首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Upon infection of Japanese encephalitis virus (JEV), baby hamster kidney (BHK-21) and Chinese hamster ovary (CHO) cells were killed by a mechanism involved in apoptosis. While readily established in a variety of cell lines, JEV persistence has never been successfully instituted in BHK-21 and CHO cells. Since stable expression of human bcl-2 in BHK-21 cells has been shown to delay JEV-induced apoptosis, in this study we investigated whether JEV persistence could be established in such cells. When constitutively expressing bcl-2, but not its closest homolog, bcl-XL, following a primary lytic infection, approximately 5 to 10% of BHK-21 and CHO cells became persistently JEV infected during a long-term culture. From the persistent bulks, several independent clones were selected and expanded to form stable cell lines that continuously produced infectious virus without marked cytopathic effects (CPE). Among these stable cell lines, the truncated nonstructural protein 1 (NS1) was also detected and was indistinguishable from the NS1 truncations previously observed in JEV-persistent murine neuroblastoma N18 cells. However, the stable expression of NS1 alone, regardless of whether it was truncated or full length, failed to render the engineered cells persistently infected by JEV, implying that aberrant NS1 proteins were likely a consequence of, rather than a cause for, the viral persistence. Enforced bcl-2 expression, which did not affect virus replication and spread during the early phase of cytolytic infection, appeared to attain JEV persistence by restriction of virus-induced CPE. Our results suggest that it is the antiapoptotic, rather than the antiviral, effect of cellular bcl-2 which plays a role in the establishment of JEV persistence.  相似文献   

2.
3.
Lee CJ  Liao CL  Lin YL 《Journal of virology》2005,79(13):8388-8399
Flaviviruses such as dengue virus (DEN) and Japanese encephalitis virus (JEV) are medically important in humans. The lipid kinase, phosphatidylinositol 3-kinase (PI3K) and its downstream target Akt have been implicated in the regulation of diverse cellular functions such as proliferation, and apoptosis. Since JEV and DEN appear to trigger apoptosis in cultured cells at a rather late stage of infection, we evaluated the possible roles of the PI3K/Akt signaling pathway in flavivirus-infected cells. We found that Akt phosphorylation was noticeable in the JEV- and DEN serotype 2 (DEN-2)-infected neuronal N18 cells in an early, transient, PI3K- and lipid raft-dependent manner. Blocking of PI3K activation by its specific inhibitor LY294002 or wortmannin greatly enhanced virus-induced cytopathic effects (CPEs), even at an early stage of infection, but had no effect on virus production. This severe CPE was characterized as apoptotic cell death as evidenced by TUNEL (terminal deoxynucleotidyltransferase-mediated dUTP-biotin nick end labeling) staining and cleavage of caspase-3 and poly(ADP-ribose) polymerase (PARP). Mechanically, the initiator and effector caspases involved are mainly caspase-9 and caspase-6, since only a pan-caspase inhibitor and the inhibitors preferentially target caspase-9 and -6, but not the ones antagonizing caspase-8, -3, or -7 alleviated the levels of PARP cleavage after virus infection and PI3K blockage. Furthermore, Bcl-2 appears to be a crucial mediator downstream of PI3K/Akt signaling, since overexpression of Bcl-2 reduced virus-induced apoptosis even when PI3K activation was repressed. Collectively, our results suggest an anti-apoptotic role for the PI3K/Akt pathway triggered by JEV and DEN-2 to protect infected cells from early apoptotic cell death.  相似文献   

