首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
TNF-alpha has been shown to inhibit procollagen alpha1(I) expression in hepatic stellate cells (HSC), although the molecular mechanisms involved have not been fully established. In the present work, we studied the possible role played by oxidative stress and NFkappaB on the antifibrogenic action of TNF-alpha on a cell line of rat HSC. Treatment of HSC with TNF-alpha did not affect either intracellular levels of reactive oxygen species or lipid peroxidation, but caused a decrease on reduced glutathione (GSH) levels. Restoration of intracellular GSH by incubation with exogenous GSH prevented the inhibition of procollagen alpha1(I) levels caused by TNF-alpha. The effect of GSH was not mimicked by antioxidants like deferoxamine, tempol or trolox. Activation of NFkappaB by TNF-alpha was also abolished by preincubation of HSC with GSH, but not by deferoxamine, tempol or trolox. These results point to GSH depletion as a mediator of TNF-alpha action in HSC.  相似文献   

2.
"Ecstasy" (3,4-methylenedioxymethamphetamine, MDMA) has been shown to be hepatotoxic for human users, but molecular mechanisms involved in this effect remained poorly understood. MDMA-induced cell damage is related to programmed cell death in serotonergic and dopaminergic neurons. However, until now there has been no evidence of apoptosis induced by MDMA in liver cells. Here we demonstrate that exposure to MDMA caused apoptosis of freshly isolated rat hepatocytes and of a cell line of hepatic stellate cells (HSC), as shown by chromatin condensation of the nuclei and accumulation of oligonucleosomal fragments in the cytoplasm. In both cell types, apoptosis correlated with decreased levels of bcl-x(L), release of cytochrome c from the mitochondria and activation of caspase 3. In HSC, but not in hepatocytes, MDMA induced poly(ADP-ribose)polymerase (PARP) proteolysis. These results suggest that apoptosis of liver cells could be involved in the hepatotoxicity of MDMA.  相似文献   

3.
4.
The fractionation of fetal calf tendon messenger RNA in 85 percent formamide sucrose gradients shows a separation of the mRNAs coding for pro α1(I) and pro α2 chains of type I collagen. This difference in sedimentation in denaturing gradients suggests that pro α2 mRNA is approxmately 1000 bases shorter than pro α1(I) mRNA. However, such a size difference is significantly greater than would be predicted from consideration of the size of the polypeptide chains coded for by these mRNAs, and thus, residual secondary structure in the mRNAs may contribute to these apparent size differences.  相似文献   

5.
6.
Malondialdehyde, the end product of lipid peroxidation, has been shown to stimulate collagen alpha1(I) (Col1a1) gene expression. However, mechanisms of this effect are unclear. The purpose of this study was to clarify these mechanisms. Rat hepatic stellate cells were cultured in the presence of 200 microm malondialdehyde, and the effects on collagen gene expression and the binding of nuclear proteins to the col1a1 promoter were analyzed. Malondialdehyde treatment induced an increase in the cellular levels of col1a1 mRNA that was abrogated by pretreating cells with cycloheximide, p-hydroxymercuribenzoate, pyridoxal 5'-phosphate, and mithramycin. Transient transfections showed that malondialdehyde exerted its effect through regulatory elements located between -220 and -110 bp of the col1a1 promoter. Gel retardation assays demonstrated that malondialdehyde increased the binding of nuclear proteins to two elements located between -161 and -110 bp of the col1a1 promoter. These bindings were supershifted with Sp1 and Sp3 antibodies. Finally, malondialdehyde increased cellular levels of the Sp1 and Sp3 proteins and Sp1 mRNA. Our data indicated that treatment of hepatic stellate cells with malondialdehyde stimulated col1a1 gene expression by inducing the synthesis of Sp1 and Sp3 and their binding to two regulatory elements located between -161 and -110 bp of the col1a1 promoter.  相似文献   

7.
We previously reported that the combination of dilinoleoylphosphatidylcholine (DLPC) and S-adenosylmethionine (SAMe), which have antioxidant properties and antifibrogenic actions, prevented leptin-stimulated tissue inhibitor of metalloproteinase (TIMP)-1 production in hepatic stellate cells (HSCs) by inhibiting H2O2-mediated signal transduction. We now show that DLPC and SAMe inhibit alpha1(I) collagen mRNA expression induced by leptin or menadione in LX-2 human HSCs. We found that DLPC and SAMe prevent H2O2 generation and restore reduced glutathione (GSH) depletion whether caused by leptin or menadione. Blocking H2O2 signaling through ERK1/2 and p38 pathways resulted in a complete inhibition of leptin or menadione-induced alpha1(I) collagen mRNA. The inhibition of collagen mRNA by DLPC and SAMe combined is at least two times more effective than that by DLPC or SAMe alone. In conjunction with the prevention of TIMP-1 production, the ability of DLPC and SAMe to inhibit alpha1(I) collagen mRNA expression provides a mechanistic basis for these innocuous compounds in the prevention of hepatic fibrosis, because enhanced TIMP-1 and collagen productions are associated with hepatic fibrogenesis and their attenuation may diminish fibrosis.  相似文献   

