首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the present study, the diversity of rumen methanogens in crossbred Karan Fries cattle was determined by constructing 16S rRNA and mcrA (methyl coenzyme-M reductase α subunit) gene libraries using specific primers. All thirteen OTUs or phylotypes from 16S rRNA library clustered with order Methanobacteriales, twelve of which aligned with Methanobrevibacter spp., whereas one OTU resemble with Methanosphaera stadtmanae. Out of eighteen OTUs identified from mcrA gene library, fifteen clustered with order Methanobacteriales, two resemble with Methanomicrobiales and remaining one grouped with Methanosarcinales. These results revealed that Methanobrevibacter phylotype was predominantly present in Karan Fries crossbred cattle fed on high fibrous diet containing wheat straw. Compared to 16S rRNA gene, mcrA gene OTUs clustered in three orders providing better insights of rumen methanogens diversity in cattle.  相似文献   

2.
Recently it was reported that methanogens of the genus Methanobrevibacter exhibit catalase activity. This was surprising, since Methanobrevibacter species belong to the order Methanobacteriales, which are known not to contain cytochromes and to lack the ability to synthesize heme. We report here that Methanobrevibacter arboriphilus strains AZ and DH1 contained catalase activity only when the growth medium was supplemented with hemin. The heme catalase was purified and characterized, and the encoding gene was cloned. The amino acid sequence of the catalase from the methanogens is most similar to that of Methanosarcina barkeri.  相似文献   

3.
An in vivo study aiming to investigate the rumen methanogens community structure was conducted in Mandya sheep fed on straw and concentrate diet. The ruminal fluid samples were collected and processed for unravelling the rumen microbiota and methanogens diversity. Further, the daily enteric methane emission and methane yield was also quantified using the SF6 tracer technique. Results indicated that the Bacteroidetes (~57%) and Firmicutes (25%) were two prominent affiliates of the bacterial community. Archaea represented about 2.5% of the ruminal microbiota. Methanobacteriales affiliated methanogens were the most prevalent in sheep rumen. The study inveterate that the ruminal archaea community in sheep is composed of 9 genera and 18 species. Methanobrevibacter represented the largest genus of the archaeome, while methylotrophs genera constituted only 13% of the community. Methanobrevibacter gottschalkii was the prominent methanogen, and Methaobrevibacter ruminantium distributed at a lower frequency (~2.5%). Among Methanomassiliicoccales, Group 12 sp. ISO4-H5 constituted the most considerable fraction (~11%). KEGG reference pathway for methane metabolism indicated the formation of methane through hydrogenotrophic and methylotrophic pathways, whereas the acetoclastic pathway was not functional in sheep. The enteric methane emission and methane yield was 19.7 g/d and 20.8 g/kg DMI, respectively. Various species of Methanobrevibacter were differently correlated, and the distribution of hydrogenotrophic methanogens mainly explained the variability in methane yield between the individual sheep. It can be inferred from the study that the hydrogenotrophic methanogens dominate the rumen archaeal community in sheep and methylotrophic/aceticlastic methanogens represent a minor fraction of the community. Further studies are warranted for establishing the metabolic association between the prevalent hydrogenotrophs and methylotrophs to identify the key reaction for reducing methane emission.  相似文献   

4.
A mesophilic acetogenic bacterium (MPOB) oxidized propionate to acetate and CO2 in cocultures with the formate- and hydrogen-utilizing methanogens Methanospirillum hungatei and Methanobacterium formicicum. Propionate oxidation did not occur in cocultures with two Methanobrevibacter strains, which grew only with hydrogen. Tricultures consisting of MPOB, one of the Methanobrevibacter strains, and organisms which are able to convert formate into H2 plus CO2 (Desulfovibrio strain G11 or the homoacetogenic bacterium EE121) also degraded propionate. The MPOB, in the absence of methanogens, was able to couple propionate conversion to fumarate reduction. This propionate conversion was inhibited by hydrogen and by formate. Formate and hydrogen blocked the energetically unfavorable succinate oxidation to fumarate involved in propionate catabolism. Low formate and hydrogen concentrations are required for the syntrophic degradation of propionate by MPOB. In triculture with Methanospirillum hungatei and the aceticlastic Methanothrix soehngenii, propionate was degraded faster than in biculture with Methanospirillum hungatei, indicating that low acetate concentrations are favorable for propionate oxidation as well.  相似文献   