4.
Infection with Japanese encephalitis virus (JEV), a mosquito-borne flavivirus, may cause acute encephalitis in humans and induce severe cytopathic effects in various types of cultured cells. We observed that JEV replication rendered infected baby hamster kidney (BHK-21) cells sensitive to the translational inhibitor hygromycin B or alpha-sarcine, to which mock-infected cells were insensitive. However, little is known about whether any JEV nonstructural (NS) proteins contribute to virus-induced changes in membrane permeability. Using an inducible Escherichia coli system, we investigated which parts of JEV NS1 to NS4 are capable of modifying membrane penetrability. We found that overexpression of NS2B-NS3, the JEV protease, permeabilized bacterial cells to hygromycin B whereas NS1 expression failed to do so. When expressed separately, NS2B alone, but not NS3, was sufficient to alter bacterial membrane permeability. Similarly, expression of NS4A or NS4B also rendered bacteria susceptible to hygromycin B inhibition. Examination of the effect of NS1 to NS4 expression on bacterial growth rate showed that NS2B exhibited the greatest inhibitory capability, followed by a modest repression from NS2A and NS4A, whereas NS1, NS3, and NS4B had only trivial influence with respect to the vector control. Furthermore, when cotransfected with a reporter gene luciferase or beta-galactosidase, transient expression of NS2A, NS2B, and NS4B markedly reduced the reporter activity in BHK-21 cells. Together, our results suggest that upon JEV infection, these four small hydrophobic NS proteins have various modification effects on host cell membrane permeability, thereby contributing in part to virus-induced cytopathic effects in infected cells.  相似文献   

5.
Minocycline is broadly protective in neurological disease models featuring inflammation and cell death and is being evaluated in clinical trials. Japanese encephalitis virus (JEV) is one of the most important causes of viral encephalitis worldwide. There is no specific treatment for Japanese encephalitis (JE) and no effective antiviral drugs have been discovered. Studies indicate that JE involves profound neuronal loss as well as secondary inflammation caused because of cell death. Minocycline is a semisynthetic second-generation tetracycline that exerts anti-inflammatory and antiapoptotic effects that are completely separate from its antimicrobial action. Because tetracycline treatment is clinically well tolerated, we investigated whether minocycline protects against experimental model of JE. Intravenous inoculation of GP78 strain of JEV in adult mice results in lethal encephalitis and caused primarily because of neuronal death and secondary inflammation caused because of cell death. Minocycline confers complete protection in mice following JEV infection ( p  < 0.0001). Neuronal apoptosis, microglial activation, active caspase activity, proinflammatory mediators, and viral titer were markedly decreased in minocycline-treated JEV infected mice on ninth day post-infection. Treatment with minocycline may act directly on brain cells, because neuronal cell line Neuro2a were also salvaged from JEV-induced death. Our data suggest that minocycline may be a candidate to consider in human clinical trials for JE patients.  相似文献   

6.
7.
JC virus (JCV), a human neurotropic polyomavirus, demonstrates a selective glial cell tropism that causes cell death through lytic infection. Whether these cells die via apoptosis or necrosis following infection with JCV remains unclear. To investigate the mechanism of virus-induced cell death, we used a human central nervous system progenitor-derived astrocyte cell culture model developed in our laboratory. Using in situ DNA hybridization, immunocytochemistry, electron microscopy, and an RNase protection assay, we observed that astrocytes support a progressive JCV infection, which eventually leads to nonapoptotic cell death. Infected astrocyte cell cultures showed no difference from noninfected cells in mRNA expression of the caspase family genes or in any ultrastructural features associated with apoptosis. Infected cells demonstrated striking necrotic features such as cytoplasmic vacuolization, watery cytoplasm, and dissolution of organelles. Furthermore, staining for caspase-3 and terminal deoxynucleotidyltransferase-mediated dUTP-biotin nick end labeling were not detected in infected astrocyte cultures. Our findings suggest that JCV-induced cell death of these progenitor cell-derived astrocytes does not utilize an apoptosis pathway but exhibits a pattern of cell destruction consistent with necrotic cell death.  相似文献   

8.
La Crosse virus causes a highly cytopathic infection in cultured cells and in the murine central nervous system (CNS), with widespread neuronal destruction. In some viral infections of the CNS, apoptosis, or programmed cell death, has been proposed as a mechanism for cytopathology (Y. Shen and T. E. Shenk, Curr. Opin. Genet. Dev. 5:105-111, 1995). To determine whether apoptosis plays a role in La Crosse virus-induced cell death, we performed experiments with newborn mice and two neural tissue culture models. Newborn mice infected with La Crosse virus showed evidence of apoptosis with the terminal deoxynucleotidyl transferase-mediated nicked-end labeling (TUNEL) assay and, concomitantly, histopathological suggestion of neuronal dropout. Infection of tissue culture cells also resulted in DNA fragmentation, TUNEL reactivity, and morphological changes in the nuclei characteristic of apoptotic cells. As in one other system (S. Ubol, P. C. Tucker, D. E. Griffin, and J. M. Hardwick, Proc. Natl. Acad. Sci. USA 91:5202-5206, 1994), expression of the human proto-oncogene bcl-2 was able to protect one neuronal cell line, N18-RE-105, from undergoing apoptosis after La Crosse virus infection and prolonged the survival of infected cells. Nevertheless, expression of bcl-2 did not prevent eventual cytopathicity. However, a human neuronal cell line, NT2N, was resistant to both apoptosis and other types of cytopathicity after infection with La Crosse virus, reaffirming the complexity of cell death. Our results show that apoptosis is an important consequence of La Crosse virus infection in vivo and in vitro.  相似文献   