8.
9.
目的:建立一种新的前胶原基因探针制备方法,并用克勤克俭 检测HSC的前胶原mRNA表达。方法:从NCBIGeneBank查询Ⅰ、Ⅲ、Ⅳ型前胶原基因的序列,根据基因序列用OLIGO软件设计其引物:RT-PCR扩增基因,并用不对称PCR方法和DIG-dUTP标记前胶原基因探针,用其原位杂交检测HSC前胶原基因表达。结果:用所设计的引物和RT-PCR扩增得到目的基因,制备了DIG标记的前胶原基因探针,并用其检到HSC的前胶左面的基因表达。结论:建立了一种新的、较简易的前胶原基因探针标记方法,并对其它基因探针的标记有借鉴意义。  相似文献   

10.
Syrian hamster embryo fibroblasts transformed by 4-nitroquinoline-1-oxide (NQT-SHE cells) failed to synthesize the pro-alpha 1(I) subunit of type I procollagen but continued to synthesize altered forms of the other subunit, pro-alpha 2(I) (Peterkofsky, B., and Prather, W. (1986) J. Biol. Chem. 261, 16818-16826). This was unusual, since synthesis of the two subunits generally is coordinately regulated. Present experiments using cell-free translation and hybridization of RNA from normal and transformed Syrian hamster fibroblasts with labeled pro-alpha 1(I) DNA probes show that mRNA for pro-alpha 1(I) is absent from the transformant. In contrast, dot-blot and Southern blot hybridizations of cellular DNAs with pro-alpha 1(I) DNA probes demonstrated that the transformed cells contained pro-alpha 1(I) gene sequences and that the gross structure of the gene was unchanged by transformation. mRNA for the other type I procollagen subunit, pro-alpha 2(I), was present in transformed cells and the major collagenous polypeptide translated from this RNA migrated like the normal pro-alpha 2 subunit during sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The translated procollagen chain was cleaved to an alpha 2(I)-sized collagen chain by pepsin at 4 degrees C. These studies provide a molecular basis for the observed collagen phenotype of NQT-SHE cells.  相似文献   

11.
12.
The pathway for selective serotonergic toxicity of 3,4-methylenedioxymethamphetamine (MDMA, "Ecstasy") is poorly understood, but has been linked to hyperthermia and disturbed energy metabolism. We investigated the dose-dependency and time-course of MDMA-induced perturbations of cerebral glucose metabolism in freely moving rats using rapid sampling microdialysis (every minute) coupled to flow-injection analysis (FIA) with biosensors for glucose and lactate. Blood samples for analysis of glucose and lactate were taken at 30-45 min intervals before and after drug dosing and body temperature was monitored by telemetry. A single dose of MDMA (2-10-20 mg/kg i.v.) evoked a transient increase of interstitial glucose concentrations in striatum (139-223%) with rapid onset and of less than 2h duration, a concomitant but more prolonged lactate increase (>187%) at the highest MDMA dose and no significant depletions of striatal serotonin. Blood glucose and lactate levels were also transiently elevated (163 and 135%) at the highest MDMA doses. The blood glucose rises were significantly related to brain glucose and brain lactate changes. The metabolic perturbations in striatum and the hyperthermic response (+1.1 degrees C) following systemic MDMA treatment were entirely blocked in p-chlorophenylalanine pre-treated rats, indicating that these effects are mediated by endogenous serotonin.  相似文献   

13.
Leptin, a liver profibrogenic cytokine, induces oxidative stress in hepatic stellate cells (HSCs), with increased formation of the oxidant H2O2, which signals through p38 and extracellular signal-regulated kinase 1/2 (ERK1/2) pathways, stimulating tissue inhibitor of metalloproteinase-1 production. Since oxidative stress is a pathogenic mechanism of liver fibrosis and activation of collagen gene is a marker of fibrogenesis, we evaluated the effects of leptin on collagen I expression. We report here that, in LX-2 human HSCs, leptin enhances the levels of alpha1(I) collagen mRNA, promoter activity and protein. Janus kinase (JAK)1 and JAK2 were activated. H2O2 formation was increased; this was prevented by the JAK inhibitor AG490, suggesting a JAK-mediated process. ERK1/2 and p38 were activated, and the activation was blocked by catalase, consistent with an H2O2-dependent mechanism. AG490 and catalase also prevented leptin-stimulated alpha1(I) collagen mRNA expression. PD098059, an ERK1/2 inhibitor, abrogated ERK1/2 activation and suppressed alpha1(I) collagen promoter activity, resulting in mRNA down-regulation. The p38 inhibitor SB203580 and overexpression of dominant negative p38 mutants abrogated p38 activation and down-regulated the mRNA. While SB203580 had no effect on the promoter activity, it reduced the mRNA half-life from 24 to 4 h, contributing to the decreased mRNA level. We conclude that leptin stimulates collagen production through the H2O2-dependent and ERK1/2 and p38 pathways via activated JAK1 and JAK2. ERK1/2 stimulates alpha1(I) collagen promoter activity, whereas p38 stabilizes its mRNA. Accordingly, interference with leptin-induced oxidative stress by antioxidants provides an opportunity for the prevention of liver fibrosis.  相似文献   

