首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A Bacteroides fragilis gene (argF'(bf)), the disruption of which renders the bacterium auxotrophic for arginine, was expressed and its recombinant protein purified and studied. The novel protein catalyzes the carbamylation of N-succinyl-L-ornithine but not L-ornithine or N-acetyl-L-ornithine, forming N-succinyl-L-citrulline. Crystal structures of this novel transcarbamylase complexed with carbamyl phosphate and N-succinyl-L-norvaline, as well as sulfate and N-succinyl-L-norvaline have been determined and refined to 2.9 and 2.8 A resolution, respectively. They provide structural evidence that this protein is a novel N-succinyl-L-ornithine transcarbamylase. The data provided herein suggest that B. fragilis uses N-succinyl-L-ornithine rather than N-acetyl-L-ornithine for de novo arginine biosynthesis and therefore that this pathway in Bacteroides is different from the canonical arginine biosynthetic pathway of most organisms. Comparison of the structures of the new protein with those recently reported for N-acetyl-L-ornithine transcarbamylase indicates that amino acid residue 90 (B. fragilis numbering) plays an important role in conferring substrate specificity for N-succinyl-L-ornithine versus N-acetyl-L-ornithine. Movement of the 120 loop upon substrate binding occurs in N-succinyl-L-ornithine transcarbamylase, while movement of the 80 loop and significant domain closure take place as in other transcarbamylases. These findings provide new information on the putative role of succinylated intermediates in arginine biosynthesis and on the evolution of transcarbamylases.  相似文献   

2.
We have identified in Xanthomonas campestris a novel N-acetylornithine transcarbamylase that replaces ornithine transcarbamylase in the canonic arginine biosynthetic pathway of several Eubacteria. The crystal structures of the protein in the presence and absence of the reaction product, N-acetylcitrulline, were determined. This new family of transcarbamylases lacks the DxxSMG motif that is characteristic of all ornithine transcarbamylases (OTCases) and contains a novel proline-rich loop that forms part of the active site. The specificity for N-acetylornithine is conferred by hydrogen bonding with residues in the proline-rich loop via water molecules and by hydrophobic interactions with residues from the adjacent 80's, 120's, and proline-rich loops. This novel protein structure provides a starting point for rational design of specific analogs that may be useful in combating human and plant pathogens that utilize acetylornithine transcarbamylase rather than ornithine transcarbamylase.  相似文献   

3.
Ornithine transcarbamylase is a highly conserved enzyme in arginine biosynthesis and the urea cycle. In Xanthomonas campestris, the protein annotated as ornithine transcarbamylase, and encoded by the argF gene, is unable to synthesize citrulline directly from ornithine. We cloned and overexpressed this X. campestris gene in Escherichia coli and show that it catalyzes the formation of N-acetyl-L-citrulline from N-acetyl-L-ornithine and carbamyl phosphate. We now designate this enzyme as an acetylornithine transcarbamylase. The K(m) values for N-acetylornithine and carbamyl phosphate were 1.05 mM and 0.01 mM, respectively. Additional putative transcarbamylases that might also be misannotated were found in the genomes of members of other xanthomonads, Cytophaga, and Bacteroidetes as well as in DNA sequences of bacteria from environmental isolates. It appears that these different paths for arginine biosynthesis arose very early in evolution and that the canonical ornithine transcarbamylase-dependent pathway became the prevalent form. A potent inhibitor, N(alpha)-acetyl-N(delta)-phosphonoacetyl-L-ornithine, was synthesized and showed a midpoint of inhibition at approximately 22 nM; this compound may prove to be a useful starting point for designing inhibitors specific to this novel family of transcarbamylases.  相似文献   

4.
We have cloned a DNA complementary to the messenger RNA encoding the precursor of ornithine transcarbamylase from rat liver. This complementary DNA contains the entire protein coding region of 1062 nucleotides and 86 nucleotides of 5'- and 298 nucleotides of 3'-untranslated sequences. The predicted amino acid sequence has been confirmed by extensive protein sequence data. The mature rat enzyme contains the same number of amino acid residues (322) as the human enzyme and their amino acid sequences are 93% homologous. The rat and human amino-terminal leader sequences of 32 amino acids, on the other hand, are only 69% homologous. The rat leader contains no acidic and seven basic residues compared to four basic residues found in the human leader. There is complete sequence homology (residues 58-62) among the ornithine and aspartate transcarbamylases from E. coli and the rat and human ornithine transcarbamylases at the carbamyl phosphate binding site. Finally, a cysteine containing hexapeptide (residues 268-273), the putative ornithine binding site in Streptococcus faecalis, Streptococcus faecium, and bovine transcarbamylases, is completely conserved among the two E. coli and the two mammalian transcarbamylases.  相似文献   

