首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effect of phorbol esters and forskolin pretreatment on basal and histamine-induced accumulation of inositol phosphates and catecholamine release was examined in cultures of bovine adrenal chromaffin cells. Histamine caused a dose-dependent, Ca2+-dependent accumulation of total inositol phosphates with an EC50 at approximately 1 microM and an eight- to 10-fold increase at 100 microM within 30 min of incubation. Histamine (10 microM) also caused the release of cellular catecholamines amounting to some 2.8% of cellular stores released over a 20-min period. Both the inositol phosphate and catecholamine responses were completely blocked by the H1-antagonist mepyramine and were insensitive to the H2-antagonist cimetidine. Examination of the time course of accumulation of the individual inositol phosphates stimulated by histamine revealed an early and sustained rise in inositol 1,4-bisphosphate content but not inositol 1,4,5-trisphosphate content at 1 min and the overall largest accumulation of inositol monophosphate after 30 min of stimulation. Pretreatment with the tumor-promoting phorbol ester phorbol 12-myristate 13-acetate (PMA) resulted in a dose-dependent, time-dependent inhibition of histamine-induced inositol phosphate formation and catecholamine secretion. In this inhibitory action, PMA exhibited high potency (IC50 of approximately 0.5 nM), an effect not shared by the inactive phorbol ester 4-alpha-phorbol 12,13-didecanoate. Pretreatment with forskolin, on the other hand, only marginally inhibited the histamine-induced inositol phospholipid metabolism and catecholamine secretion. These data suggest that protein kinase C activation in chromaffin cells may mediate a negative feedback control on inositol phospholipid metabolism.  相似文献   

2.
Bovine aortic and cerebral microvascular endothelial cells and cultured segments of canine common carotid artery possess functional receptors for the nonapeptide bradykinin which mediate a rapid increase in the formation of [3H]inositol 1-phosphate, [3H]inositol 1,4-bisphosphate, and [3H]inositol 1,4,5-trisphosphate from cell membranes containing isotopically labeled myo-inositol. Bradykinin stimulated the formation of [3H]inositol phosphates from cells in culture or tissues at threshold concentrations of 0.1 nM and 1 nM, and with a half-maximal effective concentration of 0.6-1.0 nM and 30 nM, respectively. In cultured cells, the formation of [3H]inositol trisphosphate and [3H]inositol bisphosphate preceded the formation of [3H]inositol monophosphate. Similarly, [3H]inositol phosphate formation was not inhibited by addition of calcium channel blockers, a calcium chelator, or an intracellular calcium antagonist. Calcium ionophore A23187 did not promote [3H]inositol phosphate accumulation. The receptor selectivity of the bradykinin response in cultured cells was most compatible with a type-2 mediated response. Kallidin stimulated with the same potency as bradykinin but was more potent than methionyl-lysyl-bradykinin or des-Arg9-bradykinin. The B1 receptor antagonists des-Arg9-[Leu8]-bradykinin and des-Arg10-[Leu9]-kallidin were without effect. The rapidity of the inositol phosphate response as well as the close correspondence between the bradykinin type-2 receptor mediated hydrolysis of polyphosphoinositides and changes in prostacyclin synthesis, vessel dilation, and permeability suggests that breakdown products of inositol lipids serve as second messengers mediating the effects of bradykinin on the vascular endothelium.  相似文献   

