首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
[目的]金黄色葡萄球菌作为一种分布广泛的致病微生物和研究革兰氏阳性菌遗传背景的模式菌株,利用real-time RT PCR对相关毒素及调控基因进行表达定量分析,在生物、医学、食品检测等领域具有较大研究价值.[方法]对制备好的反转录(RT,含有cDNA和DNA)和非反转录(RTˉ,仅含DNA)样品进行Real-time PCR检测,根据经典(1 E)ˉ△△Ct相对定量算法并结合PCR效率公式建立一种基因表达相对定量分析的DNA扣除法,将得到的Ct值转换为各样品含量,从RT样品中扣除RTˉ样品的量,无需DNaseⅠ酶解处理就可以去除DNA的影响,RTˉ样品的检测结果还可同时作为稳定的DNA内参.[结果]采用以上方法分析金黄色葡萄球菌肠毒素A基因(sea)、16S rRNA和RNA Ⅲ的表达情况,在含有葡萄糖的NB培养基中sea的相对转录水平随着葡萄糖浓度的增大而升高,RNAⅢ的相对转录水平随葡萄糖浓度的变化而产生小幅度的波动,16S rRNA在菌体生长初期时的表达量较为稳定;与绝对定量法比较,结果差异较小(均小于15%),且差异不显著(p>0.05).[结论]这种基于DNA扣除法的Real-time RT PCR相对定量方法可以有效的对金黄色葡萄球菌的基因表达进行分析.  相似文献   

3.
4.
吕占军  王秀芳  翟羽  宋淑霞 《遗传》2003,25(1):30-36
同样的基因在不同的分化细胞中表达不同,基因的选择性表达问题涉及分化和衰老的本质。转录基因对DNaseⅠ(DNA酶Ⅰ)消化敏感,本文研究了RNA对小鼠重组染色质白蛋白基因DNaseⅠ消化敏感性的影响。分离BALB/c小鼠脑细胞核,加入终浓度为2mol/L的NaCl破坏核小体结构,加入不同量、不同来源的RNA,装透析袋,逐渐降低离子强度进行染色质重组。重组染色质中加入DNaseⅠ消化DNA,PCR扩增白蛋白基因的外显子1到外显子2约1200bp区段,PAGE电泳后,用银染色观察不同来源RNA促进DNaseⅠ对白蛋白基因的消化作用。不同组织来源(肝、肺、肾、脑)RNA对小鼠重组染色质中白蛋白基因DNaseⅠ消化敏感性均有促进作用,其中肝和肺RNA促进消化作用较强;酵母tRNA无显著促进消化作用;消化促进作用与RNA剂量有关。RNA能增加DNaseⅠ对白蛋白基因的消化敏感性且有组织(细胞)来源特异性。又委托丹麦Chemical R D 实验室合成2条与白蛋白基因互补的各23核苷酸的RNA,用其进行重组试验。结果表明,重组混合物中含有低至0.2μg/mL的RNA,即可以发挥显著的DNase I消化促进作用。  相似文献   

5.
6.
We developed a method for cloning cellular nucleases from streptococci. Recombinant lambda gt11 bacteriophage containing streptococcal nuclease determinants were identified by the production of pink plaques on toluidine blue O DNase plates. We used this technique to clone a 3.2-kilobase-pair EcoRI fragment with DNase activity from the chromosome of Streptococcus sanguis. The locus was designated don (DNase one) and could be subcloned and stably maintained on plasmid vectors in Escherichia coli. Minicell analyses of various subclones of the don locus allowed us to determine the coding region and size of the Don nuclease in E. coli. The don gene product had an apparent molecular mass of 34 kilodaltons and degraded native DNA most efficiently, with lesser activity against denatured DNA and no detectable activity against RNA. S. sanguis don deletion mutants were constructed by transformation of competent cells with in vitro-prepared plasmid constructs. S. sanguis don deletion mutants retained normal transformation frequencies for exogenously added donor DNA. However, when compared with Don+ wild-type cells, these mutants were hypersensitive to DNA damage induced by UV light and methyl methanesulfonate. An S. sanguis don-specific DNA probe detected homology to chromosomal DNA isolated from Streptococcus pneumoniae and Streptococcus mutans Bratthall serogroups d and g. Our results suggested that the don locus was the S. sanguis allele of the previously described S. pneumoniae major exonuclease and was involved in repair of DNA damage. Furthermore, hybridization studies suggested that the don locus was conserved among species of oral streptococci.  相似文献   

7.
Binding of nogalamycin and adriamycin with Sarcoma-180 ascites tumor cell chromatin was studied by a spectrofluorometric method. There was significant reduction in the number of available drug binding sites per nucleotide when the chromatin was digested with DNase I for a period which releases only 7% of the chromosomal DNA. Results indicate preferential binding of these drugs with DNase I hypersensitive sites of chromatin. The DNase-I hypersensitive sites of chromatin were shown to correlate to the sequences required for gene expression. Further digestion with DNase I increases availability of drug binding sites, probably due to relaxation of the compact chromatin.  相似文献   