5.
Our previous studies revealed that lysine is synthesized through alpha-aminoadipate in an extremely thermophilic bacterium, Thermus thermophilus HB27. Sequence analysis of a gene cluster involved in the lysine biosynthesis of this microorganism suggested that the conversion from alpha-aminoadipate to lysine proceeds in a way similar to that of arginine biosynthesis. In the present study, we cloned an argD homolog of T. thermophilus HB27 which was not included in the previously cloned lysine biosynthetic gene cluster and determined the nucleotide sequence. A knockout of the argD-like gene, now termed lysJ, in T. thermophilus HB27 showed that this gene is essential for lysine biosynthesis in this bacterium. The lysJ gene was cloned into a plasmid and overexpressed in Escherichia coli, and the LysJ protein was purified to homogeneity. When the catalytic activity of LysJ was analyzed in a reverse reaction in the putative pathway, LysJ was found to transfer the epsilon-amino group of N(2)-acetyllysine, a putative intermediate in lysine biosynthesis, to 2-oxoglutarate. When N(2)-acetylornithine, a substrate for arginine biosynthesis, was used as the substrate for the reaction, LysJ transferred the delta-amino group of N(2)-acetylornithine to 2-oxoglutarate 16 times more efficiently than when N(2)-acetyllysine was the amino donor. All these results suggest that lysine biosynthesis in T. thermophilus HB27 is functionally and evolutionarily related to arginine biosynthesis.  相似文献   

6.
Shi D  Yu X  Roth L  Morizono H  Tuchman M  Allewell NM 《Proteins》2006,64(2):532-542
N-acetyl-L-ornithine transcarbamoylase (AOTCase) is a new member of the transcarbamoylase superfamily that is essential for arginine biosynthesis in several eubacteria. We report here crystal structures of the binary complexes of AOTCase with its substrates, carbamoyl phosphate (CP) or N-acetyl-L-ornithine (AORN), and the ternary complex with CP and N-acetyl-L-norvaline. Comparison of these structures demonstrates that the substrate-binding mechanism of this novel transcarbamoylase is different from those of aspartate and ornithine transcarbamoylases, both of which show ordered substrate binding with large domain movements. CP and AORN bind to AOTCase independently, and the main conformational change upon substrate binding is ordering of the 80's loop, with a small domain closure around the active site and little movement of the 240's loop. The structures of the complexes provide insight into the mode of substrate binding and the mechanism of the transcarbamoylation reaction.  相似文献   

7.
Catabolic ornithine transcarbamylase (cOTC; EC 2.1.3.3) catalyzes the formation of ornithine (ORN) and carbamoyl phosphate from citrulline, which constitutes the second step of the degradation of arginine via the arginine deiminase pathway. Here, we report the crystal structure of cOTC from the lactic acid bacteria Lactobacillus hilgardii (Lh-cOTC) refined to 2.1 Å resolution. The structure reveals that Lh-cOTC forms a hexameric assembly, which was also confirmed by gel-filtration chromatography and analytical ultracentrifugation. The homohexamer, with 32 point group symmetry, represents a new oligomeric state within the members of the ornithine transcarbamylase family that are typically homotrimeric or homododecameric. The C-terminal end from each subunit constitutes a key structural element for the stabilization of the hexameric assembly in solution. Additionally, the structure reveals, for the first time in the ornithine transcarbamylase family, a metal-binding site located at the 3-fold molecular symmetry axis of each trimer.  相似文献   

