首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ultrastructural studies on tetraspore formation in Levringiella gardneri revealed that 3 stages may be recognized during their formation. The youngest stage consists of a uninucleate tetraspore mother cell with synaptonemal complexes present during early prophase of meiosis I. Mitochondria are aggregated around the nucleus, dictyosome activity is low, and chloroplasts occur in the peripheral cytoplasm. A 4-nucleate tetraspore mother cell is formed prior to tetrahedral cell cleavage, and an increase in the number of chloroplasts and mitochondria occurs. Small straight-profiled dictyosomes secrete vesicles into larger fibrous vesicles or contribute material to the developing tetraspore wall. During the second stage of tetraspore formation, striated vesicles form within endoplasmic reticulum, semicircular profiled dictyosomes secrete vesicles for fibrous vesicles or wall material, and starch formation increases. The final stage is characterized by the disappearance of striated vesicles, presence of straight, large dictyosomes which secrete cored vesicles, and an abundance of starch grains. Cleavage is usually complete at this stage and the tetraspore wall consists of a narrow outer layer of fibrillar material and an inner, electron transparent layer. These spores are surrounded by a tetrasporangial wall which was the original wall surrounding the tetraspore mother cell.  相似文献   

2.
The acid phosphatase activity during carposporogenesis inGigartina and tetrasporogenesis inChondria was studied using the Gomori technique. During the first steps of gonimoblast maturation ofGigartina, portions of cytoplasm are ensheathed by ER cisternae with acid phosphatase activity, giving rise to autolysosomal concentric membrane bodies. In a similar way large mucilage sacs are severed. They extrude their contents in a kind of exocytosis. Multivesicular bodies, concentrically arranged cisternae and extracytoplasmic compartments, each with acid phosphatase activity, remain in young carpospores for some time, probably as remnants of the autophagocytotic and exocytotic events. The Golgi apparatus is poorly developed in gonimoblast cells and young carpospores. It becomes a prominent cell component in maturing carpospores and then participates in cell wall formation. Only some of the dictyosomal cisternae contain acid phosphatase; these are irregularly distributed in the dictyosome. — In pre- and postmeiotic tetraspore mother cells ofChondria massive lead deposits are found in the dictyosomes and in adjacent Golgi vesicles. Finer lead precipitates occur in ER cisternae, especially in those which are sequestering starch-grain-containing portions of the cytoplasm to give rise to autolysosomes. During cell cleavage, the dictyosomes aggregate. They become devoid of acid phosphatase activity with the exception of vesicles at the trans face. Later, Golgi stacks associate and have common, Gomori positively reacting, narrow cisternae at the cis face. The Golgi apparatus derived cored vesicles do not contain lead precipitates whereas the Golgi cisternae in the final stage of tetrasporogenesis show acid phosphatase activity. Variations in acid phosphatase distribution are explained in the light of current models of membrane flow.Dedicated to Univ.-Prof. DrO. Härtel on the occasion of his 80th birthday.  相似文献   

3.
The ultrastructure of zygotosporogenesis is described for the red alga Porphyra leucosticta Thuret. Packets of eight zygotosporangia, each packet derived from a single carpogonium are interspersed among vegetative cells. Zygotospore differentiation in Porphyra can be separated into three developmental stages. (i) Young zygotospores exhibit a nucleus and a large centrally located, lobed plastid with pyrenoid. Mucilage is produced within concentric membrane structures during their dilation, thus resulting in the formation of mucilage sacs. Subsequently, these sacs release their contents, initiating the zygotospore wall formation. Straight‐profiled dictyosomes produce vesicles that also provide wall material. During the later stages of young zygotospores, starch polymerization commences, (ii) Medium‐aged zygotospores are characterized by the presence of fibrous vacuoles. These are formed from the ‘fibrous vacuole associated organelles’. The fibrous vacuoles finally discharge their contents. (iii) Mature zygotospores are recognized by the presence of numerous cored vesicles produced by dictyosomes. Cored vesicles either discharge their contents or are incorporated into the fibrous vacuoles. There is a gradual reduction of starch granules during zygotospore differentiation. Mature zygotospores are surrounded by a fibrous wall, have a large chloroplast with pyrenoid and well‐depicted phycobilisomes but are devoid of starch granules.  相似文献   