3.
The effect of dopamine receptor stimulation on the accumulation of labelled inositol phosphates in rat striatal slices under basal and stimulated conditions was examined following preincubation with [3H]inositol. Incubation of striatal slices with the selective D-1 agonist SKF 38393 or the selective D-2 agonist LY 171555 for 5 or 30 min did not affect the basal accumulation of labelled inositol mono-, bis-, tris-, and tetrakisphosphate. Resolution by HPLC of inositol trisphosphate into inositol-1,3,4-tris-phosphate and inositol-1,4,5-trisphosphate isomers revealed that under basal conditions dopamine did not influence the accumulation of inositol-1,4,5-trisphosphate. Depolarisation evoked by KCl, or addition of the muscarinic receptor agonist carbachol, produced a marked increase in the accumulation of labelled inositol phosphates in both the presence and absence of lithium. Addition of dopamine did not reduce the ability of KCl or carbachol to increase inositol phospholipid hydrolysis. In the presence of lithium, dopamine (100 microM) enhanced KCl-stimulated inositol phospholipid hydrolysis, but this effect appears to be mediated by alpha 1 adrenoceptors because it was blocked by prazosin. SKF 38393 (10 microM) or LY 171555 (10 microM) also did not affect carbachol-stimulated inositol phospholipid hydrolysis. These data, in contrast to recent reports, suggest that striatal dopamine receptors do not appear to be linked to inositol phospholipid hydrolysis.  相似文献   

4.
The ability of alcohols to regulate inositol lipid-specific phospholipase C (phosphoinositidase C) was examined in turkey erythrocyte ghosts prepared by cell lysis of erythrocytes which were prelabeled with [3H] inositol. Guanosine 5'-[gamma-thiotriphosphate] GTP[S] stimulated the production of both [3H]inositol bisphosphate (18-fold) and [3H]inositol trisphosphate (6-fold) in this system. The accumulation of [3H]inositol bisphosphate and [3H]inositol trisphosphate was linear up to 8 min following an initial lag period of 1-2 min. Ethanol (300 mM) reduced the lag period for [3H]inositol phosphate accumulation at submaximal GTP[S] concentrations and caused a shift to the left (3-fold) in the dose-response curve. Other short chain alcohols, methanol (300 mM), 1-propanol (200 mM), and 1-butanol (50 mM) also enhanced the accumulation of [3H] inositol phosphates in the presence of submaximal GTP[S] concentrations. Receptor activation by the purinergic agonist adenosine 5'-[beta-thio]disphosphate (ADP[S]) (10 microM) also reduced the lag period for [3H] inositol phosphate formation and shifted the GTP[S] dose response to the left (10-fold). In addition, ADP[S] increased the response to maximal GTP[S] concentrations. The formation of [3H]inositol phosphates induced by GTP[S] was associated with a concomitant decrease in labeling of both [3H]phosphatidylinositol monophosphate and [3H]phosphatidylinositol bisphosphate, but no decrease in [3H]phosphatidylinositol was observed. All of the alcohols tested enhanced the breakdown of [3H]polyphosphoinositides in the presence of GTP[S]. The dose response to guanosine 5'-[beta gamma-imino]triphosphate for [3H]inositol phosphate formation was displaced to the left by ethanol (300 mM) and ADP[S] (10 microM) (2- and 7-fold), respectively. ADP[S] also enhanced the maximal response to guanosine 5'-[beta gamma-imino]triphosphate. The [3H]inositol phosphate formation produced in response to NaF was unaffected by either ethanol or receptor activation. These results indicate that alcohols initiate an activation of phosphoinositidase C, mediated at the level of the regulatory guanine nucleotide-binding protein.  相似文献   

5.
The accumulation of inositol phosphates (IPs) in response to prostaglandins (PGs) was studied in NG108-15 cells preincubated with myo-[3H]inositol. As a positive control, bradykinin caused accumulation of IPs transiently at an early phase (within 1 min) and continuously during a late phase (15-60 min) of incubation in the cells. PGD2 and PGF2 alpha did not significantly cause the accumulation of IPs at an early phase but significantly stimulated inositol bisphosphate (IP2) and inositol monophosphate (IP) formation at late phase of incubation. The maximum stimulation was obtained at greater than 10(-7) M concentrations of these PGs, the levels being three-and twofold for IP2 and IP1, respectively. 9 alpha, 11 beta-PGF2 has a slight effect but PGE2 and the metabolites of PGD2 and PGF2 alpha have no effect up to 10(-6)M. The effects of PGD2 and PGF2 alpha were not additive, but the effect of each PG was additive to that of bradykinin at a late phase of incubation. Inositol 1-monophosphate was mainly identified in the stimulation by 10(-5) M PGD2 and 10(-5) M PGF2 alpha, whereas both inositol 1-monophosphate and inositol 4-monophosphate were produced in the stimulation by 10(5) M bradykinin. Depletion of extracellular Ca2+ diminished the stimulatory effect of PGD2 and PGF2 alpha and late-phase effect of bradykinin, but simple Ca2+ influx into the cells by high K+, ionomycin, or A23187 failed to cause such late-phase effects. These results suggest that PGD2 and PGF2 alpha specifically stimulate hydrolysis of inositol phospholipids.  相似文献   