8.
9.
G L Norman  I Bekhor 《Biochemistry》1981,20(12):3568-3578
A DNA fraction which is highly enriched in active gene sequences and tightly associated with a subset of nonhistone chromosomal proteins has been isolated from human placenta. After extraction with 2 M NaCl, placental chromatin was separated into two distinct components by centrifugation. Of the total DNA, approximately 96% (DNA-S) is protein free, while the remaining 4% (DNA-P) is tightly complexed with nonhistone chromosomal proteins. Reassociation studies revealed that the DNA-P fraction was enriched 22-fold in actively transcribed human placental lactogen gene sequences, while the DNA-S fraction was correspondingly depleted 22-fold in these sequences. Approximately 45% of the sequences present in DNA-P (equivalent to 1.8% of the genome) were not present in the DNA-S fraction. Reassociation of nick-translated DNA-P to DNA from a partial digest of DNase I treated nuclei indicated that 27% of the DNA-P sequences were DNAase I sensitive, suggesting they may represent actively transcribed gene sequences. Analysis of the overall sequence organization of DNA-P showed that relative to unfractionated DNA and DNA-S, DNA-P was enriched in single-copy sequences, slightly enriched in the class of middle repetitive sequences from C0t 0.01 to 100 M.s, devoid of the more highly repetitive sequences (C0t less than or equal to 0.01). The distribution of total active placental genes between DNA-P and DNA-S was measured by hybridization with a complementary DNA probe transcribed from total polysomal poly(A+) messenger RNA. We found that 57% of this cDNA probe reassociated to DNA-P and 58% to DNA-S, while 95% reassociated to DNA-P mixed with DNA-S at the observed ratio of 4 to 96, suggesting that the DNA-P fraction contained a different population of active gene sequences than DNA-S. From these results we estimate that approximately 85% of the transcribed sequences appear to be distinctly distributed and equally proportioned between DNA-P and DNA-S, while approximately 15% of the transcribed sequences are common to both fractions. We suggest that the strong affinity of the tightly bound nonhistone chromosomal proteins for the DNA-P fraction indicates a likely role for these proteins in the regulation of gene expression.  相似文献   

10.
Assembly of an active chromatin structure during replication.   总被引:19,自引:5,他引:14       下载免费PDF全文
MSB cells were pulse labeled with 3H-thymidine and the isolated nuclei digested with either staphylococcal nuclease (to about 40% acid solubility) or DNase I (to 15% acid solubility). The purified, nuclease resistant single-copy DNA was then hybridized to nuclear RNA (nRNA). The results of these experiments show that actively transcribed genes are assembled into nucleosome-like structures within 5-10 nucleosomes of the replication fork and that they also acquire a conformation characteristic of actively transcribed nucleosomes (ie, a DNase I sensitive structure) within 20 nucleosomes of the fork. Assuming DNA sequence specific interactions are required for establishing a DNase I sensitive conformation on active genes during each round of replication, our results indicate that a specific recognition event can occur very rapidly and very specifically in eukaryotic cells. The results are discussed in terms of the possible mechanisms responsible for propagating active, chromosomal conformations from mother cells to daughter cells.  相似文献   

11.
The application of real-time quantitative PCR (qPCR) for the detection of low concentrations of Escherichia coli as well as universal 16S rDNA has been hindered by false-positives due to endogenous contamination of PCR reagents with E. coli and other bacterial DNA. We optimized a DNase I decontamination method to eliminate false-positives in a qPCR assay targeting the uidA gene in E. coli. In contrast to previous methods reported in the literature, our decontamination method did not cause PCR inhibition. We determined that residual DNase I activity was the cause of the inhibition in the previous methods, and eliminated it by ensuring complete inactivation prior to qPCR. DNase inactivation was accomplished by adding dithiothreitol (DTT) and then heating for 30 min at 80 degrees C. The optimized DNase method was compared to another decontamination method, ultrafiltration, and to untreated controls. We detected contamination in 85% of the untreated commercial PCR master mix samples at a level of about 10 copies per well (12.5 microL of master mix). Both decontamination methods could eliminate up to 100 copies of added contaminant DNA and did not cause PCR inhibition, resulting in a reduction of the detection limit to 10 copies per reaction well.  相似文献   

12.
13.
We have developed a new procedure for the rapid preparation of undegraded total RNA from cultured cells for specific quantitation by dot blotting analysis. Pelleted cells are resuspended in hypotonic solution containing a ribonuclease inhibitor and heparin and disrupted by freeze-thaw. Heparin is employed as an agent for nuclear lysis, dissociation of chromosomal protein, and release of mRNA from rough endoplasmic reticulum. We eliminate chromosomal DNA by digestion with DNase I and denature the RNA in the lysate with formaldehyde. After centrifugation to remove debris, the supernatant is used directly for dot blotting. All manipulations are performed in the same microfuge tube and recovery of RNA is quantitative. The procedure is especially useful for processing large numbers of samples. We illustrate its versatility by analysis of specific RNAs in Drosophila, rat, and human cell lines. In reconstruction experiments, less than 80 molecules per cell of a small RNA (beta-globin) can be detected under highly stringent hybridization conditions, using only moderately labeled double-stranded plasmid DNA probes and short film exposures.  相似文献   