9.
Formation of prominent multinucleated giant cells (MGC) was observed in monolayers of a clonal line of BHK-21 cells (BHK-21–528) when infected with Japanese encephalitis virus (JEV). MGC were first observed 3 to 4 days after infection and cytopathic changes proceeded thereafter. Formation of MGC is a typical cytopathic change in this clonal cell line. Virus titer in 50% tissue culture infective dose (TCID50) equaled that in 50% MGC-forming dose. Virus titer in TCID50 was approximate to plaque-forming units (PFU) in the same host cells. An ability of JEV to form MGC was maintained at least for six serial passages in BHK-21–528. It was inactivated by heating at 56 C for 3 min. All JEV strains, except an attenuated live vaccine strain, induced formation of MGC in BHK-21–528 cells. Red blood cells of several animal species were not adsorbed to MGC induced by JEV. The MGC-forming ability of JEV was specifically neutralized by anti-JEV serum. By fluorescence antibody technique, the MGC were specifically stained by anti-JEV antibody conjugated with fluorescein isothiocyanate. Immunization of animals with lysates of the MGC resulted in production of antibodies against JEV, but no antibody against other viruses which have been reported to induce MGC formation. From these evidences, it was concluded that JEV induced formation of MGC in BHK-21–528.  相似文献   

10.
11.
Understanding the effect of hydrodynamic shear forces on microcarrier-attached cells is critical in several viral vaccine production processes, owing to that only the anchorage-dependent cells can be used for virus propagation in cultures. This study demonstrated that increasing the hydrodynamic shear forces in microcarrier cultures can increase the production of a vaccine strain of Japanese encephalitis virus (on a per cell basis) in Vero cells but not BHK-21. The shear force-enhanced JEV production were highly effective at around 2-3 d post infection and required the concentration of fetal bovine serum supplemented in medium above 2.5%. To our knowledge, this study reports for the first time that increasing the hydrodynamic shear forces on microcarrier-grown cells increases virus production in agitated bioreactor cultures.  相似文献   

12.
We previously demonstrated that expression of bcl-2 in Madin-Darby canine kidney (MDCK) cells blocks influenza virus-induced apoptosis and DNA fragmentation. We show here that expression of bcl-2 also reduces the level of infectious virus production and the spread of virus in MDCK cell cultures infected at a low multiplicity of infection. This effect is associated with modified glycosylation of the hemagglutinin protein.  相似文献   

13.
Previous studies have suggested that cells undergo apoptosis in response to dengue virus infection. However, the potential significance of dengue virus-induced apoptosis and the pathways are still not clearly defined. In this study, comparative analysis of dengue virus-induced apoptosis in BHK, H1299, HUH-7 and Vero cell lines was carried out. We show here that infection of BHK, HUH-7 and Vero cell lines with dengue type 1 virus (DEN1V) induces cell death typical of apoptosis. Virus-induced cell death was assayed by in situ terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling, detection of oligonucleosomal DNA fragmentation, DNA content analysis and assay for the externalization of phosphatidylserine residues. Detailed study of dengue virus infection in HUH-7 cells showed activation of cell death via the mitochondrial pathway causing lowering of mitochondrial transmembrane potential (DeltaPsim) in HUH-7 cells. Interestingly, in the p53-deficient cell line, H1299, apoptosis was largely undetectable compared with the other cell lines used; suggesting that a p53- and mitochondria-mediated cell death pathway may play an important role in dengue virus-induced apoptosis.  相似文献   

