首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Knowledge regarding the dynamics of arsenic species and their interactions under gradient redox conditions in treatment wetlands is still insufficient. The aim of this investigation was to gain more information on the biotransformation of As and the dynamics of As species in horizontal subsurface‐flow constructed wetlands. Experiments were carried out in laboratory‐scale wetland systems, two planted with Juncus effusus and one unplanted, using an As‐containing artificial wastewater under defined organic C‐ and SO42–‐loading conditions. Immobilization of As was found in all systems under conditions of limited C, mainly due to adsorption and/or co‐precipitation. The removal efficiencies were substantially higher in the planted systems (60–70 %) as compared to the unplanted system (37 % on average). Immobilization under the conditions mentioned above appeared to decrease over time in all systems. At the beginning, the dosage of organic carbon immediately caused intensive microbial dissimilatory sulfate reduction in all systems (in the range of 85–95 %) and highly efficient removal of total arsenic (81–96 % on average). Later on, in this operation period, the intensity of sulfate reduction and simultaneous removal of As decreased, particularly in the planted wetlands (ranging from 30–46 %). One reason could be the re‐oxidation of reduced compounds due to oxygenation of the rhizosphere by the emergent wetland plants (helophytes). A significant amount of reduced As [As(III)] was found in the planted systems (> 75 % of total As) during the period of efficient microbial sulfate reduction, compared to the unplanted system (> 25 % of total As). The immobilization of arsenic was found to behave more stably in the planted beds than in the unplanted bed. Both systems (planted and unplanted) were suitable to treat wastewater containing As, particularly under sulfate reducing conditions. The unplanted system seemed to be more efficient regarding the immobilization of As, but the planted systems showed a better stability of immobilized As.  相似文献   

2.
3.
This study was conducted to investigate biodenitrification efficiency with starch‐stabilized nano zero valent iron (S‐nZVI) as the additional electron donor in the presence of S2O3 in aqueous solutions, under anaerobic conditions. The main challenge for nZVI application is their tendency to agglomeration, thereby resulting in loss of reactivity that necessitates the use of stabilizers to improve their stability. In this study, S‐nZVI was synthesized by chemical reduction method with starch as a stabilizer. The synthesized nanoparticles were characterized by TEM, XRD, and FTIR. Transmission electron microscopy (TEM) image shows S‐nZVI has a size in the range of 5–27.5 nanometer. Temperature and S‐nZVI concentration were the important factors affecting nitrate removal. Biodenitrification increased at 35°C and 500 mg/L of S‐nZVI, in these conditions, biodenitrification efficiency increased from 40.45 to 78.84%. Experimental results suggested that biodenitrification increased by decreasing initial nitrate concentration. In the bioreactor biodenitrification rate was 94.07% in the presence of S‐nZVI. This study indicated that, Fe2+ could be used as the only electron donor or as the additional electron donor in the presence of S2O3 to increase denitrification efficiency.  相似文献   

4.
Due to strong hydrolysis of Bi3+ as precursor in aqueous media, there are no reports on biosynthesis of bismuth sulfide (Bi2S3) nanomaterials. In this work, the water–oil two‐phase system was used to biosynthesize the Bi2S3 nanomaterials based on the coupling reaction of biological reduction and chemical precipitation process for the first time. The results showed that the water–oil two‐phase system successfully eliminated hydrolysis of the Bi3+ and controllably and extracellularly fabricated the Bi2S3 crystal with high purity. The nanorods with diameter of about 100 nm and length of about 1.0 μm were attained under high dose of lactic acid and SO42?; while low dose obtained the nanobundles consisted of nanoneedles with tip diameter of 10–20 nm and length of about 5.0–10.0 μm. The Bi2S3 nanorods as photocatalyst almost completely degraded methylene blue from solution within 12 h; whereas the Bi2S3 nanobundles removed about 87% of the dye. The amount of the Bi2S3 nanorods decreased by 48% due to photocorrosion, whereas 52% with the nanobundles. The Bi2S3 nanorods had relatively higher photocatalysis activity and slightly stronger photocorrosion resistance than the Bi2S3 nanobundles. © 2014 American Institute of Chemical Engineers Biotechnol. Prog., 30:960–966, 2014  相似文献   

