首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 922 毫秒
1.
2.
By interconverting glucocorticoids, 11beta-hydroxysteroid dehydrogenase type 1 (11beta-HSD1) exerts an important pre-receptor function and is currently considered a promising therapeutic target. In addition, 11beta-HSD1 plays a potential role in 7-ketocholesterol metabolism. Here we investigated the role of the N-terminal region on enzymatic activity and addressed the relevance of 11beta-HSD1 orientation into the endoplasmic reticulum (ER) lumen. Previous studies revealed that the luminal orientation of 11beta-HSD1 and 50-kDa esterase/arylacetamide deacetylase (E3) is determined by their highly similar N-terminal transmembrane domains. Substitution of Lys(5) by Ser in 11beta-HSD1, but not of the analogous Lys(4) by Ile in E3, led to an inverted topology in the ER membrane, indicating the existence of a second topological determinant. Here we identified Glu(25)/Glu(26) in 11beta-HSD1 and Asp(25) in E3 as the second determinant for luminal orientation. Our results suggest that the exact location of specific residues rather than net charge distribution on either side of the helix is critical for membrane topology. Analysis of charged residues in the N-terminal domain revealed an essential role of Lys(35)/Lys(36) and Glu(25)/Glu(26) on enzymatic activity, suggesting that these residues are responsible for the observed stabilizing effect of the N-terminal membrane anchor on the catalytic domain of 11beta-HSD1. Moreover, activity measurements in intact cells expressing wild-type 11beta-HSD1, facing the ER lumen, or mutant K5S/K6S, facing the cytoplasm, revealed that the luminal orientation is essential for efficient oxidation of cortisol. Furthermore, we demonstrate that 11beta-HSD1, but not mutant K5S/K6S with cytoplasmic orientation, catalyzes the oxoreduction of 7-ketocholesterol. 11beta-HSD1 and E3 constructs with cytosolic orientation of their catalytic moiety should prove useful in future studies addressing the physiological function of these proteins.  相似文献   

3.
In yeast, Tsc10p catalyzes reduction of 3-ketosphinganine to dihydrosphingosine. In mammals, it has been proposed that this reaction is catalyzed by FVT1, which despite limited homology and a different predicted topology, can replace Tsc10p in yeast. Silencing of FVT1 revealed a direct correlation between FVT1 levels and reductase activity, showing that FVT1 is the principal 3-ketosphinganine reductase in mammalian cells. Localization and topology studies identified an N-terminal membrane-spanning domain in FVT1 (absent in Tsc10p) oriented to place it in the endoplasmic reticulum (ER) lumen. In contrast, protease digestion studies showed that the N terminus of Tsc10p is cytoplasmic. Fusion of the N-terminal domain of FVT1 to green fluorescent protein directed the fusion protein to the ER, demonstrating that it is sufficient for targeting. Although both proteins have two predicted transmembrane domains C-terminal to a cytoplasmic catalytic domain, neither had an identifiable lumenal loop. Nevertheless, both Tsc10p and the residual fragment of FVT1 produced by removal of the N-terminal domain with factor Xa protease behave as integral membrane proteins. In addition to their topological differences, mutation of conserved catalytic residues had different effects on the activities of the two enzymes. Thus, while FVT1 can replace Tsc10p in yeast, there are substantial differences between the two enzymes that may be important for regulation of sphingolipid biosynthesis in higher eukaryotes.  相似文献   

4.
Ma B  Cui ML  Sun HJ  Takada K  Mori H  Kamada H  Ezura H 《Plant physiology》2006,141(2):587-597
Ethylene receptors are multispanning membrane proteins that negatively regulate ethylene responses via the formation of a signaling complex with downstream elements. To better understand their biochemical functions, we investigated the membrane topology and subcellular localization of CmERS1, a melon (Cucumis melo) ethylene receptor that has three putative transmembrane domains at the N terminus. Analyses using membrane fractionation and green fluorescent protein imaging approaches indicate that CmERS1 is predominantly associated with the endoplasmic reticulum (ER) membrane. Detergent treatments of melon microsomes showed that the receptor protein is integrally bound to the ER membrane. A protease protection assay and N-glycosylation analysis were used to determine membrane topology. The results indicate that CmERS1 spans the membrane three times, with its N terminus facing the luminal space and the large C-terminal portion lying on the cytosolic side of the ER membrane. This orientation provides a platform for interaction with the cytosolic signaling elements. The three N-terminal transmembrane segments were found to function as topogenic sequences to determine the final topology. High conservation of these topogenic sequences in all ethylene receptor homologs identified thus far suggests that these proteins may share the same membrane topology.  相似文献   