5.
The primary objective of this study was to investigate the effect of dietary fiber on methanogenic diversity and community composition in the hindgut of indigenous Chinese Lantang gilts to explain the unexpected findings reported earlier that Lantang gilts fed low-fiber diet (LFD) produced more methane than those fed high-fiber diet (HFD). In total, 12 Lantang gilts (58.7±0.37 kg) were randomly divided into two dietary groups (six replicates (pigs) per group) and fed either LFD (NDF=201.46 g/kg) or HFD (NDF=329.70 g/kg). Wheat bran was the main source of fiber for the LFD, whereas ground rice hull (mixture of rice hull and rice bran) was used for the HFD. Results showed that the methanogens in the hindgut of Lantang gilts belonged to four known species (Methanobrevibacter ruminantium, Methanobrevibacter wolinii, Methanosphaera stadtmanae and Methanobrevibacter smithii), with about 89% of the methanogens belonging to the genus Methanobrevibacter. The 16S ribosomal RNA (rRNA) gene copies of Methanobrevibacter were more than three times higher (P<0.05) for gilts fed LFD (3.31×109 copies/g dry matter (DM)) than gilts fed HFD (1.02×109 copies/g DM). No difference (P>0.05) was observed in 16S rRNA gene copies of Fibrobacter succinogenes between the two dietary groups, and 18S rRNA gene copies of anaerobic fungi in gilts fed LFD were lower than (P<0.05) those fed HFD. To better explain the effect of different fiber source on the methanogen community, a follow-up in vitro fermentation using a factorial design comprised of two inocula (prepared from hindgut content of gilts fed two diets differing in their dietary fiber)×four substrates (LFD, HFD, wheat bran, ground rice hull) was conducted. Results of the in vitro fermentation confirmed that the predominant methanogens belonged to the genus of Methanobrevibacter, and about 23% methanogens was found to be distantly related (90%) to Thermogymnomonas acidicola. In vitro fermentation also seems to suggest that fiber source did change the methanogens community. Although the density of Methanobrevibacter species was positively correlated with CH4 production in both in vivo (P<0.01, r=0.737) and in vitro trials (P<0.05, r=0.854), which could partly explain the higher methane production from gilts fed LFD compared with those in the HFD group. Further investigation is needed to explain how the rice hull affected the methanogens and inhibited CH4 emission from gilts fed HFD.  相似文献   

6.
A long-term monensin supplementation trial involving lactating dairy cattle was conducted to determine the effect of monensin on the quantity and diversity of rumen methanogens in vivo. Fourteen cows were paired on the basis of days in milk and parity and allocated to one of two treatment groups, receiving (i) a control total mixed ration (TMR) or (ii) a TMR with 24 mg of monensin premix/kg of diet dry matter. Rumen fluid was obtained using an ororuminal probe on day −15 (baseline) and days 20, 90, and 180 following treatment. Throughout the 6-month experiment, the quantity of rumen methanogens was not significantly affected by monensin supplementation, as measured by quantitative real-time PCR. The diversity of the rumen methanogen population was investigated using denaturing gradient gel electrophoresis (DGGE) and 16S rRNA clone gene libraries. DGGE analysis at each sampling point indicated that the molecular diversity of rumen methanogens from monensin-treated cattle was not significantly different from that of rumen methanogens from control cattle. 16S rRNA gene libraries were constructed from samples obtained from the rumen fluids of five cows, with a total of 166 clones examined. Eleven unique 16S rRNA sequences or phylotypes were identified, five of which have not been recognized previously. The majority of clones (98.2%) belonged to the genus Methanobrevibacter, with all libraries containing Methanobrevibacter strains M6 and SM9 and a novel phylotype, UG3322.2. Overall, long-term monensin supplementation was not found to significantly alter the quantity or diversity of methanogens in the rumens of lactating dairy cattle in the present study.  相似文献   