4.
I. Tsekos 《Protoplasma》1985,129(2-3):127-136
Summary The endomembrane system during carposporogenesis inChondria tenuissima was studied using electron microscopy and histochemistry. Profiles of the nucleus are convoluted, resulting in a highly increased surface area. Stacked cisternae are found within the peripheral part of the nucleus. Vesicles, tubules and membrane bound fibrillar bodies occur within the nucleoplasm. The endoplasmic reticulum surrounds the nuclear envelope.The endoplasmic reticulum and the Golgi apparatus, together with small transition vesicles, represent a functional unit. They form two different secretory substances during carposporogenesis. In young stages, carbohydrates are produced by normal dictyosomes within large, normal exocytotic Golgi vesicles. They do not react positively with PAS or Thiéry method and are believed to represent cell wall material. In later stages, the central area of the Golgi cisternae becomes filled with electron dense material. The individual cisternae are transformed into cored vesicles at the trans-face of the dictyosomes. The dense core of the vesicles is proteinaceous and stains with coomassie brilliant blue R. The peripheral fibrillar material is polysaccharidic and reacts positively using the Thiéry method. The contents of the cored vesicles are believed to participate in carpospore attachment. The ER gives rise to cytolysosomes in which starch grains are sequestrated and digested. Mucilaginous sacs seem to be similarly formed.  相似文献   

5.
Carposporangium differentiation in Caulacanthus ustulatus (Turner)Ktzing proceeds through four developmental stages. The youngestcarposporangia are embedded within confluent mucilage and containa nucleus, a few small starch granules, concentric membranebodies and proplastids without a peripheral thylakoid. The intermediate-agedcarposporangia are characterized by the formation of fibrousvacuoles by a fibrous vacuole associated organelle (FVAO). Plastidsalso start to develop their internal thylakoid system. In nearlymature carposporangia, highly active, curved dictyosomes producecored vesicles, while fibrous vacuoles increase in number anddisplay a perinuclear arrangement. Abundant starch granulesare present, some of which exhibit a degenerating appearance.A carposporangium wall is formed and plastids complete theirinternal thylakoid system. Carposporangium maturation is signalledby the presence of adhesive vesicles. Fully developed and peripherallyarranged plastids, centrally located fibrous vacuoles, fewerstarch granules and a monolayered wall are the features of maturecarposporangia. Carposporogenesis, Caulacanthus ustulatus (Turner) Kützing, red algae, ultrastructure  相似文献   

6.
Summary The columnar cells in regions 3 and 4 of the ductus epididymidis in rabbits display ultrastructural features characteristic of absorbing cells. The stereocilia show basal anastomoses and often a fibrillar core continuous with a fibrillar web in the apical cytoplasm. Numerous invaginations of the slightly downy apical cell membrane and many thick-walled apical vesicles and vacuoles contain an opaque substance similar to that seen in the lumen. The vacuoles often contain small vesicles or bodies, probably formed from the vacuolar wall by budding. Numerous bodies or vacuoles with moderately dense contents are seen in the Golgi area and in the supranuclear and intranuclear cytoplasm in region 3. In region 4 they are denser and mainly seen above the nucleus. A high acid phosphatase activity was demonstrated in most dense and some light bodies. India ink introduced by way of the rete testis was taken up from the lumen into apical invaginations, vesicles and vacuoles and slowly transferred to denser bodies below the Golgi apparatus.These observations are interpreted as evidence for a resorption of substances from the lumen by a pinocytotic process, and for their storage and perhaps digestion in the dense bodies, which appear to have a lysosomal character. The Golgi apparatus is large with many vesicles of two types and empty cisternae but few typical Golgi vacuoles. The partly granular endoplasmic reticulum is very well developed and has opaque contents. Microtubules run from the terminal bar region into the Golgi area. Thick-walled vesicles occur throughout the cytoplasm, sometimes in continuity with the cell membrane. The basal parts of the cell borders often interdigitate.Supported by a grant from the Swedish State Medical Research Council.  相似文献   