5.
To better define the mechanism of membrane protein insertion into the membrane of the endoplasmic reticulum, we measured the kinetics of translocation across microsomal membranes of the N-terminal lumenal tail and the lumenal domain following the second transmembrane segment (TM2) in the multispanning mouse protein Cig30. In the wild-type protein, the N-terminal tail translocates across the membrane before the downstream lumenal domain. Addition of positively charged residues to the N-terminal tail dramatically slows down its translocation and allows the downstream lumenal domain to translocate at the same time as or even before the N-tail. When TM2 is deleted, or when the loop between TM1 and TM2 is lengthened, addition of positively charged residues to the N-terminal tail causes TM1 to adopt an orientation with its N-terminal end in the cytoplasm. We suggest that the topology of the TM1-TM2 region of Cig30 depends on a competition between TM1 and TM2 such that the transmembrane segment that inserts first into the ER membrane determines the final topology.  相似文献   

6.
Human cytomegalovirus (HCMV) glycoprotein US2 causes degradation of major histocompatibility complex (MHC) class I heavy-chain (HC), class II DR-alpha and DM-alpha proteins, and HFE, a nonclassical MHC protein. In US2-expressing cells, MHC proteins present in the endoplasmic reticulum (ER) are degraded by cytosolic proteasomes. It appears that US2 binding triggers a normal cellular pathway by which misfolded or aberrant proteins are translocated from the ER to cytoplasmic proteasomes. To better understand how US2 binds MHC proteins and causes their degradation, we constructed a panel of US2 mutants. Mutants truncated from the N terminus as far as residue 40 or from the C terminus to amino acid 140 could bind to class I and class II proteins. Nevertheless, mutants lacking just the cytosolic tail (residues 187 to 199) were unable to cause degradation of both class I and II proteins. Chimeric proteins were constructed in which US2 sequences were replaced with homologous sequences from US3, an HCMV glycoprotein that can also bind to class I and II proteins. One of these US2/US3 chimeras bound to class II but not to class I, and a second bound class I HC better than wild-type US2. Therefore, US2 residues involved in the binding to MHC class I differ subtly from those involved in binding to class II proteins. Moreover, our results demonstrate that the binding of US2 to class I and II proteins is not sufficient to cause degradation of MHC proteins. The cytosolic tail of US2 and certain US2 lumenal sequences, which are not involved in binding to MHC proteins, are required for degradation. Our results are consistent with the hypothesis that US2 couples MHC proteins to components of the ER degradation pathway, enormously increasing the rate of degradation of MHC proteins.  相似文献   

7.
Oleosin proteins from Arabidopsis assume a unique endoplasmic reticulum (ER) topology with a membrane-integrated hydrophobic (H) domain of 72 residues, flanked by two cytosolic hydrophilic domains. We have investigated the targeting and topological determinants present within the oleosin polypeptide sequence using ER-derived canine pancreatic microsomes. Our data indicate that oleosins are integrated into membranes by a cotranslational, translocon-mediated pathway. This is supported by the identification of two independent functional signal sequences in the H domain, and by demonstrating the involvement of the SRP receptor in membrane targeting. Oleosin topology was manipulated by the addition of an N-terminal cleavable signal sequence, resulting in translocation of the N terminus to the microsomal lumen. Surprisingly, the C terminus failed to translocate. Inhibition of C-terminal translocation was not dependent on either the sequence of hydrophobic segments in the H domain, the central proline knot motif or charges flanking the H domain. Therefore, the topological constraint results from the length and/or the hydrophobicity of the H domain, implying a general case that long hydrophobic spans are unable to translocate their C terminus to the ER lumen.  相似文献   