6.
Phosphatidylinositol Metabolism During In Vitro Hypoxia   总被引:2,自引:2,他引:0  
The effects of in vitro histotoxic hypoxia (0.5 mM KCN) on potassium-stimulated phosphatidylinositol turnover were determined. In rat cortical slices that were prelabeled with [2-3H]inositol, depolarization with 60 mM KCl increased [2-3H]inositol monophosphate and [2-3H]inositol bisphosphate accumulation in a Ca2+-dependent manner. At early times (10 s and 1 min), histotoxic hypoxia enhanced potassium-stimulated [2-3H]inositol monophosphate and inositol bisphosphate accumulation. Under basal conditions, hypoxia did not alter the accumulation of [2-3H]inositol phosphates. These results are consistent with the following hypothesis. The hypoxic-induced increase in cytosolic free calcium that we reported previously may lead to the early stimulation of inositol phosphates formation during hypoxia through activation of phospholipase C. The impairment of inositol phosphates formation during more prolonged hypoxia may be due to negative feedback regulation of the phosphatidylinositol cascade by protein kinase C or to a reduction in ATP levels.  相似文献   

7.
Platelet-activating factor (PAF) initiated polyphosphoinositide (polyPI) breakdown and a rise of intracellular calcium concentration ([Ca2+]i) in neuroblastoma x glioma hybrid NG 108-15 cells. The accumulation of [3H]inositol trisphosphate and [3H]inositol bisphosphate was evident within 15 s after PAF stimulation, peaked at 1 min, and then gradually decayed. The increase in [3H]inositol monophosphate level was observed at 30 s, plateaued in 5 min, and was sustained up to 10 min in the presence of 10 mM LiCl. On the other hand, the rise of [Ca2+]i evoked by PAF reached a peak within 8-12 s and returned to basal levels within 1 min as measured in fura 2-loaded cells. When cells were suspended in Ca(2+)-depleted medium, the PAF-induced [Ca2+]i rise was reduced by 80%, indicating that the increase of [Ca2+]i was predominantly due to the Ca2+ influx from an extracellular source. Both PAF-induced accumulation of 3H-labeled inositol phosphates and [Ca2+]i elevation were concentration dependent with EC50 values of approximately 1 x 10(-10) and 5 x 10(-8) M, respectively. The PAF analogs 1-O-hexadecyl-2-hydroxy-sn-glycero-3-phosphocholine and 1-O-hexadecyl-2-O-methyl-rac-glycerol-3-phosphocholine were much poorer agonists at eliciting the same responses in these cells. Pretreatment of cells with pertussis toxin caused a substantial inhibition of PAF-induced accumulation of 3H-inositol phosphates. In contrast, the rise in [Ca2+]i was not significantly affected by toxin treatment at the same concentration.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
Few receptor-mediated phenomena have been detected in peripheral nerve. In this study, the ability of the muscarinic cholinergic receptor agonist carbamylcholine to enhance phosphoinositide (PPI) breakdown in sciatic nerve was investigated by measuring the accumulation of inositol phosphates. Rat sciatic nerve segments were prelabeled with myo-[3H]inositol and then incubated either with or without carbamylcholine in the presence of Li+. [3H]Inositol monophosphate ([3H]IP) accumulation contained most of the radioactivity in inositol phosphates, with [3H]inositol bisphosphate ([3H]IP2) and [3H]inositol trisphosphate ([3H]IP3) accounting for 7-8% and 1-2% of the total, respectively. In the presence of 100 microM carbamylcholine, [3H]IP accumulation increased by up to 150% after 60 min. The 50% effective concentration for the response was determined to be 20 microM carbamylcholine and stimulated IP generation was abolished by 1 microM atropine. Enhanced accumulation of IP2 and IP3 was also observed. Determination of the pA2 values for the muscarinic receptor antagonists atropine (8.9), pirenzepine (6.5), AF-DX 116 (11-[[2-[(diethylamino)methyl]-1-piperidinyl] acetyl]-5,11-dihydro-6H-pyrido[2,3-b][1,4]benzodiazepin-6-one) (5.7), and 4-diphenylacetoxy-N-methylpiperidinemethiodide (4-DAMP) (8.6) strongly suggested that the M3 muscarinic receptor subtype was predominantly involved in mediating enhanced PPI degradation. Following treatment of nerve homogenates and myelin-rich fractions with pertussis toxin and [32P]NAD+, the presence of an ADP-ribosylated approximately 40-kDa protein could be demonstrated. The results indicate that peripheral nerve contains key elements of the molecular machinery needed for muscarinic receptor-mediated signal transduction via the phosphoinositide cycle.  相似文献   