7.
Carpospore differentiation in Faucheocolax attenuata Setch. can be separated into three developmental stages. Immediately after cleaving from the multinucleate gonimoblast cell, young carpospores are embedded within confluent mucilage produced by gonimoblast cells. These carpospores contain a large nucleus, few starch grains, concentric lamellae, as well as proplastids with a peripheral thylakoid and occasionally some internal (photosynthetic) thylakoids. Proplastids also contain concentric lamellar bodies. Mucilage with a reticulate fibrous substructure is formed within cytoplasmic concentric membranes, thus giving rise to mucilage sacs. Subsequently, these mucilage sacs release their contents, forming an initial reticulate deposition of carpospore wall material. Dictyosome vesicles with large, single dark-staining granules also contribute to wall formation and may create a separating layer between the mucilage and carpospore wall. During the latter stages of young carpospores, starch is polymerized in the perinuclear cytoplasmic area and is in close contact with endoplasmic reticulum. Intermediate-aged carpospores continue their starch polymerization. Dictyosomes deposit more wall material, in addition to forming fibrous vacuoles. Proplastids form thylakoids from concentric lamellar bodies. Mature carpospores are surrounded by a two-layered carpospore wall. Cytoplasmic constituents include large floridean starch granules, peripheral fibrous vacuoles, mature chloroplasts and curved dictyosomes that produce cored vesicles which in turn are transformed into adhesive vesicles. Pit connections remain intact between carpospores but begin to degenerate. This degeneration appears to be mediated by microtubules.  相似文献   

8.
The ultrastructure of the carposporophyte and carposporogenesis is described for the red alga Scinaia articulata Setch. After fertilization, the trichogyne disappears, and the pericarp develops to form a thick protective tissue that surrounds the carposporophyte. The hypogynous cell cuts off both one-celled and two-celled sterile branches. Patches of chromatin are frequently observed in evaginations of the nuclear envelope, which appear to produce vesicles in the cytoplasm of the cell of the sterile branch. Large gonimoblast lobes extend from the carpogonium and cleave to form gonimoblast initials. Subsequently, a fusion cell is formed from fusions of the carpogonium, the hypogynous cell and the basal cell of the carpogonial branch. The mature carposporophyte comprises the fusion cell that is connected to the sterile branch cells, gonimoblast cells and carpospores and is surrounded by extensive mucilage. Young carpospores possess a large nucleus and proplastids with a peripheral thylakoid, but they have few dictyosomes and starch granules and are indistinguishable from gonimoblast cells. Subsequently, dictyosomes are formed, which produce vesicles with an electron-dense granule, which indicates an initiation of wall deposition. Thylakoid formation coincides with incipient starch granule deposition. The nuclear envelope produces fibrous vacuoles and concentric membrane bodies. Carpospores are interconnected by pit connections with two cap layers. Dictyosome activity increases, resulting in the production of vesicles, which either continue to deposit wall material or coalesce to form fibrous vacuoles. The final stage of carposporogenesis is characterized by the massive production of cored vesicles from curved dictyosomes. Mature carpospores are uninucleate and contain fully developed chloroplasts, numerous cored vesicles, numerous starch granules and fibrous vacuoles. The mature carpospore is surrounded by a wall layer and a separating layer, but a carposporangial wall is lacking.  相似文献   

9.
K. Hausmann 《Protoplasma》1977,92(3-4):263-268
Summary During the logarithmic growth of the ciliatePseudomicrothorax dubius associations between mitochondria, rough endoplasmic reticulum and dictyosomes have been observed. The Golgi apparatus is very active and it is suggested that, as a consequence of cytotic activity, the contents of the Golgi vesicles become incorporated into large irregular vacuoles as globular material. The large vacuoles develop into trichocysts and the dictyosome derived globules consolidate to ultimately form the rod-like arms of the trichocysts of theMicrothoracidae.  相似文献   