14.
The effects of halothane on the DNase I activity in an isolated enzyme preparation and in a DNase I-globular (G) actin complex was investigated. DNase I, DNase I-G actin complexes and G actin were exposed to various (0.2–4.0 vol./%) halothane concentrations for 3 h. Thereafter, DNase I was mixed with a DNA solution and the extinction of the acid soluble supernatant of the DNase I assay was determined as a measure of DNase I activity. After 10 min of halothane exposure the DNase I activity is inhibited in direct proportion to halothane concentrations between 0.6 and 4.0 vol/%. After 10 min halothane activates inactive DNase I by inhibiting G actin, an inhibitor of DNase I. G actin, exposed to halothane, does not inhibit the activity of DNase I. The results suggest a mechanism by which halothane may contribute to chromosomal defects and disturbances of DNA metabolism in cells.  相似文献   

15.
DNase X is the first mammalian DNase to be isolated that is homologous to DNase I. In this study, we have examined its function using a novel monoclonal antibody and showed it to be expressed on the cell surface as a glycosylphosphatidylinositolanchored membrane protein. High level expression was observed in human muscular tissues and in myotubes obtained in vitro from RD rhabdomyosarcoma cells. We observed that RD myotubes incorporated a foreign gene, lacZ, by endocytosis but that expression of the encoded coding product, beta-galactosidase, was strongly inhibited. Overexpression of DNase X inhibited endocytosis-mediated gene transfer, whereas knockdown of DNase X with small interfering RNA had the opposite effect. These results reveal that DNase X provides a cell surface barrier to endocytosis-mediated gene transfer.  相似文献   

16.
Several techniques to enzymatically construct a short hairpin RNA (shRNA) expression library have been reported as tools for comprehensive genetic analyses by RNA interference. Our technique constructs an shRNA expression library from 25- to 35-bp DNA fragments by fragmenting given double-stranded DNA (dsDNA). We compared the following two procedures to efficiently prepare such small DNA fragments: one is the cleavage of dsDNA with deoxyribonuclease I (DNase I) in the presence of Mn2+ followed by blunting with T4 DNA polymerase, and the other is the introduction of nicks with DNase I in the presence of Mg2+ followed by blunting with the Klenow fragment. Consequently, the latter yielded the DNA fragments more efficiently. However, these DNA fragments were contaminated with fused DNA fragments that had originated from two regions of original dsDNA. Therefore, we used single-strand-specific exonucleases and succeeded in suppressing the production of such fused DNA fragments. Our technique allows the efficient conversion of given dsDNA to small DNA fragments.  相似文献   

17.
18.
DNA and chromatin structure of the human alpha 1 (I) collagen gene   总被引:19,自引:0,他引:19  
The human alpha 1 (I) collagen gene and 48 kilobase pairs of flanking DNA have been isolated on two overlapping cosmids. The alpha 1 (I) gene is 18 kilobase pairs long and contains a single repetitive element of the Alu family; at least 15 repetitive elements are present in the flanking DNA. Analysis of chromatin structure in nuclei isolated from cultured fibroblasts demonstrated a single chromatin domain greater than 65 kilobase pairs in length that contained 9 DNase I-hypersensitive sites. The pattern of hypersensitive sites was also determined in nuclei derived from placental tissue. Five of the DNase I-hypersensitive sites were observed in both placental and fibroblast chromatin including one site near the 5' end and another near the 3' end of alpha 1 (I). An additional two sites located near the 3' end of the alpha 1 (I) gene in fibroblast chromatin are associated with the tissue-specific use of different polyadenylation sites. Two DNase I-hypersensitive sites found only in fibroblast chromatin and one site found only in placental chromatin were located more than 10 kilobase pairs away from the alpha 1 (I) gene and may be related to tissue-specific expression of other genes in the domain. However, the only abundant placental mRNAs from the 65-kilobase pair domain were those transcribed from the alpha 1 (I) gene. These findings suggest that physical linkage does not play a predominant role in controlling coordinate expression of collagen genes.  相似文献   

19.
20.
Summary A simple and rapid procedure has been developed for the isolation of chromatin from plant leaves. The molecular weight of the DNA extracted from these chromatin preparations is comparable to that of DNA isolated by a conventional purification procedure (CTAB-CsCl-method). These results suggest that almost no degradation occurs during the isolation procedure. The effect of DNase I on three different groups of genes was studied; one of them, encoding the NADPH-protochlorophyllide oxidoreductase (PCR), represents a gene which is actively transcribed in etiolated leaf tissue. The other genes examined encode the hordein seed storage protein and 26S ribosomal RNA. The hordein genes are known to be inactive in leaves.The hordein and rDNA genes were found to be resistant to low levels of DNase I, while the gene for the PCR was highly sensitive to DNase I. During the course of digestion of the PCR gene, discrete cleavage products are generated. These indicate the presence of DNase I hypersensitive sites in the vicinity of the PCR gene in etiolated leaves. As a control naked DNA has been digested with DNase I. No differences in sensitivity between the PCR gene and the hordein genes can be detected.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号