首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
The covering of the eggs in Russian sturgeon Acipenser gueldenstaedtii consists of three envelopes (the vitelline envelope, chorion and extrachorion) and is equipped with multiple micropyles. The most proximal to the oocyte is the vitelline envelope that consists of four layers of filamentous and trabecular material. The structural components of this envelope are synthesized by the oocyte (primary envelope). The chorion encloses the vitelline envelope. The extrachorion covers the external surface of the egg. Examination of the arrangement of layers that comprise the egg envelopes together with the ultrastructure of follicular cells revealed that the chorion and extrachorion are secondary envelopes. They are secreted by follicular cells and are built of homogeneous material. During formation of egg envelopes, the follicular cells gradually diversify into three morphologically different populations: 1) cells covering the animal oocyte region (cuboid), (2) main body cells (cylindrical) and (3) micropylar cells. The apical surfaces of follicular cells from the first two populations form processes that remain connected with the oocyte plasma membrane by means of gap junctions. Micropylar cells are located at the animal region of the oocyte. Their apical parts bear projections that form a barrier to the deposition of materials for egg envelopes, resulting in the formation of the micropylar canal.  相似文献   

2.
A tendency for increase both of numerical and of ecological factors of infestation in pseudophyllid cestodes is realized due to morphological peculiarities of the structure of their reproductive system. In the species E. rugosum with the closed bursiform uterus and intrauterine development of eggs, there are revealed the same degree of maturity of oocytes in ovary, the lack of sphincter or filtering cell at the base of the ovicapt infundibulum, and the presence of a large vitelline reservoir. By analogy with trematodes, an interconnection is traced between the degree of egg maturation in the uterus and morphology of uterus and vittelicles. The thickening of the egg membrane has been shown to occur not only by deposits of individual vitelline globules at the internal superficial egg layer, but also by binding of lipid droplets excreted from the surrounding parenchyma to the uterine tube along its entire length to the external egg surface. The male reproductive system of Eubothrium rugosum is characterized by the presence of a small cirrus pouch, by the cirrus supplied with microtrichia, which corresponds to the similar vagina structure, and by localization of prostate glands outside the cirrus pouch. Comparison is presented with other ultrastructural peculiarities of organization of the reproductive system in the earlier studied species of pseudophyllid cestodes, Diphyllobothrium latum.  相似文献   

3.
Drosophila melanogaster mature oocytes in ovaries are arrested at metaphase I of meiosis. Eggs that have reached the uterus have released this arrest. It was not known where in the female reproductive tract egg activation occurs and what triggers it. We investigated when and where the egg is activated in Drosophila in vivo and at what meiotic stage the egg is fertilized. We found that changes in the egg's envelope's permeability, one feature of activation, initiate during ovulation, even while most of the egg is still within the ovary. The egg becomes impermeable as it proceeds down the oviducts; the process is complete by the time the egg is in the uterus. Cross-linking of vitelline membrane protein sV23 also increases progressively as the egg moves through the oviducts and the uterus. Activation also triggers meiosis to resume before the egg reaches the uterus, such that the earliest eggs that reach the uterus are in anaphase I. We discuss models for Drosophila egg activation in vivo.  相似文献   

4.
The mature oöcyte of Acanthoscelides obtectus is surrounded by three envelopes: an external layer, a chorion and a vitelline membrane. The external layer is secreted by the walls of the lateral oviducts. The chorion and vitelline membrane are secreted by the follicular cells. The vitelline membrane becomes very compact during the hour following fertilization and laying. The chorion is composed of three layers, one of which has a paracrystalline ultrastructure.Mature, unfertilized, chorion-containing oöcytes, whose vitelline membranes are loose, dehydrate rapidly in a dry atmosphere after laying or after removal from the lateral oviducts. Fertilized eggs are quite resistant to desiccation: after 12 days at 25°C and 5% relative humidity, viable larvae are obtained.The compact vitelline membrane is the most effective protection against dehydration. The chorion and the external layer are much less effective in preventing water loss from the egg.The retention of eggs in the lateral oviducts does not seem to lead to any modification of the structure of their envelopes.  相似文献   

5.
取12条处于不同生殖期的雌性中国水蛇作血管单注射,观察其生殖系统血液循环特点。结果表明,卵巢处于静止期的个体的生殖系统循环模式与雄体相似,卵子处于迅速生长期,卵巢血管变得十分发达,布满于正在生长的卵子表面,卵子处于成熟期,卵巢血管又回复到模式状态;受精卵落入子宫中发育时,子宫血管变得十分发达,子宫壁及卵黄膜均十分薄,子宫腔中有液体浸润胚胎,提示了胚胎与母体之间可能通过这些液体进行某些物质交换。  相似文献   