8.
The repression of the carAB operon encoding carbamoyl phosphate synthase leads to Lactobacillus plantarum FB331 growth inhibition in the presence of arginine. This phenotype was used in a positive screening to select spontaneous mutants deregulated in the arginine biosynthesis pathway. Fourteen mutants were genetically characterized for constitutive arginine production. Mutations were located either in one of the arginine repressor genes (argR1 or argR2) present in L. plantarum or in a putative ARG operator in the intergenic region of the bipolar carAB-argCJBDF operons involved in arginine biosynthesis. Although the presence of two ArgR regulators is commonly found in gram-positive bacteria, only single arginine repressors have so far been well studied in Escherichia coli or Bacillus subtilis. In L. plantarum, arginine repression was abolished when ArgR1 or ArgR2 was mutated in the DNA binding domain, or in the oligomerization domain or when an A123D mutation occurred in ArgR1. A123, equivalent to the conserved residue A124 in E. coli ArgR involved in arginine binding, was different in the wild-type ArgR2. Thus, corepressor binding sites may be different in ArgR1 and ArgR2, which have only 35% identical residues. Other mutants harbored wild-type argR genes, and 20 mutants have lost their ability to grow in normal air without carbon dioxide enrichment; this revealed a link between arginine biosynthesis and a still-unknown CO2-dependent metabolic pathway. In many gram-positive bacteria, the expression and interaction of different ArgR-like proteins may imply a complex regulatory network in response to environmental stimuli.  相似文献   

9.
Two separate carbamoyl phosphate synthetase activities are required for the de novo synthesis of pyrimidines and arginine in most eukaryotes. Toxoplasma gondii is novel in possessing a single carbamoyl phosphate synthetase II gene that corresponds to a glutamine-dependent form required for pyrimidine biosynthesis. We therefore examined arginine acquisition in T. gondii to determine whether the single carbamoyl phosphate synthetase II activity could provide both pyrimidine and arginine biosynthesis. We found that arginine deprivation efficiently blocks the replication of intracellular T. gondii, yet has little effect on long-term parasite viability. Addition of citrulline, but not ornithine, rescues the growth defect observed in the absence of exogenous arginine. This rescue with citrulline is ablated when parasites are cultured in a human citrullinemia fibroblast cell line that is deficient in argininosuccinate synthetase activity. These results reveal the absence of genes and activities of the arginine biosynthetic pathway and demonstrate that T. gondii is an arginine auxotroph. Arginine starvation was also found to efficiently trigger differentiation of replicative tachyzoites into bradyzoites contained within stable cyst-like structures. These same parasites expressing bradyzoite antigens can be efficiently switched back to rapidly proliferating tachyzoites several weeks after arginine starvation. We hypothesise that the absence of gene activities that are essential for the biosynthesis of arginine from carbamoyl phosphate confers a selective advantage by increasing bradyzoite switching during the host response to T. gondii infection. These findings are consistent with a model of host-parasite evolution that allowed host control of bradyzoite induction by trading off virulence for increased transmission.  相似文献   

10.
yloQ is one of 11 essential genes in Bacillus subtilis with unknown roles in the physiology of the cell. It encodes a polypeptide of 298 residues with motifs characteristic of GTPases. As a contribution to elucidating its indispensable cellular function, we have solved the crystal structure of YloQ to 1.6 A spacing, revealing a three-domain organisation. At the heart of the molecule is the putative GTPase domain, which exhibits a classical alpha/beta nucleotide-binding fold with a topology very similar to that of Ras and Era. However, as anticipated from the order in which the conserved G protein motifs appear in the sequence, the GTPase domain fold in YloQ is circularly permuted with respect to the classical GTPases. The nucleotide-binding pocket in YloQ is unoccupied, and analysis of the phosphate-binding (P) loop indicates that conformational changes in this region would be needed to accommodate GTP. The GTPase domain is flanked at its N terminus by a beta-barrel domain with an oligonucleotide/oligosaccharide-binding (OB) fold, and at its C terminus by an alpha-helical domain containing a coordinated zinc ion. This combination of protein modules is unique to YloQ and its orthologues. Sequence comparisons reveal a clustering of conserved basic and aromatic residues on one face of the OB domain, perhaps pointing to a role for YloQ in nucleic acid binding. The zinc ion in the alpha-helical domain is coordinated by three cysteine residues and a histidine residue in a novel ligand organisation. The juxtaposition of the switch I and switch II regions of the G domain and the OB and zinc-binding domains suggests that chemical events at the GTPase active site may be transduced into relative movements of these domains. The pattern of conserved residues and electrostatic surface potential calculations suggest that the OB and/or Zn-binding domains participate in nucleic acid binding consistent with a possible role for YloQ at some stage during mRNA translation.  相似文献   