9.
Incubation of murine peritoneal macrophages with platelet-activating factor (PAF; 1-O-alkyl(C16 + C18)-2-acetyl-sn-glycerol-3-phosphorylcholine) results in the rapid accumulation of [3H]inositol phosphates and sn-1,2-diacylglycerol (DAG) and mobilization of intracellular calcium (Prpic, V., Uhing, R. J., Weiel, J. E., Jakoi, L., Gawdi, G., Herman, B., and Adams, D. O. (1988) J. Cell Biol. 107, 363-372). We have further investigated the relationship of phosphoinositide metabolism to accumulation of DAG and the possible involvement of protein kinase C in the accumulation of DAG in response to PAF. DAG accumulation proceeds at a slower rate than the accumulation of either [3H] inositol 1,4,5-trisphosphate or total [3H]inositol phosphates. Accumulation of DAG from additional precursors is suggested from both an estimation of the mass of total inositol phosphates produced and the accumulation of [3H]choline in response in PAF. Down-regulation of protein kinase C by prolonged pretreatment with phorbol ester or inhibition of the enzyme with sphingosine inhibited the PAF-generated accumulation of DAG at 10 min by approximately 80%. Under the same conditions, no inhibition of PAF-stimulated generation of [3H]inositol 1,4,5-trisphosphate was observed. Similar inhibition was observed when 10 microM ionomycin or 0.1 microM phorbol 12-myristate 13-acetate were used to stimulate accumulation of DAG. The results suggest that PAF stimulates the accumulation of DAG from source other than phosphatidylinositol metabolism in peritoneal macrophages and that this occurs subsequent to the activation of protein kinase C.  相似文献   

10.
The ability of cholinergic agonists to activate phospholipase C in bovine adrenal chromaffin cells was examined by assaying the production of inositol phosphates in cells prelabeled with [3H]inositol. We found that both nicotinic and muscarinic agonists increased the accumulation of [3H]inositol phosphates (mainly inositol monophosphate) and that the effects mediated by the two types of receptors were independent of each other. The production of inositol phosphates by nicotinic stimulation required extracellular Ca2+ and was maximal at 0.2 mM Ca2+. Increasing extracellular Ca2+ from 0.22 to 2.2 mM increased the sensitivity of inositol phosphates formation to stimulation by submaximal concentrations of 1,1-dimethyl-4-phenyl-piperazinium iodide (DMPP) but did not enhance the response to muscarine. Elevated K+ also stimulated Ca2+-dependent [3H]inositol phosphate production, presumably by a non-receptor-mediated mechanism. The Ca2+ channel antagonists D600 and nifedipine inhibited the effects of DMPP and elevated K+ to a greater extent than that of muscarine. Ca2+ (0.3-10 microM) directly stimulated the release of inositol phosphates from digitonin-permeabilized cells that had been prelabeled with [3H]inositol. Thus, cholinergic stimulation of bovine adrenal chromaffin cells results in the activation of phospholipase C by distinct muscarinic and nicotinic mechanisms. Nicotinic receptor stimulation and elevated K+ probably increased the accumulation of inositol phosphates through Ca2+ influx and a rise in cytosolic Ca2+. Because Ba2+ caused catecholamine secretion but did not enhance the formation of inositol phosphates, phospholipase C activation is not required for exocytosis. However, diglyceride and myo-inositol 1,4,5-trisphosphate produced during cholinergic stimulation of chromaffin cells may modulate secretion and other cellular processes by activating protein kinase C and/or releasing Ca2+ from intracellular stores.  相似文献   