6.
Summary The follicle cells of Foucartia squamulata are involved in the formation of both vitelline membrane and chorion. Precursors for these egg coverings are synthesized by the rough endoplasmic reticulum and condensed within dictyosomes. The vitelline membrane and the chorion appear on the oocyte surface simultaneously, which is an unusual phenomenon for insects. The follicular epithelium has not been found to contribute to vitellogenesis in the species under study.  相似文献   

7.
The investigation of ovaries and the formation of egg envelopes of the stonefly Leuctra autumnalis was carried out with light and transmission electron microscopes. The ovary of the studied species is paired and consists of several dozen panoistic ovarioles opening individually to the oviduct. The process of egg capsule formation already begins in previtellogenesis. At this time the follicular cells secrete precursors of the vitelline envelope. Analysis of the presented data suggests that the oocyte itself also takes part in the formation of the vitelline envelope during late vitellogenesis. Simultaneously, the follicular cells produce precursors of further layers of the egg capsule, i.e. two-layered chorion and extrachorion, consisting of two gelatinous layers and a flocculent one. The completely developed capsule contains channels, probably micropylar ones.  相似文献   

8.
9.
体外培养日本血吸虫成虫生殖器官超微结构的观察   总被引:2,自引:1,他引:1  
将日本血吸虫成虫于851培养基中培养23天后,对其生殖器官进行透射电镜观察。观察结果显示,雌虫卵巢内卵母细胞出现不同程度的变性、坏死;成熟卵黄细胞的卵黄小滴融合,脂质小滴数量增多、体积增大;培养后期卵壳形成发生障碍,最终导致无活性、无卵壳的畸形卵形成。超微结构观察首次显示,体外初产期虫卵卵壳中有条带状低电子密度区和高电子密度区相间排列。  相似文献   

10.
This study was performed to gain insight into the maturation of the reproductive system of Echinostoma paraensei worms grown in an early infection of Mesocricetus auratus. Hamsters were infected with 100 metacercariae and necropsied on days 3, 5, 7, 10 and 14 post infection (dpi). Recovered flukes stained with hydrochloric carmine were preserved as whole mounts and analyzed by light and confocal scanning laser microscopy. The average worm recovery was 43.7 per host. Images of the male and female reproductive systems were taken. The ovary and anterior and posterior testis were evidenced on day 3, while the ootype and cirrus sac were present on day 5. Confocal imaging showed primordium testis and ovary as a cluster of primordial cells from day 3 onward. The testes, ovary, cirrus sac and uterus organs were already present during the first week of life. The two testes were seen as individual structures on 7 dpi while the cirrus sac and vitelline glands were in development. The ovary was connected to the uterus while the ootype was adjacent to it. Both testes were larger than the ovary, showing cells at different stages of development, but with few bundles of functional spermatozoa in 10 day-old worms. On day 14, eggs and spermatozoa were seen in the uterus and seminal vesicle, respectively, while oocytes appeared in the ootype as fertilized eggs. We conclude that the reproductive system of E. paraensei was functional on 14 dpi in the hamsters.  相似文献   

11.
The morphology of ovaries, oviducts and egg capsules in four species of euholognathan stoneflies was investigated. The characteristic features found were as follows: (i) numerous, long ovarioles, that open individually to the extensively folded, lateral oviducts; (ii) a thin, morphologically undifferentiated chorion; (iii) a thick gelatinous layer (extrachorion) which acts as an adhesive layer fixing the eggs to the substrate. Additionally, in the larval ovariole of Leuctra sp. the terminal filament anlage and clusters of germ cells have been found. These observations are in agreement with the classification of stonefly ovaries as primary (true) panoistic.  相似文献   

12.
《Journal of morphology》2017,278(1):50-61
Previtellogenic and vitellogenic oocytes in ovarian follicles from cultured Siberian sturgeon Acipenser baerii were examined. In previtellogenic oocytes, granular and homogeneous zones in the cytoplasm (the ooplasm) are distinguished. Material of nuclear origin, rough endoplasmic reticulum, Golgi complexes, complexes of mitochondria with cement and round bodies are numerous in the granular ooplasm. In vitellogenic oocytes, the ooplasm comprises three zones: perinuclear area, endoplasm and periplasm. The endoplasm contains yolk platelets, lipid droplets, and aggregations of mitochondria and granules immersed in amorphous material. In the nucleoplasm, lampbrush chromosomes, nucleoli, and two types of nuclear bodies are present. The first type of nuclear bodies is initially composed of fibrillar threads only. Their ultrastructure subsequently changes and they contain threads and medium electron dense material. The second type of nuclear bodies is only composed of electron dense particles. All nuclear bodies impregnate with silver, stain with propidium iodide, and are DAPI‐negative. Their possible role is discussed. All oocytes are surrounded by follicular cells and a basal lamina which is covered by thecal cells. Egg envelopes are not present in previtellogenic oocytes. In vitellogenic oocytes, the plasma membrane (the oolemma) is covered by three envelopes: vitelline envelope, chorion, and extrachorion. Vitelline envelope comprises four sublayers: filamentous layer, trabecular layer 2 (t2), homogeneous layer, and trabecular layer 1 (t1). In the chorion, porous layer 1 and porous layer 2 are distinguished in most voluminous examined oocytes. Three micropylar cells that are necessary for the formation of micropyles are present between follicular cells at the animal hemisphere. J. Morphol. 278:50–61, 2017. ©© 2016 Wiley Periodicals,Inc.  相似文献   