7.
Different hypervariable (V) regions of the archaeal 16S rRNA gene (rrs) were compared systematically to establish a preferred V region(s) for use in Archaea-specific PCR-denaturing gradient gel electrophoresis (DGGE). The PCR products of the V3 region produced the most informative DGGE profiles and permitted identification of common methanogens from rumen samples from sheep. This study also showed that different methanogens might be detected when different V regions are targeted by PCR-DGGE. Dietary fat appeared to transiently stimulate Methanosphaera stadtmanae but inhibit Methanobrevibacter sp. strain AbM4 in rumen samples.  相似文献   

8.
In previous studies, the abundance and diversity of methanogenic archaea in the dental microbiota have been analysed by the detection of specific DNA sequences by PCR-based investigations and metagenomic studies. Few data issued regarding methanogens actually living in dental plaque. We collected dental plaque specimens in 15 control individuals and 65 periodontitis patients. Dental plaque specimens were cultured in an anoxic liquid medium for methanogens in the presence of negative control tubes. Dental plaque methanogens were cultured from 1/15 (6.67%) control and 36/65 (55.38%) periodontitis patient samples (p<0.001). The cultures yielded Methanobrevibacter oralis in one control and thirty-one patients, Methanobrevibacter smithii in two patients and a potential new species named Methanobrevibacter sp. strain N13 in three patients with severe periodontitis. Our observations of living methanogens, strengthen previous observations made on DNA-based studies regarding the role of methanogens, in periodontitis.  相似文献   

9.
Jin W  Cheng YF  Mao SY  Zhu WY 《Bioresource technology》2011,102(17):7925-7931
This study aimed to obtain natural cultures of anaerobic fungi and their indigenously associated methanogens from herbivores and investigate their ability to degrade lignocelluloses to methane. Eight natural cultures were obtained by Hungate roll tube technique. The fungi were identified as belonging to Piromyces, Anaeromyces and Neocallimastix respectively by microscopy, and the methanogens as Methanobrevibacter spp. by 16S rRNA gene sequencing. In vitro studies with rice straw showed that these cultures degraded 33.5-48.3% substrate and produced 0.33-0.84 mmol/(100 ml culture) methane. Two cultures were further selected for their ability to degrade different lignocellulosic materials and could produce 0.38-1.27 mmol/(100 ml culture) methane. When methanogens were inhibited, the lignocellulose-degrading ability of cultures significantly reduced. In conclusion, natural cultures of anaerobic fungi with indigenously associated methanogens with high fiber degradation ability were obtained, and these cultures may have the potential in industrial use in lignocelluloses degradation and methane production.  相似文献   

10.
In situ detection of methanogens within the family Methanobacteriaceae is sometimes known to be unsuccessful due to the difficulty in permeability of oligonucleotide probes. Pseudomurein endoisopeptidase (Pei), a lytic enzyme that specifically acts on their cell walls, was applied prior to 16S rRNA-targeting fluorescence in situ hybridization (FISH). For this purpose, pure cultured methanogens within this family, Methanobacterium bryantii, Methanobrevibacter ruminantium, Methanosphaera stadtmanae, and Methanothermobacter thermautotrophicus together with a Methanothermobacter thermautotrophicus-containing syntrophic acetate-oxidizing coculture, endosymbiotic Methanobrevibacter methanogens within an anaerobic ciliate, and an upflow anaerobic sludge blanket (UASB) granule were examined. Even without the Pei treatment, Methanobacterium bryantii and Methanothermobacter thermautotrophicus cells are relatively well hybridized with oligonucleotide probes. However, almost none of the cells of Methanobrevibacter ruminantium, Methanosphaera stadtmanae, cocultured Methanothermobacter thermautotrophicus, and the endosymbiotic methanogens and the cells within UASB granule were hybridized. Pei treatment was able to increase the probe hybridization ratio in every specimen, particularly in the specimen that had shown little hybridization. Interestingly, the hybridizing signal intensity of Methanothermobacter thermautotrophicus cells in coculture with an acetate-oxidizing H2-producing syntroph was significantly improved by Pei pretreatment, whereas the probe was well hybridized with the cells of pure culture of the same strain. We found that the difference is attributed to the differences in cell wall thicknesses between the two culture conditions. These results indicate that Pei treatment is effective for FISH analysis of methanogens that show impermeability to the probe.  相似文献   

