首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The SNARE proteins syntaxin, SNAP-25, and synaptobrevin play a central role during Ca(2+)-dependent exocytosis at the nerve terminal. Whereas syntaxin and SNAP-25 are located in the plasma membrane, synaptobrevin resides in the membrane of synaptic vesicles. It is thought that gradual assembly of these proteins into a membrane-bridging ternary SNARE complex ultimately leads to membrane fusion. According to this model, syntaxin and SNAP-25 constitute an acceptor complex for synaptobrevin. In vitro, however, syntaxin and SNAP-25 form a stable complex that contains two syntaxin molecules, one of which is occupying and possibly obstructing the binding site of synaptobrevin. To elucidate the assembly pathway of the synaptic SNAREs, we have now applied a combination of fluorescence and CD spectroscopy. We found that SNARE assembly begins with the slow and rate-limiting interaction of syntaxin and SNAP-25. Their interaction was prevented by N-terminal but not by C-terminal truncations, suggesting that for productive assembly all three participating helices must come together simultaneously. This suggests a complicated nucleation process that might be the reason for the observed slow assembly rate. N-terminal truncations of SNAP-25 and syntaxin also prevented the formation of the ternary complex, whereas neither N- nor C-terminal shortened synaptobrevin helices lost their ability to interact. This suggests that binding of synaptobrevin occurs after the establishment of the syntaxin-SNAP-25 interaction. Moreover, binding of synaptobrevin was inhibited by an excess of syntaxin, suggesting that a 1:1 interaction of syntaxin and SNAP-25 serves as the on-pathway SNARE assembly intermediate.  相似文献   

2.
Regulated exocytosis in neurons and neuroendocrine cells requires the formation of a stable soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) complex consisting of synaptobrevin-2/vesicle-associated membrane protein 2, synaptosome-associated protein of 25 kDa (SNAP-25), and syntaxin 1. This complex is subsequently disassembled by the concerted action of alpha-SNAP and the ATPases associated with different cellular activities-ATPase N-ethylmaleimide-sensitive factor (NSF). We report that NSF inhibition causes accumulation of alpha-SNAP in clusters on plasma membranes. Clustering is mediated by the binding of alpha-SNAP to uncomplexed syntaxin, because cleavage of syntaxin with botulinum neurotoxin C1 or competition by using antibodies against syntaxin SNARE motif abolishes clustering. Binding of alpha-SNAP potently inhibits Ca(2+)-dependent exocytosis of secretory granules and SNARE-mediated liposome fusion. Membrane clustering and inhibition of both exocytosis and liposome fusion are counteracted by NSF but not when an alpha-SNAP mutant defective in NSF activation is used. We conclude that alpha-SNAP inhibits exocytosis by binding to the syntaxin SNARE motif and in turn prevents SNARE assembly, revealing an unexpected site of action for alpha-SNAP in the SNARE cycle that drives exocytotic membrane fusion.  相似文献   

3.
The synaptosome-associated protein of 25 kDa (SNAP-25) interacts with syntaxin 1 and vesicle-associated membrane protein 2 (VAMP2) to form a ternary soluble N-ethylmaleimide-sensitive fusion protein attachment protein receptor (SNARE) complex that is essential for synaptic vesicle exocytosis. We report a novel RING finger protein, Spring, that specifically interacts with SNAP-25. Spring is exclusively expressed in brain and is concentrated at synapses. The association of Spring with SNAP-25 abolishes the ability of SNAP-25 to interact with syntaxin 1 and VAMP2 and prevents the assembly of the SNARE complex. Overexpression of Spring or its SNAP-25-interacting domain reduces Ca(2+)-dependent exocytosis from PC12 cells. These results indicate that Spring may act as a regulator of synaptic vesicle exocytosis by controlling the availability of SNAP-25 for the SNARE complex formation.  相似文献   

