbe Karpellänge ein — und darüber hinaus äußerlich durch die weit herablaufenden Narbenkämme maskiert. Diese Narbenkämme entsprechen nicht den echten Karpellrändern, die ganz normal am Oberende des Schlauchteiles miteinander kongenital verwachsen, sondern sind randnahe Auswüchse der Karpellaußenseite.Die Karpelle der beiden Sektionen (Tasmannia undWintera) der GattungDrimys verwirklichen also die gleiche, peltat-schlauchförmige Bauweise; ihre Gestaltsunterschiede sind daher nicht prinzipieller Art, wieTucker angenommen hat, sondern bloß quantitativer. Mit dem Nachweis, daßdie primitiven Karpelle derDrimys-SektionTasmannia manifest peltat gebaut sind, ist schließlich auch eine neuerliche und beachtenswerte Stütze für die Ansicht gegeben, daß die Angiospermen-Karpelle ihrem Typus nach peltat-schlauchförmige Blätter sind.  相似文献   

10.
Zusammenfassung An Hand von Mazerationspräparaten wird der Papillarkörper der Mundhöhlenschleimhaut und seine Morphogenese dargestellt. An der Lippe werden 4 Zonen mit unterschiedlichem Papillarkörper festgestellt und durch kapillarmikroskopische Untersuchung bestätigt. Die Entwicklung des Grenzflächenreliefs wird von 13 cm SSL an verfolgt.Das Relief der Wangenschleimhaut hat mit dem Schleimhautteil der Lippen bzw. mit dem Sulcus alveolobuccalis große Ähnlichkeit.Am Papillarkörper des Zahnfleisches fallen besonders die warzige Zone im Bereich der Schneidezähne und die blattartigen Epithel- bzw. Bindegewebsleisten auf, die dem freien Zahnfleischrand parallel an den Backenzähnen verlaufen. Dem Grenzflächenrelief entsprechende kapillarmikroskopische Bilder werden gezeigt.Der harte Gaumen besitzt in den Plicae transversae, den sagittalen Epithelfurchen und in der Gaumenpapille besondere Bildungen der Grenzfläche.Das Grenzflächenrelief des weichen Gaumens ist weniger scharf geschnitten und besitzt im ganzen auch viel weniger Papillen.Die Entwicklung des Papillarkörpers des Gaumens wird von 13 cm SSL an verfolgt. Ein zunächst auftretendes System sagittaler Leisten wird später bei der Ausbildung der Papillen verwischt. Die Entwicklung der Gaumenpapille und der Ductus nasopalatini wird an Mazerations-präparaten aufgezeigt.Das Grenzflächenbild der Zunge ist im ganzen bestimmt durch V-förmige Leisten und Papillenreihen, die dem V linguae parallel verlaufen und fast die ganze Zunge erfassen. Der Papillarkörper der Papillae filiformes, fungiformes und circumvallatae wird beschrieben, wobei die Neufferschen Befunde bestätigt werden.Der Papillarkörper des Zungengrundes unterscheidet sich durch die geringere Höhe der Epithelleisten und die gleichmäßigere Verteilung der Bindegewebspapillen. Hier treten besonders große kokardenartige Bildungen um die Zungenbalgkrypten auf.Auch bei der Zunge sind die Eigenarten der verschiedenen Abschnitte schon bei 13 cm SSL erkennbar.In allen Regionen der Mundhöhle treten an den Einmündungen der Schleimdrüsengänge im Epithel konzentrische Muster auf (Kokarden und Rosetten). Einzelheiten dieser Muster sind je nach Region verschieden.Die frühangelegten epithelialen Leistensysteme, danach die Kokarden und Rosetten sowie die Zungenpapillen bestimmen den Charakter der Schleimhautregion zunächst. Die später entstehenden Einzelpapillen des Bindegewebes und die Ausgestaltung der einzelnen Leisten sind nach Dicke, Dichte und Höhe ebenfalls regional verschieden.Mit Unterstützung durch die Deutsche Forschungsgemeinschaft.  相似文献   

11.