13.
Contrary to the widely accepted view that chiton sperm lack acrosomes and that fertilization in this group occurs via a micropyle, we demonstrate here that fertilization in Tonicella lineata occurs by acrosome-mediated sperm-egg fusion. The acrosome is a small vesicle containing two granules located at the tip of the sperm. The eggs have an elaborate hull (=chorion), which is formed into cupules that remain covered by follicle cells until maturity. When dissected ripe eggs were exposed to sperm in vitro, the sperm were attracted only to open cupules, inside which they swam through one of seven channels to the base where they penetrated the hull. The acrosome fired on contact with, or in, the hull, and during passage through it the apical granule was exhausted while the basal granule was exposed. If sperm contacted follicle cells between the cupules the acrosome did not react. The vitelline layer beneath the hull contains pores arranged in a regular pattern. Embedded in the base of each pore is an egg microvillus. Having penetrated the hull the sperm anterior filament located a pore and fused with the tip of the egg microvillus projecting into it. This created a membranous tube, through which the sperm nucleus was injected into the egg. The egg membrane appeared to be raised up into a small fertilization cone around the penetrating sperm, the vitelline layer became slightly elevated, and some cortical granules were released by exocytosis.  相似文献   

14.
Summary Entire reproductive tracts dissected from live femalePseudoterranova decipiens, some collected from grey seals (Halichoerus grypus) and some raised in vitro, were examined using light and electron microscopy. The reproductive tracts from both samples are similar in that the oogonia accumulate cytoplasmic inclusion granules and remain attached to the rachis until just before entering the oviduct. Sperm stored in the oviduct fertilize the oocytes, which then pass into the uterus where elaboration of the shell occurs. Two polar bodies are evident in recently fertilized eggs, suggesting that reduction division proceeds as in most nematode eggs. The epithelial cells of the oviduct appear to secrete material that surrounds the oocytes, and the epithelial cells of the uterus secrete a fibrous material that adheres to the outside of the egg shell. The two samples differ in that the oocytes of in vivo-raised nematodes contain curious conglomerates of organelles: areas of membranous whorls in association with electron-dense inclusion granules and glycogen granules. The samples differ also in that the ovarian epithelial cells in the in vitro-raised specimens phagocytose necrotic oogonia at the tip of the ovary.  相似文献   

15.
The components of the female reproductive system of Diphyllobothrium latum, including ovary, ovicapt, oviduct, vitelline ducts, vitelline reservoir, vagina, seminal receptacle, ootype with unicellular Mehlis's gland, ootype-uterine duct and uterus were observed with the electron microscope. The epithelium of the female reproductive system ducts consists of a nucleate syncytial layer. Structural differences in apical surface of the ducts, the number of nuclei and organoids in syncytial layer as well as the number of underlaid muscles were revealed. The regional differentiations of the uterus wall were registered. The middle and distal region of uterus was covered with microtriches. The filamentous microtriches were observed in apical surface of vagina. The epithelium of seminal receptacle and distal region of uterus were underlaided by the powerful muscle layers. The fertilization canal was revealed. It was shown that the formation of egg shells implemented by the deposit of vitelline globules in their surface in the ootype-uterine duct. Structural and functional differences of different parts of female apparatus in various groups of cestodes are conditioned by species biology.  相似文献   

16.
Summary

In our study of spermiogenesis in the lined chiton Tonicella lineata, we traced the formation and migration of small Golgi vesicles to the apex of the sperm, where they fused to form an apical granule. This apical granule and other Golgi secretions tested positively for acid phosphatase. In preliminary experiments on fertilization, sperm swam inside open hull (chorion) cupules down to the surface of the egg and penetrated it. No micropyle was observed. Serial 1μm sections of eggs fixed during fertilization demonstrated that the sperm nucleus had penetrated not only the hull but also the vitelline and oocyte membranes. Serial thin sections showed that the tip of the anterior filament of the sperm had fused with a single microvillus of the oocyte membrane, creating a membranous tube through which the nucleus had entered the egg cortex. We suggest that the apical granule of chiton sperm is an acrosome that enables the nucleus to penetrate the egg membranes.  相似文献   