11.
Alpha 1 adrenergic receptor function in senescent Fischer 344 rat aorta   总被引:2,自引:0,他引:2  
M D Johnson  A Wray 《Life sciences》1990,46(5):359-366
There have been numerous conflicting reports concerning alpha 1 adrenergic receptor-mediated blood vessel contraction during aging and possible changes in alpha 1 receptor transduction mechanisms have not been investigated. These studies assess capacity of the aging vascular alpha 1 receptor to stimulate production of inositol phosphates, which are its intracellular second messengers, and to elicit a contractile response via this pathway. Aortic ring segments from mature adult (6 month old) and senescent (24 month old) Fischer 344 rats were incubated with [3H]myo-inositol and then stimulated with the alpha 1 agonist norepinephrine (NE, 10(-7)M-3 x 10(-5)M) in the presence of LiCl (10mM), an inhibitor of inositol phosphate metabolism. There was a substantial increase in inositol phosphate accumulation throughout the dose range in aortic rings from 24 month old rats compared to 6 month old rats. This is an alpha 1 receptor response since it is blocked by the alpha 1 antagonist prazosin but not by the alpha 2 antagonist yohimbine. Aortic inositol phosphate accumulation in response to serotonin did not change with age. To assess second messenger stimulated contraction, aortic ring segments were placed in Ca++ free buffer and then stimulated with NE. Under these conditions Ca++ influx is eliminated and contraction depends on the actions of intracellular second messengers. There is an age-related reduction in aortic contraction in Ca++ free buffer. These results suggest that aortic alpha 1 receptor-mediated formation of inositol phosphate intracellular second messengers is enhanced during aging. Despite this, the capacity of senescent arteries to elicit contraction utilizing second messenger pathways seems to be deficient.  相似文献   

12.
Rabbit iris smooth muscle was prelabelled with myo-[3H]inositol for 90 min and the effect of carbachol on the accumulation of inositol phosphates from phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)P2], phosphatidylinositol 4-phosphate (PtdIns4P) and phosphatidylinositol (PtdIns) was monitored with anion-exchange chromatography. Carbachol stimulated the accumulation of inositol phosphates and this was blocked by atropine, a muscarinic antagonist, and it was unaffected by 2-deoxyglucose. The data presented demonstrate that, in the iris, carbachol (50 microM) stimulates the rapid breakdown of PtdIns(4,5)P2 into [3H]inositol trisphosphate (InsP3) and diacylglycerol, measured as phosphatidate, and that the accumulation of InsP3 precedes that of [3H]inositol bisphosphate (InsP2) and [3H]inositol phosphate (InsP). This conclusion is based on the following findings. Time course experiments with myo-[3H]inositol revealed that carbachol increased the accumulation of InsP3 by 12% in 15s and by 23% in 30s; in contrast, a significant increase in InsP release was not observed until about 2 min. Time-course experiments with 32P revealed a 10% loss of radioactivity from PtdIns(4,5)P2 and a corresponding 10% increase in phosphatidate labelling by carbachol in 15s; in contrast a significant increase in PtdIns labelling occurred in 5 min. Dose-response studies revealed that 5 microM-carbachol significantly increased (16%) the accumulation of InsP3 whereas a significant increase in accumulation of InsP2 and InsP was observed only at agonist concentrations greater than 10 microM. Studies on the involvement of Ca2+ in the agonist-stimulated breakdown of PtdIns(4,5)P2 in the iris revealed the following. Marked stimulation (58-78%) of inositol phosphates accumulation by carbachol in 10 min was observed in the absence of extracellular Ca2+. Like the stimulatory effect of noradrenaline, the ionophore A23187-stimulated accumulation of InsP3 was inhibited by prazosin, an alpha 1-adrenergic blocker, thus suggesting that the ionophore stimulation of PtdIns(4,5)P2 breakdown we reported previously [Akhtar & Abdel-Latif (1978) J. Pharmacol. Exp. Ther. 204, 655-688; Akhtar & Abdel-Latif (1980) Biochem. J. 192, 783-791] was secondary to the release of noradrenaline by the ionophore. The carbachol-stimulated accumulation of inositol phosphates was inhibited by EGTA (0.25 mM) and this inhibition was reversed by excess Ca2+ (1.5 mM), suggesting that EGTA treatment of the tissue chelates extracellular Ca2+ required for polyphosphoinositide phosphodiesterase activity. K+ depolarization, which causes influx of extracellular Ca2+ in smooth muscle, did not change the level of InsP3.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