11.
Comparative analyses of methanogen diversity in the rumen of crossbred buffalo and cattle fed the same diet in the Philippines was performed by cloning the methyl coenzyme M reductase A (mcrA) gene. The cattle and buffalo libraries consisted of 50 clones each. Comparative analysis of the amino acid sequence revealed that these 2 libraries differed significantly (P?<?0.01). The deduced amino acid sequences of the clones were classified into 9 operational taxonomic units (OTUs) in buffalo and 11 OTUs in cattle. Sequence similarity between the clones and known cultured methanogens ranged from 86 to 97?% for buffalo and 84 to 99?% for cattle. Methanobrevibacter species were predominant in buffalo (64?% of the clones), and an unknown mcrA was predominant in cattle (52?% of the clones). A large number of clones with low similarity to cultivated methanogens was observed in both buffalo and cattle, suggesting the presence of an unknown methanogen species in their rumen.  相似文献   

12.
The bacterial population of a high-rate, anaerobic, fixed-bed loop reactor treating sulfite evaporator condensate from the pulp industry was studied over a 14-month period. This period was divided into seven cycles that included a startup at the beginning of each cycle. Some 82% of the total biomass was immobilized on and between the porous glass rings filling the reactor. The range of the total number of microorganisms in these biofilms was 2 × 109 to 7 × 109 cells per ml. Enumeration and characterization by microbiological methods and by phase-contrast, epifluorescence, and electron microscopy showed that the samples consisted mainly of the following methanogens: a Methanobacterium sp., a Methanosarcina sp., a Methanobrevibacter sp., and a Methanothrix sp., as well as furfural-degrading sulfate-reducing bacteria resembling Desulfovibrio furfuralis. Viable counts of hydrogenotrophic methanogens were relatively stable (mostly within the range of 3.2 × 108 to 7.5 × 108 cells per ml), but Methanobrevibacter cells increased from <5 to 30% of the total hydrogenotrophic count after transfer of the fixed bed into a second reactor vessel. Acetotrophic methanogens reached their highest numbers of 1.3 × 108 to 2.6 × 108 cells per ml in the last fermentation cycles. They showed a morphological shift from sarcinalike packets in early samples to single coccoid forms in later phases of the fermentation. Furfural-degrading sulfate reducers reached counts of 1 × 107 to 5.8 × 107 cells per ml. The distribution of the chief metabolic groups between free fluid and biofilms was analyzed in the fifth fermentation cycle: 4.5 times more furfural degraders were found in the free fluid than in the biofilms. In contrast, 5.8 times more acetotrophic and 16.6 times more hydrogenotrophic methanogens were found in the biofilms than in the free liquid. The data concerning time shifts of morphotypes among the trophic groups of methanogens corroborated the trends observed by using immunological assays on the same samples.  相似文献   

13.
The amount and nature of dietary starch are known to influence the extent and site of feed digestion in ruminants. However, how starch degradability may affect methanogenesis and methanogens along the ruminant''s digestive tract is poorly understood. This study examined the diversity and metabolic activity of methanogens in the rumen and cecum of lambs receiving wheat or corn high-grain-content diets. Methane production in vivo and ex situ was also monitored. In vivo daily methane emissions (CH4 g/day) were 36% (P < 0.05) lower in corn-fed lambs than in wheat-fed lambs. Ex situ methane production (μmol/h) was 4-fold higher for ruminal contents than for cecal contents (P < 0.01), while methanogens were 10-fold higher in the rumen than in the cecum (mcrA copy numbers; P < 0.01). Clone library analysis indicated that Methanobrevibacter was the dominant genus in both sites. Diet induced changes at the species level, as the Methanobrevibacter millerae-M. gottschalkii-M. smithii clade represented 78% of the sequences from the rumen of wheat-fed lambs and just about 52% of the sequences from the rumen of the corn-fed lambs. Diet did not affect mcrA expression in the rumen. In the cecum, however, expression was 4-fold and 2-fold lower than in the rumen for wheat- and corn-fed lambs, respectively. Though we had no direct evidence for compensation of reduced rumen methane production with higher cecum methanogenesis, the ecology of methanogens in the cecum should be better considered.  相似文献   