Zusammenfassung Die Pollenkörner vonJuglans regia undJ. nigra sind, entgegen anderen Angaben, im gequollenen Zustand annähernd kugelig-rund und im trockenen Zustand kugelig-eingedellt. Trockene Pollenkörner runden sich, sobald man sie in eine Flüssigkeit gibt, blitzartig ab. Gleichzeitig mit der Form der Pollenkörner ändert sich auch die Beschaffenheit des Pollenkitts, der auf den Pollenkörnern gelagert ist; auf gequollenen Pollenkörnern bildet er kleinere und größere, ölige Kügelchen; auf Trockenpollen erscheint er als eine ± zähflüssige, formlose Masse. Das Sporoderm besteht aus drei Schichten: einer punctitegillaten Sexine, einer strukturlosen Nexine und einer dünnen Intine, die im Bereich der Keimporcn linsenförmige Verdickungen, sog. Zwischenkörper, bildet. Die Zwischenkörper sind meist voneinander isoliert und bestehen in der Hauptmasse aus Pektinverbindungen. In der Regel sind 12–16 Keimporen ausgebildet, die beiJuglans regia kreisrund und beiJ. nigra elliptisch sind.Die AngabenSchanderls über die ölreiche Endoexine und den Ölauspreßmechanismus beiJuglans regia wurden widerlegt. Es konnte gezeigt werden, daß die Pollenkörner vonJuglans regia undJ. nigra einen ähnlichen Bau besitzen wie viele andere Vertreter windblütiger Familien.  相似文献   

12.
Zusammenfassung Die äußeren Symptome der verschiedenen Viroseu vonDianthus caryophyllus sind oft gering, ja sie können sogar ganz fehlen. Für die Diagnose gewinnt daher die Feststellung innerer Symptome, nämlich des Vorkommens von Zelleinschlußkörpern besonderes Interesse. In allen daraufhin untersuchten Gartennelken ließen sich stets sowohl amorphe x-Körper als auch kristalline Einschlüsse auffinden. Die Kristalle waren von besonderer Mannigfaltigkeit, besonders gut ausgebildet waren hexagonale prismatische und tetraedrische; die letzteren stellen eine sonst ungewöhnliche Form von Viruseinschlußkörpern dar. Daß es sich wirklich um Viruseiweißkristalle handelt, wurde durch den positiven Ausfall von Übertragungsversuchen erwiesen.Dem Andenken meines verehrten Lehrers Prof. Dr. Friedl Weber widme ich diese Arbeit.  相似文献   

13.
Zusammenfassung Die Capillaren des Herzens werden sämtlich von einer, zwei oder drei marklosen Nervenfasern versorgt, derart, daß die Fasern oder die zugehörigen Schwannschen Kerne dem Endothel streckenweise direkt aufgelagert sind und hierbei sehr häufig eine Anzahl kleiner Windungen erkennen lassen, die auf eine Oberflächenvergrößerung des Achsencylinders hinweisen.Die Nervenfasern können gelegentlich auch die Gefäße umschlingen, teilen sich manchmal dichotomisch und sind sehr häufig von verschiedener Dicke.Feine, fibrilläre Auflockerung der Capillarnerven auf dem Endothel sind öfters zu erkennen, freie, knopfförmige Endigungen waren nicht zu beobachten.Die Nerven sind nicht streng an die einzelne Capillare gebunden; sie verlassen das Gefäß meist nach einer kurzen Strecke wieder um sich zu einem benachbarten Capillargefäß zu begeben. Auf diese Weise kommt ein geschlossenes, jedoch mit dem gesamten Capillarsystem aufs engste verknüpftes Nervennetz zustande.Über die Funktion der Capillarnerven lassen sich vom histologischen Standpunkte aus keinerlei bestimmte Angaben machen.  相似文献   

14.