11.
A novel putative SR protein, designated cisplatin resistance-associated overexpressed protein (CROP), has been cloned from cisplatin-resistant cell lines by differential display. The N-half of the deduced amino acid sequence of 432 amino acids of CROP contains cysteine/histidine motifs and leucine zipper-like repeats. The C-half consists mostly of charged and polar amino acids: arginine (58 residues or 25%), glutamate (36 residues or 16%), serine (35 residues or 15%), lysine (30 residues, 13%), and aspartate (20 residues or 9%). The C-half is extremely hydrophilic and comprises domains rich in lysine and glutamate residues, rich in alternating arginine and glutamate residues, and rich in arginine and serine residues. The arginine/serine-rich domain is dominated by a series of 8 amino acid imperfect repetitive motif (consensus sequence, Ser-Arg-Ser-Arg-Asp/Glu-Arg-Arg-Arg), which has been found in RNA splicing factors. The RNase protection assay and Western blotting analysis indicate that the expression of CROP is about 2-3-fold higher in mRNA and protein levels in cisplatin-resistant ACHN/CDDP cells than in host ACHN cells. CROP is the human homologue of yeast Luc7p, which is supposed to be involved in 5'-splice site recognition and is essential for vegetative growth.  相似文献   

12.
Ornithine transcarbamylase catalyzes the synthesis of citrulline from carbamyl phosphate and ornithine. This enzyme is involved in the biosynthesis of arginine in many organisms and participates in the urea cycle of mammals. The biosynthetic ornithine transcarbamylase has been purified from the filamentous fungus, Neurospora crassa. It was found to be a homotrimer with an apparent subunit molecular weight of 37,000 and a native molecular weight of about 110,000. Its catalytic activity has a pH optimum of 9.5 and Km's of about 5 and 2.5 mM for the substrates, ornithine and carbamyl phosphate, respectively, at pH 9.5. The Km's and pH optimum are much higher than those of previously characterized enzymes from bacteria, other fungi, and mammals. These unusual kinetic properties may be of significance with regard to the regulation of ornithine transcarbamylase in this organism, especially in the avoidance of a futile ornithine cycle. Polyclonal antibodies were raised against the purified enzyme. These antibodies and antibody raised against purified rat liver ornithine transcarbamylase were used to examine the structural similarities of the enzyme from a number of organisms. Cross-reactivity was observed only for mitochondrial ornithine transcarbamylases of related organisms.  相似文献   

13.
The most widely distributed biosynthetic pathway to initiate phosphatidic acid formation in bacterial membrane phospholipid biosynthesis involves the conversion of acyl-acyl carrier protein to acylphosphate by PlsX and the transfer of the acyl group from acylphosphate to glycerol 3-phosphate by an integral membrane protein, PlsY. The membrane topology of Streptococcus pneumoniae PlsY was determined using the substituted cysteine accessibility method. PlsY has five membrane-spanning segments with the amino terminus and two short loops located on the external face of the membrane. Each of the three larger cytoplasmic domains contains a highly conserved sequence motif. Site-directed mutagenesis revealed that each conserved domain was critical for PlsY catalysis. Motif 1 had an essential serine and arginine residue. Motif 2 had the characteristics of a phosphate-binding loop. Mutations of the conserved glycines in motif 2 to alanines resulted in a Km defect for glycerol 3-phosphate binding leading to the conclusion that this motif corresponded to the glycerol 3-phosphate binding site. Motif 3 contained a conserved histidine and asparagine that were important for activity and a glutamate that was critical to the structural integrity of PlsY. PlsY was noncompetitively inhibited by palmitoyl-CoA. These data define the membrane architecture and the critical active site residues in the PlsY family of bacterial acyltransferases.  相似文献   

14.
N-acetyl-l-glutamate synthase (NAGS), the first enzyme of bacterial/plant arginine biosynthesis and an essential activator of the urea cycle in animals, is, respectively, arginine-inhibited and activated. Site-directed mutagenesis of recombinant Pseudomonas aeruginosa NAGS (PaNAGS) delineates the arginine site in the PaNAGS acetylglutamate kinase-like domain, and, by extension, in human NAGS. Key residues for glutamate binding are identified in the acetyltransferase domain. However, the acetylglutamate kinase-like domain may modulate glutamate binding, since one mutation affecting this domain increases the Km for glutamate. The effects on PaNAGS of two mutations found in human NAGS deficiency support the similarity of bacterial and human NAGSs despite their low sequence identity.  相似文献   