8.
High affinity, retinoid-specific binding proteins chaperone retinoids to manage their transport and metabolism. Proposing mechanisms of retinoid transfer between these binding proteins and membrane-associated retinoid-metabolizing enzymes requires insight into enzyme topology. We therefore determined the topology of mouse retinol dehydrogenase type 1 (Rdh1) and cis-retinoid androgen dehydrogenase type 1 (Crad1) in the endoplasmic reticulum of intact mammalian cells. The properties of Rdh1 were compared with a chimera with a luminal signaling sequence (11beta-hydroxysteroid dehydrogenase (11beta-HSD1)(1-41)/Rdh1(23-317); the green fluorescent protein (GFP) fusion proteins Rdh1(1-22)/GFP, Crad1(1-22)/GFP, and 11beta-HSD1(1-41)/GFP; and signaling sequence charge difference mutants using confocal immunofluorescence, antibody access, proteinase K sensitivity, and deglycosylation assays. An N-terminal signaling sequence of 22 residues, consisting of a hydrophobic helix ending in a net positive charge, anchors Rdh1 and Crad1 in the endoplasmic reticulum facing the cytoplasm. Mutating arginine to glutamine in the signaling sequence did not affect topology. Inserting one or two arginine residues near the N terminus of the signaling sequence caused 28-95% inversion from cytoplasmic to luminal, depending on the net positive charge remaining at the C terminus of the signaling sequence; e.g. the mutant L3R,L5R,R16Q,R19Q,R21Q faced the lumen. Experiments with N- and C-terminal epitope-tagged Rdh1 and molecular modeling indicated that a hydrophobic helix-turn-helix near the C terminus of Rdh1 (residues 289-311) projects into the cytoplasm. These data provide insight into the features necessary to orient type III (reverse signal-anchor) proteins and demonstrate that Rdh1, Crad1, and other short-chain dehydrogenases/reductases, which share similar N-terminal signaling sequences such as human Rdh5 and mouse Rdh4, orient with their catalytic domains facing the cytoplasm.  相似文献   

9.
The N-terminal signal anchor of cytochrome P-450 2C1 mediates retention in the endoplasmic reticulum (ER) membrane of several reporter proteins. The same sequence fused to the C terminus of the extracellular domain of the epidermal growth factor receptor permits transport of the chimeric protein to the plasma membrane. In the N-terminal position, the ER retention function of this signal depends on the polarity of the hydrophobic domain and the sequence KQS in the short hydrophilic linker immediately following the transmembrane domain. To determine what properties are required for the ER retention function of the signal anchor in a position other than the N terminus, the effect of mutations in the linker and hydrophobic domains on subcellular localization in COS1 cells of chimeric proteins with the P-450 signal anchor in an internal or C-terminal position was analyzed. For the C-terminal position, the signal anchor was fused to the end of the luminal domain of epidermal growth factor receptor, and green fluorescent protein was additionally fused at the C terminus of the signal anchor for the internal position. In these chimeras, the ER retention function of the signal anchor was rescued by deletion of three leucines at the C-terminal side of its hydrophobic domain; however, deletion of three valines from the N-terminal side did not affect transport to the cell surface. ER retention of the C-terminal deletion mutants was eliminated by substitution of alanines for glutamine and serine in the linker sequence. These data are consistent with a model in which the position of the linker sequence at the membrane surface, which is critical for ER retention, is dependent on the transmembrane domain.  相似文献   

10.
Presentation of peptides derived from cytosolic and nuclear proteins by MHC class I molecules requires their translocation across the membrane of the endoplasmic reticulum (ER) by a specialized ABC (ATP-binding cassette) transporter, TAP. To investigate the topology of the heterodimeric TAP complex, we constructed a set of C-terminal deletions for the TAP1 and TAP2 subunits. We identified eight and seven transmembrane (TM) segments for TAP1 and TAP2, respectively. TAP1 has both its N and C terminus in the cytoplasm, whereas TAP2 has its N terminus in the lumen of the ER. A putative TM pore consists of TM1-6 of TAP1 and, by analogy, TM1-5 of TAP2. Multiple ER-retention signals are present within this region, of which we positively identified TM1 of both TAP subunits. The N-terminal domain containing TM1-6 of TAP1 is sufficient for dimerization with TAP2. A second, independent dimerization domain, located between the putative pore and the nucleotide-binding cassette, lies within the cytoplasmic peptide-binding domains, which are anchored to the membrane via TM doublets 7/8 and 6/7 of TAP1 and TAP2, respectively. We present a model in which TAP is composed of three subdomains: a TM pore, a cytoplasmic peptide-binding pocket, and a nucleotide-binding domain.  相似文献   