14.
15.
The conversion of type I procollagen to type I collagen was studied by cleaving the protein with partically purified type I procollagen N-proteinase from chick embryos. Examination of the reaction products after incubation for varying times at 30 degrees C indicated that, during the initial stages of the reaction, pro alpha 1(I) and pro alpha 2(I) chains were cleaved at about the same rate. As a result, all the pro alpha 2(I) chains were converted to pC alpha 2(I) chains well before all the pro alpha 1 chains were cleaved. When the reaction products were examined by gel electrophoresis without reduction of interchain disulfide bonds, a distinct band of an intermediate was detected. The same intermediate was seen when the reaction was carried out at 35, 37, and 40 degrees C. The data established that over two-thirds of the type I procollagen was converted to the intermediate and that this intermediate was then slowly converted to the final product of pCcollagen. The kinetics for the reaction, however, did not fit a simple model for precursor-product relationship among substrate, intermediate, and product. Examination of the reaction products with a two-step gel procedure demonstrated that the intermediate consisted of three polypeptide chains in which the N propeptide was cleaved from one pro alpha 1 chain and one pro alpha 2(I) chain but the N propeptide was still present on one of the pro alpha 1(I) chains. In further experiments it was demonstrated that a similar intermediate was seen when a homotrimer of pro alpha 1(I) chains was partially cleaved by the enzyme.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
17.
The matricellular protein connective tissue growth factor (CCN2) is considered a faithful marker of fibroblast activation in wound healing and in fibrosis. CCN2 is induced during activation of hepatic stellate cells (HSC). Here, we investigate the molecular basis of CCN2 gene expression in HSC. Fluoroscence activated cell sorting was used to investigate CCN2 expression in HSC in vivo in mice treated with CCl(4). CCN2 and TGF-beta mRNA expression were assessed by polymerase chain reaction as a function of culture-induced activation of HSC. CCN2 promoter/reporter constructs were used to map cis-acting elements required for basal and TGFbeta-induced CCN2 promoter activity. Real-time polymerase chain reaction analysis was used to further clarify signaling pathways required for CCN2 expression in HSC. CCl(4) administration in vivo increased CCN2 production by HSC. In vitro, expression of CCN2 and TGF-beta mRNA were concommitantly increased in mouse HSC between days 0 and 14 of culture. TGFbeta-induced CCN2 promoter activity required the Smad and Ets-1 elements in the CCN2 promoter and was reduced by TGFbeta type I receptor (ALK4/5/7) inhibition. CCN2 overexpression in activated HSC was ALK4/5/7-dependent. As CCN2 overexpression is a faithful marker of fibrogenesis, our data are consistent with the notion that signaling through TGFbeta type I receptors such as ALK5 contributes to the activation of HSC and hence ALK4/5/7 inhibition would be expected to be an appropriate treatment for liver fibrosis.  相似文献   

18.
19.
Hepatic stellate cells (HSCs) are key players in liver fibrosis and regeneration via collagen degradation and synthesis. These phenomena involve inflammatory cytokines released from non-parenchymal liver cells such as Kupffer cells. Although the effects of individual cytokines on many cell types have been investigated in various conditions, such as inflammation and tissue fibrosis, investigating the effect of combined cytokines would further our understanding of the regulatory mechanisms in tissue fibrosis. Here, we report the effect of multiple cytokine combinations on primary HSCs. We first examined the effect of individual cytokines and then the simultaneous exposure of different cytokines, including interleukin-6 (IL-6), IL-1 alpha (IL-1α), platelet-derived growth factor (PDGF), tumour necrosis factor-alpha (TNF-α) and transforming growth factor-beta (TGF-β), on matrix metalloproteinase-1 (MMP1) gene expression in primary HSCs. We observed that the combination of all five cytokines induced higher levels of MMP1 gene expression. Of these cytokines, TNF-α and IL-1α were found to be the key cytokines for not only inducing MMP1 expression, but also increasing α-smooth muscle actin gene expression. In conclusion, the combined treatment of TNF-α and IL-1α on HSCs had an enhanced effect on the expression of the fibrotic genes, MMP1 and α-smooth muscle actin, so appears to be an important regulator for tissue regeneration. This finding suggests that stimulation with combined anti-fibrotic cytokines is a potential approach in the development of a novel therapy for the recovery of liver fibrosis.  相似文献   

20.
NIH 3T3 cells that are transformed by the v-fos containing FBR proviral DNA show a selective increase in alpha 1 (III) collagen synthesis, increased levels of alpha 1(III) collagen RNA and an increased synthesis of this RNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号