13.
Toad urinary bladder epithelial cells grown in culture (primary) show a significant increase in water-soluble inositol phosphates when treated with 10(-8) M vasopressin (AVP), but not with (1-deamino-8-D-arginine)vasopressin (dDAVP), a V2-agonist. The increase in inositol phosphates was blocked by the V1-antagonist, d(CH2)5Tyr(Me)AVP, suggesting a V1-coupled phosphoinositide breakdown. The V1-antagonist had no effect on basal adenylate cyclase activity nor on that stimulated by AVP. However, the V1-antagonist was found to attenuate the hydrosmotic response of AVP, suggesting some role of the V1-receptor cascade in the water flow response. Mezerein (MZ), a non-phorbol activator of protein kinase C (PKC) increased osmotic water flow when added to the mucosal surface. The response was less in magnitude and occurred over a longer period (90 min) than that observed with AVP. In an attempt to emulate the V1-response, activation of PKC, and an increase in intracellular calcium, toad bladders were incubated with MZ and the calcium ionophore A23187 (IP). It was found that IP enhanced the water flow response to MZ at all times measured. Mz and IP were also found to enhance cAMP-mediated water flow, suggesting that apical membrane permeability may be regulated in part through V1-receptor stimulation and its respective second messengers. Collectively, these observations suggest that the V1 receptor may play a role not only as part of a negative feedback system, but also as an integral component of the enhanced water permeability that occurs at the apical membrane.  相似文献   

14.
When hepatocytes were incubated with [32P]Pi, the kinetics for the labelling of the monoester phosphate groups of phosphatidylinositol 4-phosphate and phosphatidylinositol 4,5-bisphosphate were similar to each other and slightly slower than that for the labelling of the gamma-phosphate of ATP. Analysis of the water-soluble 3H-labelled materials derived from [3H]inositol-labelled hepatocytes revealed that, in addition to inositol and its mono-, bis- and tris-phosphates (Ins, InsP, InsP2 and InsP3), these cells contained two unidentified radioactive compounds which co-eluted with InsP on anion-exchange chromatography. When [3H]inositol-labelled hepatocytes were stimulated with 0.23 microM-vasopressin in the presence of 10 mM-Li+, there was an accumulation of radioactivity in InsP, InsP2 and InsP3 but not in Ins or the two unidentified compounds. Further analysis of these inositol phosphates by h.p.l.c. revealed that vasopressin also stimulates the accumulation of inositol tetrakisphosphate (InsP4) in these cells. Vasopressin-stimulated InsP and InsP2 accumulations were maximal in the presence of 1-10 mM-Li+ but InsP3 accumulation continued to increase up to 50 mM-Li+. Accumulated inositol phosphates were retained within the cell. Li+ from 1 to 50 mM did not influence the extent of vasopressin-stimulated inositol lipid degradation in hepatocytes. In the absence of Li+, radioactivity in vasopressin-stimulated hepatocytes accumulated almost entirely in free inositol. The vasopressin-stimulated accumulation of inositol phosphates in the presence of 10 mM-Li+ was abolished by a V1-vasopressin antagonist. Inositol phosphate accumulation was not influenced by ionophore A23187, dimethyl sulphoxide or indomethacin.  相似文献   