17.
Ultrastructural analysis (transmission and electron scanning microscopy) of the eggs of the mayfly Siphlonurus lacustris (Eaton) showed that they are wrapped in a thick coat composed of a network of tightly entwined filaments. Groups of twisted filaments form slightly uplifted buttons that are scattered on the coat surface. After experimentally induced egg deposition, egg–water interaction promotes marked cohesion of the eggs and their firm adhesion to the substrate. Egg masses include numerous gametes; the covering of those located close to the substrate greatly extends to anchor the whole mass. Eggs removed from the coat reveal a slightly punctuated smooth chorion and tagenoform micropyles (three to five). The coat increases egg size by about 20%. The lack of female reproductive accessory glands in Ephemeroptera transfers the synthesis of the adhesive coats to the follicle cells, which are typically competent for insect egg shell deposition (vitelline envelope and chorionic layers). This covering results from electron‐dense granules that give rise to filaments progressively organized to form superimposed layers variously orientated around the egg. In addition to egg adhesion to the substrate, a trophic function and protection from shear stress are postulated for this covering.  相似文献   

18.
东方杯叶吸虫卵黄腺和卵巢的超微结构研究   总被引:2,自引:0,他引:2  
任佩锋  郎所 《动物学报》1993,39(2):113-117
本文应用透射电镜观察了东方杯叶吸虫卵黄腺和卵巢的超微结构,并与体外培养成虫进行比较。根据形态特征和内含物的存在情况,将卵黄细胞和卵母细胞的发育均分为不同时期,详细描述了各期的形态特征,探讨了卵黄球和皮质颗粒等内含物的生理功能。体外培养成虫成熟卵黄细胞中有散在的卵黄物质,成熟卵母细胞中线粒体囊泡化,这些可作为体外培养的评价指标。  相似文献   

19.
Summary

In Fasciola gigantica, vitelline cells are the major contributors to the formation of the eggshell. The vitelline cells develop in vitelline follicles that are located in the posterior third of the adult parasite's body, in the areas lateral to the uterus and the testis. Mature vitelline cells are released and transported to the Mehlis' gland-ootype complex via a series of vitelline ducts. Based on ultrastructural features, the developing vitelline cells are classified into four stages: stem cell, protein-synthetic, carbohydrate-synthetic and mature cell stages. At the protein-synthetic stage, the eggshell globules are formed, whereas during the carbohydrate-synthetic stage glycogen particles and glycan vesicles are synthesized. The mature vitelline cells are detached from the nurse cells, and pass successively into the intrafollicular, interfollicular, longitudinal and transverse vitelline ducts, to be stored in the vitelline reservoir before being transported to the ootype via the median vitelline duct. At the same time, ova are transported from the ovary through the oviduct into the ootype lumen where each becomes surrounded by a number of vitelline cells. Vitelline cells secrete eggshell globules to surround a group of vitelline cells and an ovum in the ootype lumen, and these globules coalesce into the definitive eggshell. In the middle part of the uterus fertilization occurs, after which the eggshell is completely formed. Within the egg proper, vitelline cells break down, releasing glycogen and other products to nourish the developing embryo.  相似文献   

20.
Although sexual selection has been predominantly used to explain the rapid evolution of sexual traits, eggs of oviparous organisms directly face both the challenges of sexual selection as well as natural selection (environmental challenges, survival in niches, etc.). Being the outermost membrane in most insect eggs, the chorion layer is the interface between the embryo and the environment, thereby serving to protect the egg. Adaptive ecological radiations such as divergence in ovipositional substrate usage and host-plant specializations can therefore influence the evolution of eggshell proteins. We can hypothesize that proteins localized on the outer eggshell may be affected to a greater degree by ecological challenges compared with inner eggshell proteins, and therefore, proteins localized in the outer eggshell (chorion membrane) may evolve differently (faster) than proteins localized in the inner egg membrane (vitelline membrane). We compared the evolutionary divergence of vitelline with chorion membrane proteins in species of the melanogaster subgroup and found that chorion proteins as a group are indeed evolving faster than vitelline membrane proteins. At least one vitelline membrane protein (Vm32E), specifically localized on the outer eggshell, is also evolving faster than other vitelline membrane proteins suggesting that all proteins localized on the outer eggshell may be evolving rapidly. We also found evidence that specific codons in chorion proteins cp15 and cp16 are evolving under positive selection. Polymorphism surveys of cp16 revealed inflated levels of divergence relative to polymorphism in specific regions of the gene, indicating that these regions are under strong selection. At the morphological level, we found notable difference in eggshell surface morphologies between specialist (Drosophila sechellia and Drosophila erecta) and generalist species of Drosophila. We do not know if any of the chorion proteins actually interact with spermatozoids, therefore leaving the possibility of rapid evolution through gametic interaction wide open. At this point, however, our results support previous suggestions that divergences in ecology, particularly, ovipositional substrate divergences may be a strong force driving the evolution of eggshell proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号