4.
Munc18–1, a protein essential for regulated exocytosis in neurons and neuroendocrine cells, belongs to the family of Sec1/Munc18-like (SM) proteins. In vitro, Munc18–1 forms a tight complex with the SNARE syntaxin 1, in which syntaxin is stabilized in a closed conformation. Since closed syntaxin is unable to interact with its partner SNAREs SNAP-25 and synaptobrevin as required for membrane fusion, it has hitherto not been possible to reconcile binding of Munc18–1 to syntaxin 1 with its biological function. We now show that in intact and exocytosis-competent lawns of plasma membrane, Munc18–1 forms a complex with syntaxin that allows formation of SNARE complexes. Munc18–1 associated with membrane-bound syntaxin 1 can be effectively displaced by adding recombinant synaptobrevin but not syntaxin 1 or SNAP-25. Displacement requires the presence of endogenous SNAP-25 since no displacement is observed when chromaffin cell membranes from SNAP-25–deficient mice are used. We conclude that Munc18–1 allows for the formation of a complex between syntaxin and SNAP-25 that serves as an acceptor for vesicle-bound synaptobrevin and that thus represents an intermediate in the pathway towards exocytosis.  相似文献   

5.
Tomosyn is a 130-kDa syntaxin-binding protein that contains a large N-terminal domain with WD40 repeats and a C-terminal domain homologous to R-SNAREs. Here we show that tomosyn forms genuine SNARE core complexes with the SNAREs syntaxin 1 and SNAP-25. In vitro studies with recombinant proteins revealed that complex formation proceeds from unstructured monomers to a stable four-helical bundle. The assembled complex displayed features typical for SNARE core complexes, including a profound hysteresis upon unfolding-refolding transitions. No stable complexes were formed between the SNARE motif of tomosyn and either syntaxin or SNAP-25 alone. Furthermore, both native tomosyn and its isolated C-terminal domain competed with synaptobrevin for binding to endogenous syntaxin and SNAP-25 on inside-out sheets of plasma membranes. Tomosyn-SNARE complexes were effectively disassembled by the ATPase N-ethylmaleimide-sensitive factor together with its cofactor alpha-SNAP. Moreover, the C-terminal domain of tomosyn was as effective as the cytoplasmic portion of synaptobrevin in inhibiting evoked exocytosis in a cell-free preparation derived from PC12 cells. Similarly, overexpression of tomosyn in PC12 cells resulted in a massive reduction of exocytosis, but the release parameters of individual exocytotic events remained unchanged. We conclude that tomosyn is a soluble SNARE that directly competes with synaptobrevin in the formation of SNARE complexes and thus may function in down-regulating exocytosis.  相似文献   

6.
The regulation of SNARE complex assembly likely plays an important role in governing the specificity as well as the timing of membrane fusion. Here we identify a novel brain-enriched protein, amisyn, with a tomosyn- and VAMP-like coiled-coil-forming domain that binds specifically to syntaxin 1a and syntaxin 4 both in vitro and in vivo, as assessed by co-immunoprecipitation from rat brain. Amisyn is mostly cytosolic, but a fraction co-sediments with membranes. The amisyn coil domain can form SNARE complexes of greater thermostability than can VAMP2 with syntaxin 1a and SNAP-25 in vitro, but it lacks a transmembrane anchor and so cannot act as a v-SNARE in this complex. The amisyn coil domain prevents the SNAP-25 C-terminally mediated rescue of botulinum neurotoxin E inhibition of norepinephrine exocytosis in permeabilized PC12 cells to a greater extent than it prevents the regular exocytosis of these vesicles. We propose that amisyn forms nonfusogenic complexes with syntaxin 1a and SNAP-25, holding them in a conformation ready for VAMP2 to replace it to mediate the membrane fusion event, thereby contributing to the regulation of SNARE complex formation.  相似文献   

7.
Regulated exocytosis involves calcium-dependent fusion of secretory vesicles with the plasma membrane with three SNARE proteins playing a central role: the vesicular synaptobrevin and the plasma membrane syntaxin1 and SNAP-25. Cultured bovine chromaffin cells possess defined plasma membrane microdomains that are specifically enriched in both syntaxin1 and SNAP-25. We now show that in both isolated cells and adrenal medulla slices these target SNARE (t-SNARE) patches quantitatively coincide with single vesicle secretory spots as detected by exposure of the intravesicular dopamine beta-hydroxylase onto the plasmalemma. During exocytosis, neither area nor density of the syntaxin1/SNAP-25 microdomains changes on the plasma membrane of both preparations confirming that preexisting clusters act as the sites for vesicle fusion. Our analysis reveals a high level of colocalization of L, N and P/Q type calcium channel clusters with SNAREs in adrenal slices; this close association is altered in individual cultured cells. Therefore, microdomains carrying syntaxin1/SNAP-25 and different types of calcium channels act as the sites for physiological granule fusion in "in situ" chromaffin cells. In the case of isolated cells, it is the t-SNAREs microdomains rather than calcium channels that define the sites of exocytosis.  相似文献   