Zusammenfassung Protoclepsis tesselata ist ein temporärer Parasit, der in der Nasenhöhle, dem Schnabel, dem Pharynx, dem Larynx und der Trachea (gelegentlich auch in der Schädelhöhle und an den Augen) von Vögeln Blut saugt.Die Hauptwirte sind Entenvögel, doch können gelegentlich auch andere Vögel befallen werden.Die jungen Egel haben die gleiche Lebens- und Ernährungsweise wie die alten.Die Egel können mehrere Monate hungern, wobei sie kleiner werden.Ihre Fruchtbarkeit ist sehr groß (Gelege über 300 Eier), und die Jungen bleiben sehr lange an der Mutter.Die Egel pflegen ungestört sehr lange an einer Stelle zu sitzen.Lokale Berührungsreize werden durch Gehen, Schreckbewegungen oder Körperdeformationen beantwortet.Kleine und hungrige Würmer sind weniger positiv thigmotaktisch als größere und gesättigte.Die Egel sind positiv rheotaktisch. Sehr starke Wasserströme bewirken Kontraktion und Anpressen an die Unterlage.Durch Erschütterungen des Mediums oder Substrates werden die Egel alarmiert. Sie setzen sich an im Wasser bewegte Gegenstände an Gegen hochfrequente Wassererschütterungen, die von einem Zentrum ausgehen, verhalten sich die Würmer positiv vibrotropotaktisch.Kleine und hungrige Egel sind negativ, größere und satte mehr oder weniger positiv geotaktisch. Protoclepsis tesselata hat ein chemisches Nahperzeptionsvermögen für Anatidenfett (Bürzeldrüsensekret), durch das sie ihre Wirte von anderen Körpern unterscheidet.Im diffusen Tageslicht neigen die Egel, je kleiner und hungriger sie sind, um so mehr zu positiver, je größer und satter sie sind, um so mehr zu negativer Phototaxis.Die positive Phototaxis der Egel ist (wenigstens in der Hauptsache) eine Phototaxis.Die Egel zeigen einen Schattenreflex, der bei wiederholter Reizung bald verschwindet.Je kleiner und hungriger die Egel sind, um so häufiger werden sie sich in oberflächlichen und hellen Wasserschichten freisitzend aufhalten, wodurch das Zusammentreffen mit Wirtsvögeln begünstigt wird. Protodepsis tesselata kann auf drei Arten an oder in den Schnabel eines Entenvogels gelangen: Sie wird aufgepickt, eingeschnattert, oder sie setzt sich aktiv an, nachdem sie vibrotaktisch zu dem schnatternden Schnabel geleitet wurde.Der weiche und platte Körper schützt die Egel davor, in dem Schnabel zerquetscht zu werdenVollgesogene Egel verlassen die Wirte wieder und gehen ins WasserNach jeder Nahrungsaufnahme wachsen die Würmer erheblich. Wahrscheinlich bleiben sie mehrere Tage in den Wirten.  相似文献   

15.
Zusammenfassung Die erstmals von uns im Subcommissuralorgan adulter Ratten mit dem Elektronenmikroskop aufgefundenen periodisch strukturierten Körper (PSK) werden ausführlich beschrieben. Sie liegen extracellulär in der Umgebung von Kapillaren; mithin kennzeichnet das angioarchitektonische Muster des Subcommissuralorgans bei der Ratte ihre Fundorte: sie finden sich im Hypendym oder zwischen den basalen Polen der subcommissuralen Ependymzellen. Die Mehrzahl der PSK liegt der Basalmembran der Kapillaren unmittelbar nach außen an; dabei läuft das Linienmuster der Körper meist steil auf die Basalmembran zu. Daneben werden PSK auch weiter entfernt von Gefäßen gefunden; sie zeigen dann häufig eine Beziehung zu frei im Gewebe endenden Abzweigungen der Basalmembran.Das Muster der PSK ist im Schnittbild durch osmiophile Linien, die in konstantem Abstand parallel laufen, charakterisiert; bei Osmiumfixierung und Einbettung in Epon 812 beträgt die mittlere Periode 940 Å. Zwischen je zwei dieser Hauptlinien (Linien I. Ordnung, etwa 140 Å breit) verläuft eine schwächere Zwischenlinie (Linie II. Ordnung, etwa 60 Å breit); drei feinere Linien (III. Ordnung) sind innerhalb der Periode asymmetrisch angeordnet und geben ihr eine polare Orientierung. Sonderbefunde an den Systemen werden mitgeteilt und diskutiert. — Es werden Argumente für die Auffassung vorgetragen, daß die PSK aus linearen Elementen aufgebaut sein müssen. Diese Filamente verlaufen senkrecht zu den Linien; sie sind die eigentlichen Träger der periodischen Zeichnung und stehen so