15.
Mycobacterium leprae protein ML2640c belongs to a large family of conserved hypothetical proteins predominantly found in mycobacteria, some of them predicted as putative S-adenosylmethionine (AdoMet)-dependent methyltransferases (MTase). As part of a Structural Genomics initiative on conserved hypothetical proteins in pathogenic mycobacteria, we have determined the structure of ML2640c in two distinct crystal forms. As expected, ML2640c has a typical MTase core domain and binds the methyl donor substrate AdoMet in a manner consistent with other known members of this structural family. The putative acceptor substrate-binding site of ML2640c is a large internal cavity, mostly lined by aromatic and aliphatic side-chain residues, suggesting that a lipid-like molecule might be targeted for catalysis. A flap segment (residues 222-256), which isolates the binding site from the bulk solvent and is highly mobile in the crystal structures, could serve as a gateway to allow substrate entry and product release. The multiple sequence alignment of ML2640c-like proteins revealed that the central alpha/beta core and the AdoMet-binding site are very well conserved within the family. However, the amino acid positions defining the binding site for the acceptor substrate display a higher variability, suggestive of distinct acceptor substrate specificities. The ML2640c crystal structures offer the first structural glimpses at this important family of mycobacterial proteins and lend strong support to their functional assignment as AdoMet-dependent methyltransferases.  相似文献   

16.
Protein arginine methyltransferase 10 (PRMT10) is a type I arginine methyltransferase that is essential for regulating flowering time in Arabidopsis thaliana. We present a 2.6 Å resolution crystal structure of A. thaliana PRMT 10 (AtPRMT10) in complex with a reaction product, S-adenosylhomocysteine. The structure reveals a dimerization arm that is 12-20 residues longer than PRMT structures elucidated previously; as a result, the essential AtPRMT10 dimer exhibits a large central cavity and a distinctly accessible active site. We employ molecular dynamics to examine how dimerization facilitates AtPRMT10 motions necessary for activity, and we show that these motions are conserved in other PRMT enzymes. Finally, functional data reveal that the 10 N-terminal residues of AtPRMT10 influence substrate specificity, and that enzyme activity is dependent on substrate protein sequences distal from the methylation site. Taken together, these data provide insights into the molecular mechanism of AtPRMT10, as well as other members of the PRMT family of enzymes. They highlight differences between AtPRMT10 and other PRMTs but also indicate that motions are a conserved element of PRMT function.  相似文献   

17.
Chen Y  Jakoncic J  Wang J  Zheng X  Carpino N  Nassar N 《Biochemistry》2008,47(46):12135-12145
Here, we present the crystal structure of the ecdysone phosphate phosphatase (EPPase) phosphoglycerate mutase (PGM) homology domain, the first structure of a steroid phosphate phosphatase. The structure reveals an alpha/beta-fold common to members of the two histidine (2H)-phosphatase superfamily with strong homology to the Suppressor of T-cell receptor signaling-1 (Sts-1 PGM) protein. The putative EPPase PGM active site contains signature residues shared by 2H-phosphatase enzymes, including a conserved histidine (His80) that acts as a nucleophile during catalysis. The physiological substrate ecdysone 22-phosphate was modeled in a hydrophobic cavity close to the phosphate-binding site. EPPase PGM shows limited substrate specificity with an ability to hydrolyze steroid phosphates, the phospho-tyrosine (pTyr) substrate analogue para-nitrophenylphosphate ( pNPP) and pTyr-containing peptides and proteins. Altogether, our data demonstrate a new protein tyrosine phosphatase (PTP) activity for EPPase. They suggest that EPPase and its closest homologues can be grouped into a distinct subfamily in the large 2H-phosphatase superfamily of proteins.  相似文献   