5.
We developed a sensitive and robust electrogenerated chemiluminescence (ECL) flow sensor based on Ru(bpy)32+ immobilized with a Nepem‐211 perfluorinated ion exchange conductance membrane, which has robustness and stability under a wide range of chemical and physical conditions, good electrical conductivity, isotropy and a high exchange capacity for immobilization of Ru(bpy)32+. The flow sensor has been used as a post‐column detector in high‐performance liquid chromatography for determination of erythromycin and clarithromycin in honey and pork, and tricyclic antidepressant drugs in human urine. Under optimal conditions, the linear ranges were 0.03–26 ng/μL and 0.01–1 ng/μL for macrolides and tricyclic antidepressant drugs, respectively. The detection limits were 0.02, 0.01, 0.01, 0.06 and 0.003 ng/μL for erythromycin, clarithromycin, doxepin, amitriptyline and clomipramine, respectively. There is no post‐column reagent addition. In addition to the conservation expensive reagents, the experimental setup was simplified. The flow sensor was used for 2 years with high sensitivity and stability. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

6.
A reversible room‐temperature aluminum–sulfur (Al‐S) battery is demonstrated with a strategically designed cathode structure and an ionic liquid electrolyte. Discharge–charge mechanism of the Al‐S battery is proposed based on a sequence of electrochemical, microscopic, and spectroscopic analyses. The electrochemical process of the Al‐S battery involves the formation of a series of polysulfides and sulfide. The high‐order polysulfides (Sx2?, x ≥ 6) are soluble in the ionic liquid electrolyte. Electrochemical transitions between S62? and the insoluble low‐order polysulfides or sulfide (Sx 2?, 1 ≤ x < 6) are reversible. A single‐wall carbon nanotube coating applied to the battery separator helps alleviate the diffusion of the polysulfide species and reduces the polarization behavior of the Al‐S batteries.  相似文献   

7.
A sensitive and simple flow‐injection chemiluminescence (FI‐CL) method, which was based on the CL intensity generated from the redoxreaction of potassium permanganate (KMnO4)–formaldehyde in vitriol (H2SO4) medium, has been developed, validated and applied for the determination of naphazoline hydrochloride and oxymetazoline hydrochloride. Besides oxidants and sensitizers, the effect of the concentration of H2SO4, KMnO4 and formaldehyde was investigated. Under the optimum conditions, the linear range was 1.0 × 10?2–7.0 mg/L for naphazoline hydrochloride and 5.0 × 10?2–10.0 mg/L for oxymetazoline hydrochloride. During seven repeated inter‐day and intra‐day precision tests of 0.1, 1.0 and 10.0 mg/L samples, the relative standard deviations all corresponded to reference values. The detection limit was 8.69 × 10?3 mg/L for naphazoline hydrochloride and 3.47 × 10?2 mg/L for oxymetazoline hydrochloride (signal‐to‐noise ratio ≤3). This method has been successfully implemented for the determination of naphazoline hydrochloride and oxymetazoline hydrochloride in pharmaceuticals. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

8.
Room temperature sodium–sulfur batteries have emerged as promising candidate for application in energy storage. However, the electrodes are usually obtained through infusing elemental sulfur into various carbon sources, and the precipitation of insoluble and irreversible sulfide species on the surface of carbon and sodium readily leads to continuous capacity degradation. Here, a novel strategy is demonstrated to prepare a covalent sulfur–carbon complex (SC‐BDSA) with high covalent‐sulfur concentration (40.1%) that relies on ? SO3H (Benzenedisulfonic acid, BDSA) and SO42? as the sulfur source rather than elemental sulfur. Most of the sulfur is exists in the form of O? S/C? S bridge‐bonds (short/long‐chain) whose features ensure sufficient interfacial contact and maintain high ionic/electronic conductivities of the sulfur–carbon cathode. Meanwhile, the carbon mesopores resulting from the thermal‐treated salt bath can confine a certain amount of sulfur and localize the diffluent polysulfides. Furthermore, the C? Sx? C bridges can be electrochemically broken at lower potential (<0.6 V vs Na/Na+) and then function as a capacity sponsor. And the R‐SO units can anchor the initially generated Sx2? to form insoluble surface‐bound intermediates. Thus SC‐BDSA exhibits a specific capacity of 696 mAh g?1 at 2500 mA g?1 and excellent cycling stability for 1000 cycles with 0.035% capacity decay per cycle.  相似文献   