10.
The fine structure of epidermal cells, particularly in relationto dictyosomes, has been examined in different regions of dark-growncucumber hypocotyls and in response to auxin treatment, usingboth dot overlay and image analysis techniques. The most noticeablechange in cell structure along the hypocotyls is the increasein vacuolar volume. The volume fraction occupied by dictyosomesand secretory vesicles also increased, whereas that for mitochondriaremained relatively constant. During auxin treatment, the volumefraction for dictyosomes showed an increase after 30 min followedby a fall, whereas that occupied by secretory vesicles fellsteadily over 90 min. The number of cisternae per dictyosomeshowed some increase after 2 h of auxin treatment, althoughthe increase in dictyosomal material with cell expansion waslargely accounted for by an increase in the number of dictyosomes. Auxin-stimulated elongation growth of the hypocotyls was inhibitedby a range of calcium antagonists, chelators and ionophores.The most marked inhibitions were observed with calcium chloride,the chelator chlortetracycline and the ionophores verapamil,nigericin and monensin. Linear transducer experiments showedthat these compounds generally caused an immediate reductionin the rate of growth. Fine structural observations carriedout on epidermal cells showed the most obvious effects withmonensin and nigericin which caused dictyosomes and secretoryvesicles to swell. EGTA and LaCl3 caused secretory vesiclesto accumulate around dictyosomes, while the ionophore A23187had little effect. The results suggest that the concentration of Ca2+ in the cytoplasmmay be critical for cell elongation. Compounds which chelateCa2+ appear to be more effective inhibitors of growth in theinitial acid-induced phase, whereas those which affect ionicgradients are more disruptive in the second phase.Copyright1993, 1999 Academic Press Calcium, Cucumis sativus hypocotyle, dictyosomes, elongation growth, indoleacetic acid, stereology  相似文献   

11.
Vegetative myxamoebae of Acytostelium leptosomum, a cellular slime mold, have the appearance of typical eucaryotic cells. The presence of dictyosomes has been established. Elongation of the cells during aggregation and culmination appears to be mediated by dense bundles of microfibrils traversing the cells longitudinally. Microtubules are present; however, they are randomly oriented and no correlation can be made with cell elongation or with the direction of the cellulose microfibrils within the stalk. A variety of vesicles, multivesicular bodies, and lysosome-like vacuoles seems to be involved in producing and transporting stalk material to the vicinity of the stalk. However, only rarely do the vesicles empty their contents directly to the outside of the cells. It seems rather that the fibrillar material of the stalk is assembled near or directly at the plasmalemma, and can then be seen to stream away and become an integral part of the stalk. An unusual structure, the H-body, is formed in great abundance during culmination indicating its possible involvement in stalk synthesis. The H-bodies are removed from the cells prior to spore formation together with other portions of the cytoplasm at least partly by a process involving autophagic vacuoles. These vacuoles, which are also present in the spores, appear to be part of a rather complex and extensive vacuolar apparatus including the food vacuoles, contractile vacuoles, lysosome-like structures, and possibly the H-bodies. The spore coat consists of a heavy outer wall with a fibrillar substructure and two thin, dense bands lining the inside of the plasmalemma. The fibrillar nature of both the outer spore wall and the stalk was accentuated by using barium permanganate to stain sectioned material.  相似文献   

12.
The tetrasporangial initial in Palmaria palmata (L.) O. Kuntze (formerly Rhodymenia palmata (L.) Greville) arises from a cortex cell which enlarges and deposits a protein-rich wall layer. This cell undergoes mitosis to form a tetrasporocyte and a stalk cell. Synaptonemal complexes are formed in the sporocyte nucleus while in the cytoplasm floridean starch is deposited in association with ER or with particles presumed to be ribosomes. Microbody-like structures become numerous between the nuclear envelope and perinuclear ER, and clusters of non-membranous, spherical structures also are associated with the nucleus. Chromatin condensation is reversed following pachytene and a prolonged diffuse stage ensues, when dictyosomes and ER produce vesicles which deposit mucilage rich in sulfated and acidic polysaccharides around the tetrasporocyte. A conspicuous lenticular thickening of the mucilage sheath develops at the apical end of the sporangium. Dictyosomes are frequently associated with mitochondria which may be associated with chloroplasts. Following nuclear divisions the tetrasporocyte is cleaved into four spores by sequentially initiated, but simultaneously completed periclinal and anticlinal furrows. When mucilage deposition ceases, the dictyosomes begin to produce vesicles with glycoprotein-rich contents. These vesicles are abundant in released tetraspores, and they probably contain adhesive material aiding in the attachment of the liberated spores.  相似文献   