gut in Register, daß sie in ihrer Gesamtheit das periodische Strukturmuster ergeben.Lichtmikroskopisch lassen sich die den PSK entsprechenden Objektstellen mit Bindegewebsfärbungen und Silberimprägnationen homogen darstellen; dagegen liefern Amyloid- und elektive Sekretfärbungen negative Ergebnisse. Aus histochemischen Reaktionen ist der Gehalt der PSK an Protein als sicher, der an sauren Mucopolysacchariden als wahrscheinlich anzunehmen. Die Filamente werden als Proteinstrukturen aufgefaßt, die in einer Matrix von Mucopolysacchariden eingebettet liegen können. In-vitro-Ergebnisse der Kollagenforschung und erste bekannt gewordene in-situ-Beobachtungen von ungewöhnlichen Kollagenformen im Auge und bei bestimmten Tumoren des Hörnerven stützen die dargelegte Vorstellung, daß die Filamente der PSK eine nicht faserige Kollagenformation darstellen, bei der die Tropokollagenmoleküle möglicherweise um ihre halbe Länge gegeneinander versetzt sind.Für die Entstehung der PSK scheint die Basalmembran der Kapillaren von wesentlicher Bedeutung zu sein. Ganz junge Ratten, bei deren Kapillaren die Basalmembran noch nicht voll ausgebildet ist, enthalten keine PSK im Subcommissuralorgan.Herrn Professor Dr. Benno Romeis zum 75. Geburtstag gewidmet.Mit Unterstützung durch die Deutsche Forschungsgemeinschaft. — Für präparatorische und photographische Arbeiten schulden wir Frau H. Asam großen Dank; des weiteren danken wir Frl. B. Fielitz und Frl. R. Beck. Die Schemata wurden von Herrn cand. med. A. Meinel gezeichnet. — Den Herren Prof. Dr. W. Grassmann, Prof. Dr. F. Miller, Dozent Dr. Dr. H. Hager, Dr. K. Blinzinger, München, und Dr. W. Schlote, Tübingen, verdanken wir wertvolle Anregungen und Diskussionen.  相似文献   

16.
Zusammenfassung Hautstücke aus der Rückengegend von zwei menschlichen Embryonen mit einer Scheitel-Steißlänge von 62 und 128 mm (Mens II und V) wurden elektronenmikroskopisch untersucht.Das subepidermale Bindegewebe des jüngeren Embryos enthält Fibroblasten mit einem oder mehreren Fortsätzen, zwischen denen einzelne Fibrillen oder kleine Fibrillenbündel liegen. Das endoplasmatische Retikulum dieser Elemente ist stark ausgeprägt. Sein Hohlraumsystem hat in den einzelnen Zellen einen verschiedenen Füllungsgrad. Die Membranen liegen entweder dicht zusammen oder sind mehr oder weniger auseinandergedrängt. Auf diese Weise können große Zisternen mit granulärem Inhalt entstehen. Den Membranen sitzen 80–100 Å und 160 Å dicke Granula auf. Außerdem werden Vesiculae von 150–400 Å Durchmesser an den Membranen beobachtet. Frei im Cytoplasma liegen zahlreiche Vesiculae mit Durchmessern bis zu 6000 Å. Die Dicke der Fibrillen variiert nur wenig; sie beträgt durchschnittlich 200 Å, die Perioden sind 300–400 Å lang.Die Fibroblasten in der Haut eines 5 Monate alten Embryos sind den Fibroblasten des jüngeren Embryos sehr ähnlich, doch ist hier die Zahl der vesikulären Strukturen geringer. Im Interzellularraum verlaufen nunmehr Fasern aus 100 und mehr Fibrillen. Die durchschnittliche Fibrillendicke beträgt 300 Å; die Perioden sind 400–500 Å lang.Das endoplasmatische Retikulum in den Fibroblasten wird für die Kollagensynthese verantwortlich gemacht, die man sich folgendermaßen vorstellen kann : Der Fibroblast liefert wahrscheinlich das Kollagen in Form des monomeren Tropokollagenmoleküls. Dieses Material sammelt sich in den Zisternen an und wird dann nach außen abgegeben. Extrazellulär bauen sich aus diesen Vorstufen Fibrillen auf. Aus diesem Grunde lassen sich Fibrillen auch nur extrazellulär elektronenmikroskopisch nachweisen. Die Zellmembran scheint eine Rolle bei der Ausrichtung der Fibrillenbündel zu spielen. Die vesikulären Strukturen der Fibroblasten werden mit der Mukopolysaccharidsynthese in Zusammenhang gebracht, deren Bedeutung für die Fibrillogenese diskutiert wird.Im Coriumbereich menschlicher Embryonen kommen noch zwei andere Zelltypen vor, die für undifferenzierte Mesenchymzellen und Histiozyten gehalten werden.Mit Unterstützung durch die Deutsche Forschungsgemeinschaft.  相似文献   

17.