8.
Before exocytosis, vesicles must first become docked to the plasma membrane. The SNARE complex was originally hypothesized to mediate both the docking and fusion steps in the secretory pathway, but previous electron microscopy (EM) studies indicated that the vesicular SNARE protein synaptobrevin (syb) was dispensable for docking. In this paper, we studied the function of syb in the docking of large dense-core vesicles (LDCVs) in live PC12 cells using total internal reflection fluorescence microscopy. Cleavage of syb by a clostridial neurotoxin resulted in significant defects in vesicle docking in unfixed cells; these results were confirmed via EM using cells that were prepared using high-pressure freezing. The membrane-distal portion of its SNARE motif was critical for docking, whereas deletion of a membrane-proximal segment had little effect on docking but diminished fusion. Because docking was also inhibited by toxin-mediated cleavage of the target membrane SNAREs syntaxin and SNAP-25, syb might attach LDCVs to the plasma membrane through N-terminal assembly of trans-SNARE pairs.  相似文献   

9.
During exocytosis a four-helical coiled coil is formed between the three SNARE proteins syntaxin, synaptobrevin and SNAP-25, bridging vesicle and plasma membrane. We have investigated the assembly pathway of this complex by interfering with the stability of the hydrophobic interaction layers holding the complex together. Mutations in the C-terminal end affected fusion triggering in vivo and led to two-step unfolding of the SNARE complex in vitro, indicating that the C-terminal end can assemble/disassemble independently. Free energy perturbation calculations showed that assembly of the C-terminal end could liberate substantial amounts of energy that may drive fusion. In contrast, similar N-terminal mutations were without effects on exocytosis, and mutations in the middle of the complex selectively interfered with upstream maturation steps (vesicle priming), but not with fusion triggering. We conclude that the SNARE complex forms in the N- to C-terminal direction, and that a partly assembled intermediate corresponds to the primed vesicle state.  相似文献   

10.
Membrane fusion for exocytosis is mediated by SNAREs, forming trans-ternary complexes to bridge vesicle and target membranes. There is an array of accessory proteins that directly interact with and regulate SNARE proteins. PRIP (phospholipase C-related but catalytically inactive protein) is likely one of these proteins; PRIP, consisting of multiple functional modules including pleckstrin homology and C2 domains, inhibited exocytosis, probably via the binding to membrane phosphoinositides through the pleckstrin homology domain. However, the roles of the C2 domain have not yet been investigated. In this study, we found that the C2 domain of PRIP directly interacts with syntaxin 1 and SNAP-25 but not with VAMP2. The C2 domain promoted PRIP to co-localize with syntaxin 1 and SNAP-25 in PC12 cells. The binding profile of the C2 domain to SNAP-25 was comparable with that of synaptotagmin I, and PRIP inhibited synaptotagmin I in binding to SNAP-25 and syntaxin 1. It was also shown that the C2 domain was required for PRIP to suppress SDS-resistant ternary SNARE complex formation and inhibit high K+-induced noradrenalin release from PC12 cells. These results suggest that PRIP inhibits regulated exocytosis through the interaction of its C2 domain with syntaxin 1 and SNAP-25, potentially competing with other SNARE-binding, C2 domain-containing accessory proteins such as synaptotagmin I and by directly inhibiting trans-SNARE complex formation.  相似文献   