15.
Effects of specific alpha-adrenoceptive agents (alpha 1-agonist, alpha 1-antagonist, alpha 2-agonist and alpha 2-antagonist) on the extraneuronal accumulation of 3H-isoproterenol in the perfused rat heart were examined. The extraneuronal accumulation of 3H-isoproterenol in the hearts perfused with 3H-isoproterenol (10(-6)M) under COMT inhibition by tropolone (10(-4)M) was about 6 times higher than that of intact COMT. The increase in the accumulation by COMT inhibition was regarded as 100% and the effects of specific alpha-adrenoceptive agents on the accumulation was evaluated. alpha 1-agonists, methoxamine and phenylephrine, did not affect the accumulation. alpha 1-antagonists, prazosin, bunazosin and YM-12617, significantly decreased the accumulation of 3H-isoproterenol and these IC50 values were 2 x 10(-6)M, 3.5 x 10(-6)M and 2.3 x 10(-5)M, respectively. alpha 2-agonists, clonidine and guanabenz, significantly reduced the accumulation and these IC50 values were 3.4 x 10(-5)M and 2.9 x 10(-7)M, respectively. The alpha 2-antagonist, yohimbine, did not affect the accumulation. The present experiments clearly demonstrated that the tested alpha 1-antagonists and alpha 2-agonists inhibited uptake2 in rat heart but the tested alpha 1-agonists and an alpha 2-antagonist did not inhibit it.  相似文献   

16.
Norepinephrine (NE) and the selective alpha1-adrenoceptor agonist phenylephrine (PE) both markedly stimulate the formation of [3H]inositol phosphates in a concentration-dependent manner upon incubation with [3H]myo-inositol. The selective alpha2 agonist, clonidine, did not significantly alter [3H]inositol phosphate formation, even at concentrations as high as 10(-3) M. The alpha1 antagonist prazosin (IC50, 0.036 microM) was 300 times more potent than the alpha2 antagonist yohimbine (IC50, 10.7 microM) as an inhibitor of NE (10(-4) M)-stimulated phosphatidylinositol (PI) hydrolysis. These results indicate that the alpha1-, but not the alpha2-adrenoceptor subtype in rat brain is coupled to phosphoinositide hydrolysis.  相似文献   

17.
Serum, but not epidermal growth factor (EGF), stimulated the release of radiolabeled inositol phosphates from human embryo palate mesenchyme (HEPM) cells prelabeled with [3H]-myoinositol. Pretreatment of cells with 10(-6) M dexamethasone (DEX) for 48 h had no effect on the release of inositol phosphates in response to serum. Furthermore, although treatment of the glucocorticoid-sensitive A/J strain of mouse embryo palate mesenchyme (MEPM) cells with 10(-6) M DEX inhibited their proliferation by 40%, it had no effect on the activity of phospholipase(s) C. However, DEX did enhance the incorporation of [3H]-myoinositol into membrane lipids. We interpret these data to mean that 1) serum factors enhance metabolism of inositol lipids in HEPM cells, 2) DEX does not interfere with the primary events by which agonists utilize metabolism of inositol lipids as a mechanism for transmembrane signaling, and 3) DEX may affect synthesis of phosphoinositides, as reported by Grove et al. (Biochem. Biophys. Res. Commun. 110:200-207, 1983; J. Craniofac. Genet. Dev. Biol. Suppl. 2:285-292, 1986).  相似文献   

18.
Phosphoinositide metabolism is known to be associated with neuronal or humoral stimulation of excitable cells. The present study examined whether the phosphoinositide response is involved in such events using isolated rat papillary muscles labeled with [3H]inositol. It was found that neither increase in the stimulation frequencies (0-2 Hz) nor prolongation of the pulse duration (10-70 msec) altered the labeling of phosphoinositides and the accumulation of [3H]inositol phosphates in this preparation. However, phenylephrine, a known alpha 1-agonist, was capable of provoking the breakdown of phosphoinositides associated with a positive inotropic effect in this preparation. We report the evidence that phosphoinositide response is mediated by alpha 1-adrenoceptor stimulation, but not linked with excitation-contraction coupling in cardiac muscle.  相似文献   