11.
The extensively glycosylated lysosome-associated membrane proteins (LAMP)-2a, b, and c are derived from a single gene by alternative splicing that produces proteins with differences in the transmembrane and cytosolic domains. The lysosomal targeting signals reside in the cytosolic domain of these proteins. LAMPs are not restricted to lysosomes but can also be found in endosomes and at the cell surface. We investigated the subcellular distribution of chimeras comprised of the lumenal domain of avian LAMP-1 and the alternatively spliced domains of avian LAMP-2. Chimeras with the LAMP-2c cytosolic domain showed predominantly lysosomal distribution, while higher levels of chimeras with the LAMP-2a or b cytosolic domain were present at the cell surface. The increase in cell surface expression was due to differences in the recognition of the targeting signals and not saturation of intracellular trafficking machinery. Site-directed mutagenesis defined the COOH-terminal residue of the cytosolic tail as critical in governing the distributions of LAMP-2a, b, and c between intracellular compartments and the cell surface.  相似文献   

12.
To determine whether protein degradation plays a role in the endoplasmic reticulum (ER) retention of cytochromes P450, the effects of proteasomal inhibitors on the expression and distribution of green fluorescent protein chimeras of CYP2C2 and related proteins was examined. In transfected cells, expression levels of chimeras of full-length CYP2C2 and its cytosolic domain, but not its N-terminal transmembrane sequence, were increased by proteasomal inhibition. Redistribution of all three chimeras from the reticular ER into a perinuclear compartment and, in a subset of cells, also to the cell surface was observed after proteasomal inhibition. Redistribution was blocked by the microtubular inhibitor, nocodazole, suggesting that redistribution to the cell surface followed the conventional vesicular transport pathway. Similar redistributions were detected for BAP31, a CYP2C2 binding chaperone; CYP2E1 and CYP3A4, which are also degraded by the proteasomal pathway; and for cytochrome P450 reductase, which does not undergo proteasomal degradation; but not for the ER membrane proteins, sec61 and calnexin. Redistribution does not result from saturation of an ER retention “receptor” since in some cases protein levels were unaffected. Proteasomal inhibition may, therefore, alter ER retention by affecting a protein critical for ER retention, either directly, or indirectly by affecting the composition of the ER membranes.  相似文献   

13.
The interferon-induced transmembrane (IFITM) proteins are a family of small membrane proteins that inhibit the cellular entry of several genera of viruses. These proteins had been predicted to adopt a two-pass, type III transmembrane topology with an intracellular loop, two transmembrane helices (TM1 and TM2), and extracellular N and C termini. Recent work, however, supports an intramembrane topology for the helices with cytosolic orientation of both termini. Here we determined the topology of murine Ifitm3. We found that the N terminus of Ifitm3 could be stained by antibodies at the cell surface but that this conformation was cell type-dependent and represented a minority of the total plasma membrane pool. In contrast, the C terminus was readily accessible to antibodies at the cell surface and extracellular C termini comprised most or all of those present at the plasma membrane. The addition of a C-terminal KDEL endoplasmic reticulum retention motif to Ifitm3 resulted in sequestration of Ifitm3 in the ER, demonstrating an ER-luminal orientation of the C terminus. C-terminal, but not N-terminal, epitope tags were also degraded within lysosomes, consistent with their luminal orientation. Furthermore, epitope-tagged Ifitm3 TM2 functioned as a signal anchor sequence when expressed in isolation. Collectively, our results demonstrate a type II transmembrane topology for Ifitm3 and will provide insight into its interaction with potential targets and cofactors.  相似文献   

14.
Many mitochondrial outer membrane (MOM) proteins have a transmembrane domain near the C terminus and an N-terminal cytosolic moiety. It is not clear how these tail-anchored (TA) proteins posttranslationally select their target, but C-terminal charged residues play an important role. To investigate how discrimination between MOM and endoplasmic reticulum (ER) occurs, we used mammalian cytochrome b(5), a TA protein existing in two, MOM or ER localized, versions. Substitution of the seven C-terminal residues of the ER isoform or of green fluorescent protein reporter constructs with one or two arginines resulted in MOM-targeted proteins, whereas a single C-terminal threonine caused promiscuous localization. To investigate whether targeting to MOM occurs from the cytosol or after transit through the ER, we tagged a MOM-directed construct with a C-terminal N-glycosylation sequence. Although in vitro this construct was efficiently glycosylated by microsomes, the protein expressed in vivo localized almost exclusively to MOM, and was nearly completely unglycosylated. The small fraction of glycosylated protein was in the ER and was not a precursor to the unglycosylated form. Thus, targeting occurs directly from the cytosol. Moreover, ER and MOM compete for the same polypeptide, explaining the dual localization of some TA proteins.  相似文献   