11.
Neuronal exocytosis is driven by the formation of SNARE complexes between synaptobrevin 2 on synaptic vesicles and SNAP-25/syntaxin 1 on the plasma membrane. It has remained controversial, however, whether SNAREs are constitutively active or whether they are down-regulated until fusion is triggered. We now show that synaptobrevin in proteoliposomes as well as in purified synaptic vesicles is constitutively active. Potential regulators such as calmodulin or synaptophysin do not affect SNARE activity. Substitution or deletion of residues in the linker connecting the SNARE motif and transmembrane region did not alter the kinetics of SNARE complex assembly or of SNARE-mediated fusion of liposomes. Remarkably, deletion of C-terminal residues of the SNARE motif strongly reduced fusion activity, although the overall stability of the complexes was not affected. We conclude that although complete zippering of the SNARE complex is essential for membrane fusion, the structure of the adjacent linker domain is less critical, suggesting that complete SNARE complex assembly not only connects membranes but also drives fusion.  相似文献   

12.
The docking and fusion of cargo-containing vesicles with target membranes of eukaryotic cells is mediated by the interaction of SNARE proteins present on both vesicle and target membranes. In many cases, the target membrane SNARE, or t-SNARE, exists as a complex of syntaxin with a member of the SNAP-25 family of palmitoylated proteins. We have identified a novel human kinase SNAK (SNARE kinase) that specifically phosphorylates the nonneuronal t-SNARE SNAP-23 in vivo. Interestingly, only SNAP-23 that is not assembled into t-SNARE complexes is phosphorylated by SNAK, and phosphorylated SNAP-23 resides exclusively in the cytosol. Coexpression with SNAK significantly enhances the stability of unassembled SNAP-23, and as a consequence, the assembly of newly synthesized SNAP-23 with syntaxin is augmented. These data demonstrate that phosphorylation of SNAP-23 by SNAK enhances the kinetics of t-SNARE assembly in vivo.  相似文献   

13.
Mobilization of human neutrophil granules is critical for the innate immune response against infection and for the outburst of inflammation. Human neutrophil-specific and tertiary granules are readily exocytosed upon cell activation, whereas azurophilic granules are mainly mobilized to the phagosome. These cytoplasmic granules appear to be under differential secretory control. In this study, we show that combinatorial soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) complexes with vesicle-associated membrane proteins (VAMPs), 23-kDa synaptosome-associated protein (SNAP-23), and syntaxin 4 underlie the differential mobilization of granules in human neutrophils. Specific and tertiary granules contained VAMP-1, VAMP-2, and SNAP-23, whereas the azurophilic granule membranes were enriched in VAMP-1 and VAMP-7. Ultrastructural, coimmunoprecipitation, and functional assays showed that SNARE complexes containing VAMP-1, VAMP-2, and SNAP-23 mediated the rapid exocytosis of specific/tertiary granules, whereas VAMP-1 and VAMP-7 mainly regulated the secretion of azurophilic granules. Plasma membrane syntaxin 4 acted as a general target SNARE for the secretion of the distinct granule populations. These data indicate that at least two SNARE complexes, made up of syntaxin 4/SNAP-23/VAMP-1 and syntaxin 4/SNAP-23/VAMP-2, are involved in the exocytosis of specific and tertiary granules, whereas interactions between syntaxin 4 and VAMP-1/VAMP-7 are involved in the exocytosis of azurophilic granules. Our data indicate that quantitative and qualitative differences in SNARE complex formation lead to the differential mobilization of the distinct cytoplasmic granules in human neutrophils, and a higher capability to form diverse SNARE complexes renders specific/tertiary granules prone to exocytosis.  相似文献   

14.
Abstract : The synaptic plasma membrane proteins syntaxin and synaptosome-associated protein of 25 kDa (SNAP-25) are central participants in synaptic vesicle trafficking and neurotransmitter release. Together with the synaptic vesicle protein synaptobrevin/vesicle-associated membrane protein (VAMP), they serve as receptors for the general membrane trafficking factors N -ethylmaleimide-sensitive factor (NSF) and soluble NSF attachment protein (α-SNAP). Consequently, syntaxin, SNAP-25, and VAMP (and their isoforms in other membrane trafficking pathways) have been termed SNAP receptors (SNAREs). Because protein phosphorylation is a common and important mechanism for regulating a variety of cellular processes, including synaptic transmission, we have investigated the ability of syntaxin and SNAP-25 isoforms to serve as substrates for a variety of serine/threonine protein kinases. Syntaxins 1A and 4 were phosphorylated by casein kinase II, whereas syntaxin 3 and SNAP-25 were phosphorylated by Ca2+ - and calmodulin-dependent protein kinase II and cyclic AMP-dependent protein kinase, respectively. The biochemical consequences of SNARE protein phosphorylation included a reduced interaction between SNAP-25 and phosphorylated syntaxin 4 and an enhanced interaction between phosphorylated syntaxin 1A and the synaptic vesicle protein synaptotagmin I, a potential Ca2+ sensor in triggering synaptic vesicle exocytosis. No other effects on the formation of SNARE complexes (comprised of syntaxin, SNAP-25, and VAMP) or interactions involving n-Sec1 or α-SNAP were observed. These findings suggest that although phosphorylation does not directly regulate the assembly of the synaptic SNARE complex, it may serve to modulate SNARE complex function through other proteins, including synaptotagmin I.  相似文献   