14.
Azotobacter vinelandii produces two detectable catalases during growth on minimal medium. The heat-labile catalase expressed during exponential growth phase was identified as a KatG homologue by liquid chromatography-tandem mass spectrometry (LC-MS/MS) using a mixed protein sample. The second catalase was heat resistant and had substantial residual activity after treatment at 90°C. This enzyme was purified by anion-exchange and size exclusion chromatography and was found to exhibit strong absorption at 407 nm, which is often indicative of associated heme moieties. The purified protein was fragmented by proteinase K and identified by LC-MS/MS. Some identity was shared with the MauG/bacterial cytochrome c peroxidase (BCCP) protein family, but the enzyme exhibited a strong catalase activity never before observed in this family. Because two putative c-type heme sites (CXXCH) were predicted in the peptide sequence and were demonstrated experimentally, the enzyme was designated a cytochrome c catalase (CCCAv). However, the local organization of the CCCAv heme motifs differed significantly from that of the BCCPs as the sites were confined to the C-terminal half of the catalase. A possible Ca2+ binding motif, previously described in the BCCPs, is also present in the CCCAv peptide sequence. Some instability in the presence of EGTA was observed. Expression of the catalase was abolished in cccA mutants, resulting in a nearly 8,700-fold reduction in peroxide resistance in stationary phase.  相似文献   

15.
The turnover of catalase apoprotein and catalase heme was studied in cotyledons of sunflower (Helianthus annuus L.) seedlings by density labeling of apoprotein and radioactive labeling of heme moieties. The heavy isotope (50% 2H2O) and the radioactive isotope ([14C]5-aminolevulinic acid) were applied either during growth in the dark (day 0-2.5) or in the light (day 2.5 and 5). Following isopycnic centrifugation of catalase purified from cotyledons of 5-day-old seedlings, superimposition curve fitting was used to determine the amounts of radioactive heme moieties in native and density-labeled catalase. Data from these determinations indicated that turnover of catalase heme and apoprotein essentially was coordinate. Only small amounts of heme groups were recycled into newly synthesized apoprotein during growth in the light, and no evidence was found for an exchange of heme groups in apoprotein moieties. It followed from these observations that degradation of catalase apoprotein was slightly faster than that of catalase heme. A degradation constant for catalase apoprotein of 0.263 per day was determined from the data on heme recycling and the degradation constant of catalase heme determined previously to be 0.205 per day (R Eising, B Gerhardt [1987] Plant Physiol 84: 225-232).  相似文献   

16.
The molecular diversity of rumen methanogens in sheep in Australia was investigated by using individual 16S rRNA gene libraries prepared from the rumen contents obtained from six merino sheep grazing pasture (326 clones), six sheep fed an oaten hay-based diet (275 clones), and five sheep fed a lucerne hay-based diet (132 clones). A total of 733 clones were examined, and the analysis revealed 65 phylotypes whose sequences (1,260 bp) were similar to those of cultivated methanogens belonging to the order Methanobacteriales. Pasture-grazed sheep had more methanogen diversity than sheep fed either the oaten hay or lucerne hay diet. Methanobrevibacter strains SM9, M6, and NT7 accounted for over 90% of the total number of clones identified. M6 was more prevalent in grazing sheep, and SM9, despite being found in 16 of the 17 sheep, was more prevalent in sheep fed the lucerne-based diet. Five new species were identified. Two of these species exhibited very little sequence similarity to any cultivated methanogens and were found eight times in two of the six sheep that were grazing pasture. These unique sequences appear to represent a novel group of rumen archaea that are atypical for the rumen environment.  相似文献   