15.
Previous studies have shown that when the cytosolic domains of the type I membrane proteins TGN38 and lysosomal glycoprotein 120 (lgp120) are added to a variety of reporter molecules, the resultant chimeric molecules are localized to the trans-Golgi network (TGN) and to lysosomes, respectively. In the present study we expressed chimeric constructs of rat TGN38 and rat lgp120 in HeLa cells. We found that targeting information in the cytosolic domain of TGN38 could be overridden by the presence of the lumenal and transmembrane domains of lgp120. In contrast, the presence of the transmembrane and cytosolic domains of TGN38 was sufficient to deliver the lumenal domain of lgp120 to the trans-Golgi network. On the basis of steady-state localization of the various chimeras and antibody uptake experiments, we propose that there is a hierarchy of targeting information in each molecule contributing to sorting within the endocytic pathway. The lumenal and cytosolic domains of lgp120 contribute to sorting and delivery to lysosomes, whereas the transmembrane and cytosolic domains of TGN38 contribute to sorting and delivery to the trans-Golgi network.  相似文献   

16.
Cytochrome P450 (P450) 2C1/2 contains redundant endoplasmic reticulum (ER) retention signals and is excluded from the recycling pathway. Other P450s, such as P450 2E1, have been detected in the plasma membrane and Golgi apparatus. To examine whether the mechanisms of ER retention might differ for P450 2C1/2 and P450 2E1, chimeras of green flourescent protein and the full-length proteins, N-terminal signal/anchor sequences, or the cytoplasmic catalytic domains from these proteins have been expressed in COS1 cells. Chimeras with either the N-terminal signal/anchor sequence or the cytoplasmic domain of P450 2C1/2 were retained in the ER and the distribution was not altered by treatment with nocodazole. A chimera with full-length P450 2E1 was located in the ER, but in contrast to P450 2C1/2, treatment with nocodazole resulted in redistribution to a vesicular pattern, which suggested that this protein was retained in the ER by a retrieval mechanism. In support of this possibility, the P450 2E1 chimera, but not the P450 2C1/2 chimera, was included in transport vesicles generated in an in vitro budding assay. A chimera with only the N-terminal signal/anchor sequence of P450 2E1 fused to green fluorescent protein was located in the ER and nocodazole treatment altered its distribution, whereas a chimera with only the cytoplasmic domain of P450 2E1 was not efficiently retained in the ER and accumulated primarily in the Golgi region. These results demonstrate that the mechanisms for retention in the ER of two closely related members of the P450 superfamily are different and that the N-terminal signal/anchor sequence contains the dominant retention signal.  相似文献   

17.
The flaviviral envelope proteins, E protein and precursor membrane protein, are mainly associated with the endoplasmic reticulum (ER) through two transmembrane (TM) domains that are exposed to the luminal face of this compartment. Their retention is associated with the viral assembly process. ER-retrieval motifs were mapped at the carboxy terminus of these envelope proteins. A recombinant yellow fever (YF) 17D virus expressing the reporter green fluorescent protein (GFP) with the stem-anchor (SA) region of E protein fused to its carboxy terminus was subjected to distinct genetic mutations in the SA sequence to investigate their effect on ER retention. Initially, we introduced progressive deletions of the stem elements (H1, CS and H2). In a second set of mutants, the effect of a length increase for the first TM anchor region was evaluated either by replacing it with the longer TM of human LAMP-1 or by the insertion of the VALLLVA sequence into its carboxy terminus. We did not detect any effect on the GFP localisation in the cell, which remained associated with the ER. Further studies should be undertaken to elucidate the causes of the ER retention of recombinant proteins expressed at the intergenic E/NS1 region of the YF 17D virus polyprotein.  相似文献   