13.
The presence of dictyosomes secreting densely stained vesicles throughout endosperm protein body formation was confirmed for four cereals (rice, Oryza sativa L.; hard red winter wheat, Triticum aestivum L.; winter feed barley and spring malting barley, Hordeum vulgare L.; oats, Avena sativa L.). The contents of the Golgi vesicles and protein bodies were digested with proteases for all cereals except rice. It was found in the case of rice that OsO4 altered the proteins in the Golgi apparatus and protein bodies making them resistant to protease digestion. These results imply that the Golgi apparatus plays an important role in the concentration and transport of storage proteins into vacuoles.  相似文献   

14.
Summary The cells comprising the neural gland in the ascidians Ciona, Styela, and Botryllus have been examined for their fine structural features and enzyme cytochemistry. The gland cells are either cuboidal or irregular in outline. They are full of small vesicles, of which some are pinocytotic, as well as larger vacuoles; they become increasingly vacuolated as their shape decreases in regularity. At the same time, glycogen deposits accumulate and the cisternae of the endoplasmic reticulum become distended. Some of the vacuoles contain an electron dense material or a fibrillar substance, but the cells contain no obvious electron opaque secretory granules associated with an extensive Golgi complex such as occur in the vertebrate adenohypophysis.Acid phosphatase is localized in some of the vesicles and vacuoles, indicating that they are a kind of lysosome, the latter possibly representing autophagic vacuoles. Thiamine pyrophosphatase is also found in many vacuoles as well as in the saccules of the Golgi apparatus which in these cells is in the form of dictyosomes.The results suggest a developmental cycle of increasing cytoplasmic vacuolation, ultimately leading to a breakdown and release of the vacuolar products. The significance of these observations is considered, particularly with respect to the hypothesis that the gland represents the ascidian equivalent of the vertebrate pituitary.I am grateful to Miss Yvonne R. Carter for technical assistance with the photography and to Mr. John Rodford for producing the diagram.  相似文献   

15.
The ultrastructure of papillar cells of Brassica campestrison the day of anthesis was studied by the liquid helium rapid-freezingand a substitution-fixation method, abbreviated as the RFS method.Application of the RFS method to the analysis of papillar cellsenabled us to examine clear images of these cells which havenot been observed previously. The well-developed rough and smoothendoplasmic reticulum, numerous Golgi bodies and mitochondria,various small vesicles and clathrin-coated vesicles, were presentin the cells. The numbers of Golgi bodies, as well as the numbersof cisternae of each Golgi body, increased as compared to thatin the other cells of style. Lattice-like fenestrated and flattenedcisternae were seen adjacent to the narrowest trans cisternaof the Golgi body, which had a partially coated region at itsperiphery. Many coated vesicles were observed in the vicinityof this structure and the plasma membrane. Coated areas on theplasma membrane were also observed. The ultrastructure of papillarcells on the day of anthesis indicated that they are very activesecretory cells. By using an antibody against S8-protein andsections prepared by the RFS method, we demonstrated the distributionof S8-protein in the cell wall of papillar cells of homozygousplants of Brassica campestris SgS8. (Received June 26, 1990; Accepted September 29, 1990)  相似文献   

16.
GORI  P. 《Annals of botany》1982,50(4):451-457
Gastroclonium clavatum tetrasporogenesis have been studied usinglight and electron microscopy. They are spherical bodies whichdifferentiate early and 50–70 per branch segment havebeen recorded. The developing sporangia expand into the largethallus cavity. The plastids become dispersed evenly throughthe cytoplasm at this stage. Thylakoids become arranged as parallelarrays and sporadically a single peripheral thylakoid enclosesall the others; the matrices contain globules reaching a maximumdiameter of 270 nm. Plastid multiplication occurs through binaryor multiple fission. The starch occurs in bowl-shaped grains.The mitochondria are always rich in cristae and often providedwith small opaque inclusions. The Golgi apparatus is markedby pleomorphic dictyosome features. Dictyosome-mitochondrionassociations are frequent. The different kinds of cytoplasmicinclusion are described. Gastroclonium clavatum, Rhodophyta, tetrasporogenesis, ultrastructure  相似文献   