Zusammenfassung Das Alveolarepithel der Froschlunge weist nur einen einzigen Zelltyp auf. Die Zellkörper sitzen in den Nischen zwischen den Kapillaren, die sie mit Zytoplasmaausläufern überdecken. Die Epithelzellen enthalten große Zytosomen mit osmiophilen Lamellen mit einer Periode von 40–42 Å. Sie sind den Typ II-Pneumozyten der Säugerlunge vergleichbar.Das Alveolarepithel der Froschlunge ist mit einer Grenzschicht bedeckt, die in Abhängigkeit von der Fixierung eine 40–42 Å-Periode aufweist oder aus einer oder mehreren Doppelmembranen zusammengesetzt ist. Gittermuster und Myelinfiguren sind vorhanden. Das bedeutet, daß Surfactant in der Froschlunge in gleicher Weise wie in der Säugerlunge dargestellt werden kann.
Electron microscopic studies on the lung of the frogI. Demonstration of the alveolar lining layer (surfactant)
Summary The alveolar epithelium of the frog exhibits only one type of cells. The cell-bodies are situated in the spaces among the capillaries, which they cover with cytoplasmic extensions. The epithelial cells contain large bodies (cytosomes) with osmiophilic lamellae having a period of 40–42 Å. The alveolar cells are considered to be similar to the type II-pneumocytes of mammalian lungs.The alveolar epithelium of the lung of the frog is covered with a lining layer, which depending on the method of fixation consists of periods of 40–42 Å or of one or more double membranes. Lattice formations and myelin figures are seen. This means that the surfactant in the lung of the frog can be demonstrated in the same way as in mammalian lungs.
  相似文献   

18.
Zusammenfassung Verschiedene Chlorella-Stämme wurden mit der Gefrierätzungsmethode untersucht.Die Zellwand von Chlorella vulgaris ist aus drei Schichten aufgebaut. Die äußerste Lage besteht aus verfestigter Matrixsubstanz. Sie wird bei alten Zellen aufgelöst. In der breiteren, mittleren Zone liegen Zellulosefibrillen und 80 Å-Teilchen in einer amorphen Grundmasse. Eine dünne, fibrillenfreie Matrixschicht bildet die innere Zellwandlage. Das Plasmalemma ist mit verschieden tief eingelagerten 80 Å-Partikeln in statistischer Verteilung besetzt.Zellwandentwicklung: Die Matrixsubstanz entsteht in den Golgi-Vesikeln. Diese werden mit ihrer Umgrenzungsmembran in den Raum zwischen Plasmalemma und Zellwand befördert. Während sich die Plasmamembran einschnürt, platzen die Bläschen und geben ihren Inhalt frei. Von der dabei entstehenden Matrix verfestigt sich die äußerste Lage unter der alten Zellwand und zwischen den Tochterzellen. Darunter sammeln sich ausgeschiedene, 80 Å große Plasmalemmapartikel an. Die Zellulosefibrillen erscheinen zuerst in dieser partikelreichen Zone, kurz darauf in der ganzen mittleren Zellwandschicht. Es wird angenommen, daß die ausgestoßenen Plasmalemmapartikel Enzymkomplexe darstellen, die die Fähigkeit besitzen, in der Matrix Zellulosefibrillen zu synthetisieren.Von den andern Zellbestandteilen wurde besonders der Chloroplast näher untersucht. Die Thylakoidmembran besteht aus einer zentralen Trägerschicht, die beidseitig mit Proteinpartikeln bedeckt ist. Die in der Membran-Außenseite eingelassenen Partikel haben in der Aufsicht einen Durchmesser von 120 Å. Sie scheinen aus vier oder mehr Untereinheiten in quadratischer Anordnung zu bestehen und besitzen eine zentrale Vertiefung. Ihre Dichte ist starken Änderungen unterworfen. Nach den vorliegenden Befunden sind die 120 Å-Teilchen nicht adsorbierte Partikel aus dem Chloroplastenstroma, sondern membraneigene Bestandteile. Auf der Innenseite der Thylakoide liegen 60 Å-Teilchen in dichter Packung. Die innere Plastidenmembran besitzt den gleichen Aufbau wie die Thylakoidmembranen, doch ist die Zahl der Å 120-Partikel