15.
Synaptotagmins are membrane proteins that possess tandem C2 domains and play an important role in regulated membrane fusion in metazoan organisms. Here we show that both synaptotagmins I and II, the two major neuronal isoforms, can interact with the syntaxin/synaptosomal-associated protein of 25 kDa (SNAP-25) dimer, the immediate precursor of the soluble NSF attachment protein receptor (SNARE) fusion complex. A stretch of basic amino acids highly conserved throughout the animal kingdom is responsible for this calcium-independent interaction. Inositol hexakisphosphate modulates synaptotagmin coupling to the syntaxin/SNAP-25 dimer, which is mirrored by changes in chromaffin cell exocytosis. Our results shed new light on the functional importance of the conserved polybasic synaptotagmin motif, suggesting that synaptotagmin interacts with the t-SNARE dimer to up-regulate the probability of SNARE-mediated membrane fusion.  相似文献   

16.
Exocytosis - syntaxin - synaptobrevin - SNARE synaptic vesicle The lamprey giant reticulospinal synapse can be used to manipulate the molecular machinery of synaptic vesicle exocytosis by presynaptic microinjection. Here we test the effect of disrupting the function of the SNARE protein SNAP-25. Polyclonal SNAP-25 antibodies were shown in an in vitro assay to inhibit the binding between syntaxin and SNAP-25. When microinjected presynaptically, these antibodies produced a potent inhibition of the synaptic response. Ba2+ spikes recorded in the presynaptic axon were not altered, indicating that the effect was not due to a reduced presynaptic Ca2+ entry. Electron microscopic analysis showed that synaptic vesicle clusters had a similar organization in synapses of antibody-injected axons as in control axons, and the number of synaptic vesicles in apparent contact with the presynaptic plasma membrane was also similar. Clathrin-coated pits, which normally occur at the plasma membrane around stimulated synapses, were not detected after injection of SNAP-25 antibodies, consistent with a blockade of vesicle cycling. Thus, SNAP-25 antibodies, which disrupt the interaction with syntaxin, inhibit neurotransmitter release without affecting the number of synaptic vesicles at the plasma membrane. These results provide further support to the view that the formation of SNARE complexes is critical for membrane fusion, but not for the targeting of synaptic vesicles to the presynaptic membrane.  相似文献   

17.
In the neuron, SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptors) assembly acts centrally in driving membrane fusion, a required process for neurotransmitter release. In the cytoplasm, vesicular SNARE VAMP-2 (vesicle-associated membrane protein-2) engages with two plasma membrane SNAREs, syntaxin 1A and SNAP-25 (synaptosome-associated protein of 25 kDa), to form the core complex that bridges two membranes. Although various factors regulate SNARE assembly, the membrane also aids in regulation by trapping VAMP-2 in the membrane. Fluorescence and EPR analyses revealed that the insertion of seven C-terminal core-forming residues into the membrane controls complex formation of the entire core region, even though the preceding 54 core-forming residues are fully exposed and freely moving. When two interfacial tryptophan residues in this region were replaced with hydrophilic serine residues, the mutation supported rapid complex formation. The results suggest that the membrane-proximal region of VAMP-2 is a regulatory module for SNARE assembly, providing new insights into calcium-triggered membrane fusion.  相似文献   