14.
Apoptosis has been suggested as a mechanism by which dengue (DEN) virus infection may cause neuronal cell death (P. Desprès, M. Flamand, P.-E. Ceccaldi, and V. Deubel, J. Virol. 70:4090–4096, 1996). In this study, we investigated whether apoptotic cell death occurred in the central nervous system (CNS) of neonatal mice inoculated intracerebrally with DEN virus. We showed that serial passage of a wild-type human isolate of DEN virus in mouse brains selected highly neurovirulent variants which replicated more efficiently in the CNS. Infection of newborn mice with these neurovirulent variants produced fatal encephalitis within 10 days after inoculation. Virus-induced cell death and oligonucleosomal DNA fragmentation were observed in mouse brain tissue by day 9. Infected mouse brain tissue was assayed for apoptosis by in situ terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling and for virus replication by immunostaining of viral antigens and in situ hybridization. Apoptotic cell death and DEN virus replication were restricted to the neurons of the cortical and hippocampal regions. Thus, DEN virus-induced apoptosis in the CNS was a direct result of virus infection. In the murine neuronal cell line Neuro 2a, neuroadapted DEN virus variants showed infection patterns similar to those of the parental strain. However, DEN virus-induced apoptosis in these cells was more pronounced after infection with the neurovirulent variants than after infection with the parental strain.  相似文献   

15.
Cellular apoptosis induced by viral genes can play a critical role in determining virulence as well as viral persistence. This form of cell death has been of interest with respect to Theiler's murine encephalomyelitis virus (TMEV) because the GDVII strain and members of the GDVII subgroup are highly neurovirulent, while the DA strain and members of the TO subgroup induce a chronic progressive inflammatory demyelination with persistence of the virus in the central nervous system. The TMEV L protein has been identified as important in the pathogenesis of Theiler's virus-induced demyelinating disease (TMEV-IDD). We now show that DA L is apoptotic following transfection of L expression constructs or following DA virus infection of HeLa cells; the apoptotic activity depends on the presence of the serine/threonine domain of L, especially a serine at amino acid 57. In contrast, GDVII L has little apoptotic activity following transfection of L expression constructs in HeLa cells and is antiapoptotic following GDVII infection of HeLa cells. Of note, both DA and GDVII L cleave caspase-3 in BHK-21 cells, although neither implements the full apoptotic machinery in this cell type as manifested by the induction of terminal deoxynucleotidyltransferase-mediated dUTP-biotin nick end labeling (TUNEL) staining. The differences in apoptotic activities of DA and GDVII L in varied cell types may play an important role in TMEV subgroup-specific disease phenotypes.  相似文献   

16.
Viruses from several different families are able to exploit their host''s cell death programmes so as to maximize viral fitness. Consideration of the evolution of such strategies has lead to the suggestion that the virus should inhibit apoptosis, in order to prolong the life of the cell and thereby maximize the number of progeny virions. The host, on the other hand, should stimulate apoptosis thereby inhibiting viral growth and blocking viral spread. For example, the function of the latent membrane protein I (LMPI) of the Epstein-Barr virus and the bcl-2 homologue gene A179L of African swine fever virus is to inhibit apoptosis. However, in other cases it is the virus that stimulates cell death or the host that benefits from inhibiting apoptosis, such as in fatal alphavirus encephalitis. This has been explained by assuming that virus-induced apoptosis in non-regenerating cells would be detrimental to the host. We present a mathematical framework for understanding virus-induced apoptosis which accounts for these two opposite solutions to virus infection with respect to the mode of virus replication and the life cycle of the target cell.  相似文献   