19.
Discrepancies exist between extent of guanylate cyclase activation by atrial natriuretic peptide (ANP) in cell-free systems and ANP-stimulated levels of cyclic GMP in whole cells, and also between receptor affinity and dose effectiveness of ANP. Therefore, we have investigated whether, in addition to receptor-coupled guanylate cyclase activation, other second-messenger cascade systems may be involved in mediating both an increase in cyclic GMP and the physiological response to ANP. Equilibrium 125I-ANP binding studies on cultured thoracic aorta smooth muscle cells revealed the existence of low-affinity (approximately 10(-8) M, 84.5 fmol/10(5) cells) and high-affinity (approximately 10(-10) M, 12.5 fmol/10(5) cells) binding sites. We confirm that ANP elevates intracellular cyclic GMP (EC50 approximately 10(-8) M) and inhibits agonist-(isoproterenol and forskolin)-induced increases in intracellular cyclic AMP (IC50 approximately 10(-9) M). ANP also stimulated breakdown of phosphatidylinositol phosphates and generation of inositol phosphates with a half-maximally effective concentration of approximately 10(-10) M. The extent of phosphatidylinositol polyphosphate hydrolysis was small (120%) in comparison to that of phosphatidylinositol (Ptd-Ins) (200%). Ptd-Ins hydrolysis was paralleled by the appearance of glycerophosphoinositol, and there was also a close temporal relationship between these processes and the accumulation of intracellular cyclic GMP. Smooth muscle cells released [3H]arachidonic acid label in response to ANP (EC50 approximately 10(-10) M). Taken together, the data suggest that the vasorelaxant hormone ANP has stimulatory effects on phosphoinositol lipid metabolism via both phospholipase C (generation of inositol phosphates) and phospholipase A2 (generation of releasable [3H]arachidonic acid and indirectly glycerophosphoinositol). In contrast, stimulation of phosphatidylinositol phosphate breakdown by the vasoconstrictive hormone angiotensin II is not associated with glycerophosphoinositol formation, and neither cyclic GMP nor cyclic AMP levels were influenced by this hormone.  相似文献   

20.
The following studies were conducted to determine whether luteinizing hormone (LH), a hormone which increases cellular levels of cyclic AMP, also provokes increases in 'second messengers' derived from inositol lipid metabolism (i.e. inositol phosphates and diacylglycerol). Rat granulosa cells isolated from mature Graafian follicles were prelabelled for 3 h with myo-[2-3H]inositol. LH provoked rapid (5 min) and sustained (up to 60 min) increases in the levels of inositol mono-, bis, and trisphosphates (IP, IP2 and IP3, respectively). Time course studies revealed that IP3 was formed more rapidly than IP2 and IP following LH treatment. The response to LH was concentration-dependent with maximal increases at LH concentrations of 1 microgram/ml. LiCl (2-40 mM) enhanced the LH-provoked accumulation of all [3H]inositol phosphates, presumably by inhibiting the action of inositol phosphate phosphatases. The effectiveness of LH, however, was dependent on the concentration of lithium employed; maximal increases in IP were observed at 10 mM-LiCl, whereas maximal increases in IP2 and IP3 were observed at 20 mM- and 40 mM-LiCl, respectively. The stimulatory effects of LH on inositol phosphate and progesterone accumulation were also compared with changes in cyclic nucleotide levels. LH rapidly increased levels of inositol phosphates, progesterone and cyclic AMP, but transiently reduced levels of cyclic GMP. These results demonstrate that LH increases both cyclic AMP and inositol trisphosphate (and presumably diacylglycerol) in rat granulosa cells. Our findings suggest that two messenger systems exist to mediate the action of LH in granulosa cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号