sehr gering. Neue Thylakoide entstehen durch Einstülpungen der innern Chloroplastenmembran oder durch Gabelung oder Zurückfaltung schon vorhandener Lamellen. Dabei erfolgt die Synthese der drei Membrankomponenten (Trägerschicht, 120 Å- und 60 Å-Partikel) synchron.In Dunkelzellen der Chlorella-Mutante 5/520 weist die Chloroplasten-Doppelmembran keine Veränderungen auf, während Zahl und Größe der Thylakoide stark abnehmen. Die verbleibenden Lamellen sind blasenförmig erweitert. Bei der Wiederbelichtung der Zellen entstehen neue Thylakoide wie in normalen Chloroplasten.Begast man Dunkelzellen während der Belichtung mit reinem Stickstoff, so bilden die 60 Å-Partikel auf der Außenseite der innern Plastidenmembran wie im Innern der Thylakoide ein polygonales Netzwerk. Im Grundplasma können zahlreiche Verzweigungen des endoplasmatischen Reticulums und eine starke Zunahme der Fetttröpfchen beobachtet werden.
Summary Different Chlorella strains were investigated with the freeze-etching method. The cell wall of Chlorella vulgaris is composed of three layers. The outermost layer consists of thickened matrix material, which becomes dissolved in older cells. In the broader, middle zone cellulose fibrils, and particles with a diameter of 80 Å, can be seen in an amorphous ground substance. Finally, a thin layer of matrix material forms the inner side of the wall. The particles that cover the plasmalemma are randomly distributed and have a diameter of 80 Å.Cell wall development: The matrix material is formed in the Golgi vesicles which pass through the cell membrane into the space between the plasmalemma and the cell wall. During the constriction of the cell membrane the vesicles burst and their contents are liberated. The outermost layer of the matrix thus formed becomes thickened under the old cell wall and between the daughter cells. Beneath this layer, the secreted 80 Å-plasmalemma particles accumulate. Cellulose fibrils can first be detected in this zone and shortly later, in the whole middle cell wall layer. It is assumed that the secreted plasmalemma particles are enzyme complexes, which posess the capability to synthesize cellulose fibrils in the matrix.The thylakoid membranes consist of a central layer covered on both sides with protein particles. On the outer side the embedded particles have a diameter of 120 Å and a thickness of 60 Å. They appear to be built up of four or more subunits in a quadratic arrangement with a central pore. The number of these particles, per unit area, differs greatly from one thylakoid to the other. From the data presented the 120 Å-particles belong to the thylakoid membrane and are not adsorbed particles of the chloroplast stroma. The inner side of the thylakoid membrane is densely covered with particles having a diameter of 60 Å. The inner layer of the chloroplast membrane has the game structure as the thylakoid membranes. New lamellae arise from the inner layer of the chloroplast membrane by invagination, or by bifurcation or folding back of already existing thylakoids. The synthesis of the three membrane components (central layer, 120 Å- and 60 Å-particles) occurs synchronously.In dark-grown cells of the Chlorella mutant 5/520, the plastid membrane shows the normal structure. The few remaining thylakoids, however, exhibit an irregular blown up structure. On re-illumination of the cells new thylakoids are formed as in normal chloroplasts. If dark cells are illuminated in a N2 atmosphere the 60 Å-particles on the outside of the inner chloroplast membrane, and in the thylakoids, form a polygonal network. The endoplasmic reticulum shows extensive development and lipid droplets appear in the groundplasm.
  相似文献   

19.