17.
Das S  Basu A 《Journal of neurochemistry》2008,106(4):1624-1636
Japanese encephalitis virus (JEV), a common cause of encephalitis in humans, especially in children, leads to substantial neuronal injury. The survivors of JEV infection have severe cognitive impairment, motor and behavioral disorders. We hypothesize that depletion of neural progenitor cells (NPCs) by the virus culminates in neurological sequelae in survivors of Japanese encephalitis (JE). We utilized both in vivo model of JEV infection and in vitro neurosphere cultures to study progressive JEV infection. Cellular infection and cell death was determined by flow cytometry. BrdU administration in animals and in neurospheres was used to determine the proliferative ability of NPCs. JEV leads to massive loss of actively proliferating NPC population from the subventricular zone (SVZ). The ability of JEV infected subventricular zone cells to form neurospheres is severely compromised. This can be attributed to JEV infection in NPCs, which however do not result in robust death of the resilient NPC cells. Instead, JEV suppresses the cycling ability of these cells, preventing their proliferation. JEV primarily targets at a critical postnatal age and severely diminishes the NPC pool in SVZ, thus impairing the process of recovery after the insult. This arrested growth and proliferation of NPCs might have an effect on the neurological consequences in JE survivors.  相似文献   

18.
CLEC5A/MDL-1, a member of the myeloid C-type lectin family expressed on macrophages and neutrophils, is critical for dengue virus (DV)-induced hemorrhagic fever and shock syndrome in Stat1 −/− mice and ConA-treated wild type mice. However, whether CLEC5A is involved in the pathogenesis of viral encephalitis has not yet been investigated. To investigate the role of CLEC5A to regulate JEV-induced neuroinflammation, antagonistic anti-CLEC5A mAb and CLEC5A-deficient mice were generated. We find that Japanese encephalitis virus (JEV) directly interacts with CLEC5A and induces DAP12 phosphorylation in macrophages. In addition, JEV activates macrophages to secrete proinflammatory cytokines and chemokines, which are dramatically reduced in JEV-infected Clec5a−/− macrophages. Although blockade of CLEC5A cannot inhibit JEV infection of neurons and astrocytes, anti-CLEC5A mAb inhibits JEV-induced proinflammatory cytokine release from microglia and prevents bystander damage to neuronal cells. Moreover, JEV causes blood-brain barrier (BBB) disintegrity and lethality in STAT1-deficient (Stat1 −/−) mice, whereas peripheral administration of anti-CLEC5A mAb reduces infiltration of virus-harboring leukocytes into the central nervous system (CNS), restores BBB integrity, attenuates neuroinflammation, and protects mice from JEV-induced lethality. Moreover, all surviving mice develop protective humoral and cellular immunity against JEV infection. These observations demonstrate the critical role of CLEC5A in the pathogenesis of Japanese encephalitis, and identify CLEC5A as a target for the development of new treatments to reduce virus-induced brain damage.  相似文献   

19.
Apoptosis as a cause of death in measles virus-infected cells.   总被引:25,自引:18,他引:7       下载免费PDF全文
To determine the mechanism of measles virus-induced cell death, we studied the infection of Vero cells and monocytic cell lines with wild-type (Chicago-1) and vaccine (Edmonston) strains of measles virus. DNA fragmentation indicative of apoptosis was apparent by flow cytometry, agarose gel electrophoresis, and electron microscopy. Within syncytia, DNA strand breaks were demonstrated by end labeling with terminal transferase and then by visualization.  相似文献   

20.
Theiler's murine encephalomyelitis virus (TMEV) results in a persistent central nervous system infection (CNS) and immune-mediated demyelination in mice. TMEV largely persists in macrophages (Ms) in the CNS, and infected Ms in vitro undergo apoptosis, whereas the infection of other rodent cells produces necrosis. We have found that necrosis is the dominant form of cell death in BeAn virus-infected BHK-21 cells but that ~20% of cells undergo apoptosis. Mcl-1 was highly expressed in BHK-21 cells, and protein levels decreased upon infection, consistent with onset of apoptosis. In infected BHK-21 cells in which Mcl-1 expression was knocked down using silencing RNAs there was a 3-fold increase in apoptotic cell death compared to parental cells. The apoptotic program switched on by BeAn virus is similar to that in mouse Ms, with hallmarks of activation of the intrinsic apoptotic pathway in a tumor suppressor protein p53-dependent manner. Infection of stable Mcl-1-knockdown cells led to restricted virus titers and increased physical to infectious particle (PFU) ratios, with additional data suggesting that a late step in the viral life cycle after viral RNA replication, protein synthesis, and polyprotein processing is affected by apoptosis. Together, these results indicate that Mcl-1 acts as a critical prosurvival factor that protects against apoptosis and allows high yields of infectious virus in BHK-21 cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号