18.
Sesbania mosaic virus (SeMV) capsids are stabilized by protein-protein, protein-RNA and calcium-mediated protein-protein interactions. The N-terminal random domain of SeMV coat protein (CP) controls RNA encapsidation and size of the capsids and has two important motifs, the arginine-rich motif (ARM) and the beta-annulus structure. Here, mutational analysis of the arginine residues present in the ARM to glutamic acid was carried out. Mutation of all the arginine residues in the ARM almost completely abolished RNA encapsidation, although the assembly of T=3 capsids was not affected. A minimum of three arginine residues was found to be essential for RNA encapsidation. The mutant capsids devoid of RNA were less stable to thermal denaturation when compared to wild-type capsids. The results suggest that capsid assembly is entirely mediated by CP-dependent protein-protein inter-subunit interactions and encapsidation of genomic RNA enhances the stability of the capsids. Because of the unique structural ordering of beta-annulus segment at the icosahedral 3-folds, it has been suggested as the switch that determines the pentameric and hexameric clustering of CP subunits essential for T=3 capsid assembly. Surprisingly, mutation of a conserved proline within the segment that forms the beta-annulus to alanine, or deletion of residues 48-53 involved in hydrogen bonding interactions with residues 54-58 of the 3-fold related subunit or deletion of all the residues (48-59) involved in the formation of beta-annulus did not affect capsid assembly. These results suggest that the switch for assembly into T=3 capsids is not the beta-annulus. The ordered beta-annulus observed in the structures of many viruses could be a consequence of assembly to optimize intersubunit interactions.  相似文献   

19.
Modular polyketide synthases (PKSs) are large multi-enzymatic, multi-domain megasynthases, which are involved in the biosynthesis of a class of pharmaceutically important natural products, namely polyketides. These enzymes harbor a set of repetitive active sites termed modules and the domains present in each module dictate the chemical moiety that would add to a growing polyketide chain. This modular logic of biosynthesis has been exploited with reasonable success to produce several novel compounds by genetic manipulation. However, for harnessing their vast potential of combinatorial biosynthesis, it is essential to develop knowledge based in silico approaches for correlating the sequence and domain organization of PKSs to their polyketide products. In this work, we have carried out extensive sequence analysis of experimentally characterized PKS clusters to develop an automated computational protocol for unambiguous identification of various PKS domains in a polypeptide sequence. A structure based approach has been used to identify the putative active site residues of acyltransferase (AT) domains, which control the specificities for various starter and extender units during polyketide biosynthesis. On the basis of the analysis of the active site residues and molecular modelling of substrates in the active site of representative AT domains, we have identified a crucial residue that is likely to play a major role in discriminating between malonate and methylmalonate during selection of extender groups by this domain. Structural modelling has also explained the experimentally observed chiral preference of AT domain in substrate selection. This computational protocol has been used to predict the domain organization and substrate specificity for PKS clusters from various microbial genomes. The results of our analysis as well as the computational tools for prediction of domain organization and substrate specificity have been organized in the form of a searchable computerized database (PKSDB). PKSDB would serve as a valuable tool for identification of polyketide products biosynthesized by uncharacterized PKS clusters. This database can also provide guidelines for rational design of experiments to engineer novel polyketides.  相似文献   

20.
The P130gag-fps transforming protein of Fujinami sarcoma virus (FSV) possesses tyrosine-specific protein kinase activity and autophosphorylates at Tyr-1073. Within the kinase domain of P130gag-fps is a putative ATP-binding site containing a lysine (Lys-950) homologous to lysine residues in cAMP-dependent protein kinase and p60v-src which bind the ATP analogue p-fluorosulfonylbenzoyl-5' adenosine. FSV mutants in which the codon for Lys-950 has been changed to codons for arginine or glycine encode metabolically stable but enzymatically defective proteins which are unable to effect neoplastic transformation. Kinase-defective P130gag-fps containing arginine at residue 950 was normally phosphorylated at serine residues in vivo suggesting that this amino acid substitution has a minimal effect on protein folding and processing. The inability of arginine to substitute for lysine at residue 950 suggests that the side chain of Lys-950 is essential for P130gag-fps catalytic activity, probably by virtue of a specific interaction with ATP at the phosphotransfer active site. Tyr-1073 of the Arg-950 P130gag-fps mutant protein was not significantly autophosphorylated either in vitro or in vivo, but could be phosphorylated in trans by enzymatically active P140gag-fps. These data indicate that Tyr-1073 can be modified by intermolecular autophosphorylation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号