17.
Cytochalasin B (CB) applied to young developing cells of the desmid Euastrum oblongum Ralfs ex Ralfs, at concentrations that do not entirely inhibit cytoplasmic streaming, retarded cell growth and caused malformations of cell shape. While the basic symmetry of the cell was maintained, only the first indentations were formed and the cell body appeared to be swollen. Electron microscopic investigations revealed that vesicle production at the dictyosomes was disturbed by cytochalasin. In contrast to untreated control cells, where vesicles with electron-dense contents (“dark vesicles”) were formed during primary wall formation, vesicles pinched off by the dictyosomes during CB treatment exhibited an “empty” appearance. These vesicles, which correspond to the “dark vesicles” in size, were accumulated around the dictyosomes without being transported to the plasma membrane and were frequently connected to the trans-cisternae of the Golgi bodies. We speculate that CB may influence the transfer of products from the endoplasmic reticulum (ER) to the dictyosomes via transition vesicles, which results in a disturbed vesicle production at the Golgi bodies. CB also causes a shift in ER and dictyosome distribution. Moreover, a cortical actin system appears to be involved in the cell shaping of Euastrum. The arrangement of microtubules around the nucleus is not affected by the drug.  相似文献   

18.
Carposporogenesis in Caloglossa leprieurii is divided into three cytological stages. At stage I, the young spores have few plastids and little starch. Abundant dictyosomes secrete a gelatinous wall layer in scale-like units. At stage II, dictyosomes produce a second fibrillar wall component in addition to the gelatinous constituent. Large fibrillar vesicles accumulate in the cytoplasm. Production of gelatinous material decreases in this stage. By stage III, starch grains and fully developed plastids are abundant. Rough endoplasmic reticulum occupies much of the peripheral cytoplasm. A dense, granular proteinaceous component appears in the wall in association with the fibrillar layer. Arrays of randomly oriented tubules are scattered in the cytoplasm. The mature carpospore is surrounded by an outer gelatinous wall layer and an inner fibrillar layer. Few dictyosomes persist in the mature spore. Carposporogenesis in Caloglossa is compared with that in other red algae.  相似文献   

19.
The subapical meristem of actively growing barley roots produces series of undifferentiated cells, some of which are devoid of vacuoles. At the beginning of their differentiation, the Golgi apparatus gives rise to vesicles and tubules which concentrate hydrolases, acid phosphatase being the typical representative of these enzymes. Some of these structures organize themselves as sequestration vacuoles. Then, the imprisoned fraction is destroyed by the process of autophagy after an alteration of the vacuolar internal membrane. These structures are identical to the “provacuolar apparatus” described by Marty in Euphorbia characias roots. Lytic processes which develop in autophagic vacuoles give rise to the first true meristematic vacuoles. Relations between dictyosomes, provacuoles and vacuoles, and their degree of exclusivity are discussed.  相似文献   

20.
The ultrastructure of carposporophyte development is described for the red alga Gloiosiphonia verticillaris Farl. The auxiliary cell produces gonimoblast initials, which divide to produce two types of gonimoblast cells—the nondividing vacuolate cells and terminal generative gonimoblast cells. The generative gonimoblast cells form clusters of carpospore initials, which eventually differentiate into carpospores. After gonimoblast filaments are formed, the auxiliary cell undergoes autolysis, causing degeneration of septal plugs between the auxiliary cell and adjacent cells, thus forming a fusion cell. Since this cell lacks starch and appears degenerate throughout carposporophyte development, a nutritive function cannot be ascribed to the fusion cell. Carpospore differentiation is simple and proceeds through three developmental stages. Young carpospores structurally resemble gonimoblast cells, because they contain undeveloped plastids, large quantities of floridean starch, and are surrounded by extensive mucilage instead of a distinct wall. In addition, dictyosomes form and begin to produce vesicles with fibrous contents representing carpospore wall material. During the intermediate stage, dictyosomes continue to produce vesicles that contribute additional carpospore wall material, thereby compressing the mucilage and creating a darker-staining layer outside the carpospore wall. Plastids form internal thylakoids by invaginations of the inner membrane of the peripheral thylakoid. The endoplasmic reticulum forms large granular vacuoles that appear to be degraded during subsequent stages of development. Mature carpospores form cored vesicles. They also contain mature chloroplasts, large amounts of floridean starch, and occasionally granular vacuoles. During this stage, interconnecting carpospore-carpospore and carpospore-gonimoblast cell septal plugs begin to undergo degeneration. This process may be mediated by tubular structures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号