17.
Trypanosoma brucei brucei is the causative agent of animal African trypanosomiasis, also called nagana. Procyclic vector form resides in the midgut of the tsetse fly, which feeds exclusively on blood. Hemoglobin digestion occurs in the midgut resulting in an intense release of free heme. In the present study we show that the magnesium-dependent ecto-nucleoside triphosphate diphosphohydrolase (E-NTPDase) activity of procyclic T. brucei brucei is inhibited by ferrous iron and heme. The inhibition of E-NTPDase activity by ferrous iron, but not by heme, was prevented by pre-incubation of cells with catalase. However, antioxidants that permeate cells, such as PEG-catalase and N-acetyl-cysteine prevented the inhibition of E-NTPDase by heme. Ferrous iron was able to induce an increase in lipid peroxidation, while heme did not. Therefore, both ferrous iron and heme can inhibit E-NTPDase activity of T. brucei brucei by means of formation of reactive oxygen species, but apparently acting through distinct mechanisms.  相似文献   

18.
The prototypical representatives of the Euryarchaeota—the methanogens—are oxygen sensitive and are thought to occur only in highly reduced, anoxic environments. However, we found methanogens of the genera Methanosarcina and Methanocella to be present in many types of upland soils (including dryland soils) sampled globally. These methanogens could be readily activated by incubating the soils as slurry under anoxic conditions, as seen by rapid methane production within a few weeks, without any additional carbon source. Analysis of the archaeal 16S ribosomal RNA gene community profile in the incubated samples through terminal restriction fragment length polymorphism and quantification through quantitative PCR indicated dominance of Methanosarcina, whose gene copy numbers also correlated with methane production rates. Analysis of the δ13C of the methane further supported this, as the dominant methanogenic pathway was in most cases aceticlastic, which Methanocella cannot perform. Sequences of the key methanogenic enzyme methyl coenzyme M reductase retrieved from the soil samples before incubation confirmed that Methanosarcina and Methanocella are the dominant methanogens, though some sequences of Methanobrevibacter and Methanobacterium were also detected. The global occurrence of only two active methanogenic archaea supports the hypothesis that these are autochthonous members of the upland soil biome and are well adapted to their environment.  相似文献   

19.
As a step to study the mechanism of the microbody transition (glyoxysomes to leaf peroxisomes) in pumpkin (Cucurbita sp. Amakuri Nankin) cotyledons, catalase was purified from glyoxysomes. The molecular weight of the purified catalase was determined to be 230,000 to 250,000 daltons. The enzyme was judged to consist of four identical pieces of the monomeric subunit with molecular weight of 55,000 daltons. Absorption spectrum of the catalase molecule gave two major peaks at 280 and 405 nanometers, showing that the pumpkin enzyme contains heme. The ratio of absorption at 405 and 280 nanometers was 1.0, the value being lower than that obtained for catalase from other plant sources. These results indicate that the pumpkin glyoxysomal catalase contains the higher content of heme in comparison with other plant catalase.

The immunochemical resemblance between glyoxysomal and leaf peroxisomal catalase was examined by using the antiserum specific against the purified enzyme preparation from pumpkin glyoxysomes. Ouchterlony double diffusion and immunoelectrophoretic analysis demonstrated that catalase from both types of microbodies cross-reacted completely whereas the immunotitration analysis showed that the specific activity of the glyoxysomal catalase was 2.5-fold higher than that of leaf peroxisomal catalase. Single radial immunodiffusion analysis showed that the specific activity of catalase decreased during the greening of pumpkin cotyledons.

  相似文献   

20.
Brioukhanov  A. L.  Thauer  R.K.  Netrusov  A.I. 《Microbiology》2002,71(3):281-285
Strictly anaerobic microorganisms relating to various physiological groups were screened for catalase and superoxide dismutase (SOD) activity. All of the investigated anaerobes possessed SOD activity, necessary for protection against toxic products of oxygen reduction. High specific activities of SOD were found in Acetobacterium woodii and Acetobacterium wieringae. Most of the investigated clostridia and acetogens were catalase-negative. A significant activity of catalase was found in Thermohydrogenium kirishiense, in representatives of the genus Desulfotomaculum, and in several methanogens. Methanobrevibacter arboriphilus had an exceptionally high catalase activity after growth in medium supplemented with hemin. Hemin also produced a strong positive effect on the catalase activity in many other anaerobic microorganisms. In methanogens, the activities of the enzymes of antioxidant defense varied in wide ranges depending on the stage of growth and the energy source.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号