18.
A complete set of chimeras was made between the lysosomal membrane glycoprotein LEP100 and the plasma membrane-directed vesicular stomatitis virus G protein, combining a glycosylated lumenal or ectodomain, a single transmembrane domain, and a cytosolic carboxyl-terminal domain. These chimeras, the parent molecules, and a truncated form of LEP100 lacking the transmembrane and cytosolic domains were expressed in mouse L cells. Only LEP100 and chimeras that included the cytosolic 11 amino acid carboxyl terminus of LEP100 were targeted to lysosomes. The other chimeras accumulated in the plasma membrane, and truncated LEP100 was secreted. Chimeras that included the extracellular domain of vesicular stomatitis G protein and the carboxyl terminus of LEP100 were targeted to lysosomes and very rapidly degraded. Therefore, in chimera-expressing cells, virtually all the chimeric molecules were newly synthesized and still in the biosynthesis and lysosomal targeting pathways. The behavior of one of these chimeras was studied in detail. After its processing in the Golgi apparatus, the chimera entered the plasma membrane/endosome compartment and rapidly cycled between the plasma membrane and endosomes before going to lysosomes. In pulse-expression experiments, a large population of chimeric molecules was observed to appear transiently in the plasma membrane by immunofluorescence microscopy. Soon after protein synthesis was inhibited, this surface population disappeared. When lysosomal proteolysis was inhibited, chimeric molecules accumulated in lysosomes. These data suggest that the plasma membrane/early endosome compartment is on the pathway to the lysosomal membrane. This explains why mutations that block endocytosis result in the accumulation of lysosomal membrane proteins in the plasma membrane.  相似文献   

19.
The substrates for glycan synthesis in the lumen of the Golgi are nucleotide sugars that must be transported from the cytosol by specific membrane-bound transporters. The principal nucleotide sugar used for glycosylation in the Golgi of the yeast Saccharomyces cerevisiae is GDP-mannose, whose lumenal transport is mediated by the VRG4 gene product. As the sole provider of lumenal mannose, the Vrg4 protein functions as a key regulator of glycosylation in the yeast Golgi. We have undertaken a functional analysis of Vrg4p as a model for understanding nucleotide sugar transport in the Golgi. Here, we analyzed epitope-tagged alleles of VRG4. Gel filtration chromatography and co-immunoprecipitation experiments demonstrate that the Vrg4 protein forms homodimers with specificity and high affinity. Deletion analyses identified two regions essential for Vrg4p function. Mutant Vrg4 proteins lacking the predicted C-terminal membrane-spanning domain fail to assemble into oligomers (Abe, M., Hashimoto, H., and Yoda, K. (1999) FEBS Lett. 458, 309-312) and are unstable, while proteins lacking the N-terminal cytosolic tail are stable and multimerize efficiently, but are mislocalized to the endoplasmic reticulum (ER). Fusion of the N terminus of Vrg4p to related ER membrane proteins promote their transport to the Golgi, suggesting that sequences in the N terminus supply information for ER export. The dominant negative phenotype resulting from overexpression of truncated Vrg4-DeltaN proteins provides strong genetic evidence for homodimer formation in vivo. These studies are consistent with a model in which Vrg4p oligomerizes in the ER and is subsequently transported to the Golgi via a mechanism that involves positive sorting rather than passive default.  相似文献   

20.
CHIP28 is a 28-kD hydrophobic integral membrane protein that functions as a water channel in erythrocytes and renal tubule epithelial cell membranes. We examined the transmembrane topology of CHIP28 in the ER by engineering a reporter of translocation (derived from bovine prolactin) into nine sequential sites in the CHIP28 coding region. The resulting chimeras were expressed in Xenopus oocytes, and the topology of the reporter with respect to the ER membrane was determined by protease sensitivity. We found that although hydropathy analysis predicted up to seven potential transmembrane regions, CHIP28 spanned the membrane only four times. Two putative transmembrane helices, residues 52-68 and 143-157, reside on the lumenal and cytosolic surfaces of the ER membrane, respectively. Topology derived from these chimeric proteins was supported by cell-free translation of five truncated CHIP28 cDNAs, by N-linked glycosylation at an engineered consensus site in native CHIP28 (residue His69), and by epitope tagging of the CHIP28 amino terminus. Defined protein chimeras were used to identify internal sequences that direct events of CHIP28 topogenesis. A signal sequence located within the first 52 residues initiated nascent chain translocation into the ER lumen. A stop transfer sequence located in the hydrophobic region from residues 90-120 terminated ongoing translocation. A second internal signal sequence, residues 155-186, reinitiated translocation of a COOH-terminal domain (residues 186-210) into the ER lumen. Integration of the nascent chain into the ER membrane occurred after synthesis of 107 residues and required the presence of two membrane-spanning regions. From this data, we propose a structural model for CHIP28 at the ER membrane in which four membrane- spanning alpha-helices form a central aqueous channel through the lipid bilayer and create a pathway for water transport.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号