Zusammenfassung Die elektronenmikroskopisch sichtbaren Veränderungen menschlicher endometrialer Drüsenzellen im Verlauf des menstruellen Zyklus werden beschrieben.In der Proliferationsphase zeichnen sich die Drüsenzellen durch reichliche Ergastoplasmamembranen und Paladegranula aus, besonders in den basalen Zytoplasmaanteilen. Daneben sieht man, fast ausschließlich supranukleär, zahlreiche Sekretgranula von etwa 0,7 Durchmesser, deren Zahl am Ende der Proliferationsphase ein Maximum erreicht. Außerdem findet man noch am basalen Kernpol ein Sekret, das aus einem elektronenoptisch schwach konturierten Material besteht und aus Glykogen sowie Glyk- ound Mucoproteiden aufgebaut ist. Gleichzeitig werden die hier liegenden Paladegranula und Ergastoplasmamembranen aufgelöst. Die hier liegenden Mitochondrien vergrößern sich auf ein Mehrfaches, die Zahl ihrer Cristae nimmt zu. Sobald die Sekretproduktion abgeschlossen ist, verkleinern sie sich wieder.Zur Zeit der mittleren Sekretionsphase ist dieses Sekret in das apikale Zytoplasma gewandert. Dabei verschwinden die in den vorangehenden Subphasen reichlich vorhandenen Mikrovilli weitgehend. Gegen Ende des menstruellen Zyklus erscheinen die Zellen durch Abstoßung der apikalen Zytoplasmateile im ganzen niedriger. Kurz vor der Desquamation lösen sie sich dann voneinander, wobei sich der Interzellularraum auf ein Mehrfaches verbreitert. Gleichzeitig treten im Zytoplasma Degenerationszeichen wie vakuoläre Umwandlungen von Mitochondrien, Ergastoplasmaräume und Golgizone auf. Außerdem verlieren die Zellorganellen ihre scharfen Konturen, und die bis dahin runden oder ovalen Zellkerne zeigen eine unregelmäßige, teilweise sogar gelappte Begrenzung.Die seitlichen Zellgrenzen verlaufen in den dem Drüsenlumen nahen Abschnitten gerade oder leicht gewunden und besitzen zahlreiche Desmosomen. Weiter basal hingegen weisen sie starke Verzahnungen mit den Naehbarzellen auf, wobei die Desmosomen nur noch sehr selten zu finden sind. Nach Abstoßung der Zellspitzen in der späten Sekretionsphase reicht die Verzahnungszone bis an das Drüsenlumen heran.Die Basalmembran der Drüsen ist zu Beginn des Zyklus relativ schmal (etwa 300 Å). Sie wächst dann in den späteren Subphasen weiter an und erreicht am Ende des Zyklus eine Dicke von etwa 800 Å.Neben den Drüsenzellen begegnet man hin und wieder in allen Subphasen cilientragenden Zellen (Flimmerzellen), die relativ arm an Zytoplasmaorganellen sind. Die Cilien besitzen den typischen Aufbau mit 9 auf einem Kreisbogen liegenden und einem zentralen Filament, die aus je 2 Subfilamenten bestehen.Außerdem sieht man mitunter zwischen den Drüsenzellen einen weiteren Zelltyp, der reich an Paladegranula und Ergastoplasmastrukturen ist. Art und Funktion dieser Zellen, bei denen es sich nicht um Wanderzellen wie Plasmazellen, Lympho- oder Leukozyten handelt, ist noch unklar.Herrn Prof. Dr. med. H. Siebke und Herrn Oberarzt Doz. Dr. Puck, Universitäts-Frauenklinik Bonn, danke ich für Überlassung des Untersuchungsgutes, Herrn Prof. Dr. med. Piekarski, Hygiene-Institut der Universität Bonn, für die Benutzung des Siemens-Elmiskops.  相似文献   

20.
Zusammenfassung Die knieförmigen Kristalle von Kalziumoxalat-Monohydrat sind Zwillinge, deren Schenkel unter einem Winkel von 70 1/20 zur Zwillingsebene gestreckt sind. BeiCaryocar nuciferum treten stark sattelförmige und extrem vorgezogene Kanten auf. Die Entwicklung nach der für die meisten einfachen und verzwillingten Pflanzenkristalle (Stäbchen, Styloiden, Raphiden) nachgewiesene Hauptwachstumsrichtung parallel zur Zwillingsebene erscheint unterbunden. Da die Ausbildung des Kristallhabitus von äußeren Wachstumsbedingungen abhängig ist, müssen während der Entwicklung der geknieten Oxalatstäbchen andere physikalisch-chemische Verhältnisse herrschen als bei der Bildung der nach der Zwillingsebene gestreckten Styloiden und Raphiden.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号