18.
Action of complexin on SNARE complex   总被引:6,自引:0,他引:6  
Calcium-dependent synaptic vesicle exocytosis requires three SNARE (soluble N-ethylmaleimide-sensitive-factor attachment protein receptor) proteins: synaptobrevin/vesicle-associated membrane protein in the vesicular membrane and syntaxin and SNAP-25 in the presynaptic membrane. The SNAREs form a thermodynamically stable complex that is believed to drive fusion of vesicular and presynaptic membranes. Complexin, also known as synaphin, is a neuronal cytosolic protein that acts as a positive regulator of synaptic vesicle exocytosis. Complexin binds selectively to the neuronal SNARE complex, but how this promotes exocytosis remains unknown. Here we used purified full-length and truncated SNARE proteins and a gel shift assay to show that the action of complexin on SNARE complex depends strictly on the transmembrane regions of syntaxin and synaptobrevin. By means of a preparative immunoaffinity procedure to achieve total extraction of SNARE complex from brain, we demonstrated that complexin is the only neuronal protein that tightly associates with it. Our data indicated that, in the presence of complexin, the neuronal SNARE proteins assemble directly into a complex in which the transmembrane regions interact. We propose that complexin facilitates neuronal exocytosis by promoting interaction between the complementary syntaxin and synaptobrevin transmembrane regions that reside in opposing membranes prior to fusion.  相似文献   

19.
SNAP-25, syntaxin, and synaptobrevin are SNARE proteins that mediate fusion of synaptic vesicles with the plasma membrane. Membrane attachment of syntaxin and synaptobrevin is achieved through a C-terminal hydrophobic tail, whereas SNAP-25 association with membranes appears to depend upon palmitoylation of cysteine residues located in the center of the molecule. This process requires an intact secretory pathway and is inhibited by brefeldin A. Here we show that the minimal plasma membrane-targeting domain of SNAP-25 maps to residues 85-120. This sequence is both necessary and sufficient to target a heterologous protein to the plasma membrane. Palmitoylation of this domain is sensitive to brefeldin A, suggesting that it uses the same membrane-targeting mechanism as the full-length protein. As expected, the palmitoylated cysteine cluster is present within this domain, but surprisingly, membrane anchoring requires an additional five-amino acid sequence that is highly conserved among SNAP-25 family members. Significantly, the membrane-targeting module coincides with the protease-sensitive stretch (residues 83-120) that connects the two alpha-helices that SNAP-25 contributes to the four-helix bundle of the synaptic SNARE complex. Our results demonstrate that residues 85-120 of SNAP-25 represent a protein module that is physically and functionally separable from the SNARE complex-forming domains.  相似文献   

20.
Neurotransmitter gamma-aminobutyric acid (GABA) release to the synaptic clefts is mediated by the formation of a soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) complex, which includes two target SNAREs syntaxin 1A and SNAP-25 and one vesicle SNARE VAMP-2. The target SNAREs syntaxin 1A and SNAP-25 form a heterodimer, the putative intermediate of the SNARE complex. Neurotransmitter GABA clearance from synaptic clefts is carried out by the reuptake function of its transporters to terminate the postsynaptic signaling. Syntaxin 1A directly binds to the neuronal GABA transporter GAT-1 and inhibits its reuptake function. However, whether other SNARE proteins or SNARE complex regulates GABA reuptake remains unknown. Here we demonstrate that SNAP-25 efficiently inhibits GAT-1 reuptake function in the presence of syntaxin 1A. This inhibition depends on SNAP-25/syntaxin 1A complex formation. The H3 domain of syntaxin 1A is identified as the binding sites for both SNAP-25 and GAT-1. SNAP-25 binding to syntaxin 1A greatly potentiates the physical interaction of syntaxin 1A with GAT-1 and significantly enhances the syntaxin 1A-mediated inhibition of GAT-1 reuptake function. Furthermore, nitric oxide, which promotes SNAP-25 binding to syntaxin 1A to form the SNARE complex, also potentiates the interaction of syntaxin 1A with GAT-1 and suppresses GABA reuptake by GAT-1. Thus our findings delineate a further molecular mechanism for the regulation of GABA reuptake by a target SNARE complex and suggest a direct coordination between GABA release and reuptake.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号