9.
Amongst post‐Li‐ion battery technologies, lithium–sulfur (Li–S) batteries have captured an immense interest as one of the most appealing devices from both the industrial and academia sectors. The replacement of conventional liquid electrolytes with solid polymer electrolytes (SPEs) enables not only a safer use of Li metal (Li°) anodes but also a flexible design in the shape of Li–S batteries. However, the practical implementation of SPEs‐based all‐solid‐state Li–S batteries (ASSLSBs) is largely hindered by the shuttling effect of the polysulfide intermediates and the formation of dendritic Li° during the battery operation. Herein, a fluorine‐free noble salt anion, tricyanomethanide [C(CN)3?, TCM?], is proposed as a Li‐ion conducting salt for ASSLSBs. Compared to the widely used perfluorinated anions {e.g., bis(trifluoromethanesulfonyl)imide anion, [N(SO2CF3)2)]?, TFSI?}, the LiTCM‐based electrolytes show decent ionic conductivity, good thermal stability, and sufficient anodic stability suiting the cell chemistry of ASSLSBs. In particular, the fluorine‐free solid electrolyte interphase layer originating from the decomposition of LiTCM exhibits a good mechanical integrity and Li‐ion conductivity, which allows the LiTCM‐based Li–S cells to be cycled with good rate capability and Coulombic efficiency. The LiTCM‐based electrolytes are believed to be the most promising candidates for building cost‐effective and high energy density ASSLSBs in the near future.  相似文献   

10.
In some biotechnological processes like wastewater treatment and biotransformation, substances are involved which are inhibitory or even toxic to the microorganisms. Their presence changes the cell physiology or even acts lethal on the cells so that the process breaks down completely. For studying such processes, a two‐stage continuous‐flow stirred tank reactor (CSTR) cascade was developed where the toxic substance is only supplied to the second reactor. Mathematical modeling of the system showed that identical steady‐state conditions can be established in both bioreactors of the two‐stage CSTR cascade when the dilution rate of the second reactor is twice as high as the dilution rate in the first reactor, provided that both reactors are fed with the same culture medium and possess an identical working volume. The theoretically derived concept was verified by cultivating Saccharomyces cerevisiae CBS 8066 under glucose‐limited aerobic conditions. Independently of the dilution rates established (D1 in the range of 0.26 to 0.38 h–1 and D2 = 2·D1), the steady‐state values of the biomass, glucose and ethanol concentration were almost identical in both reactors. Moreover, the dynamic behavior after each stepwise change of the dilution rates was also identical in both reactors, which was detected by dissolved‐oxygen measurements. Finally, the system was applied to the whole‐cell biotransformation of ethyl 2‐chloro‐3‐oxo‐butanoate as an example.  相似文献   

11.
The effects of carbonate concentration and the presence of iron hydroxide phases on the process of arsenic release from an ore material were investigated under experimental oxic conditions and in the pH range from 6.0 to 9.0. These experimental conditions are pertinent to arsenic leaching from tailings and mining wastes. The leaching tests lasted for ≤ 99 days and were performed with materials of five different particle sizes (≤ 2 mm). Carbonate ions were produced in‐situ by dolomite dissolution or were contained in used waters (0 to 30 mM as HCO3). Iron hydroxide phases were formed in situ by oxidative dissolution of metallic iron (Fe0) or pyrite (FeS2). Non‐disturbed batch experiments and air‐homogenized experiments were conducted with a constant amount (10 g/L) of an arsenic‐bearing rock (ore material) of a given particle size and different types of water (deionized, tap and mineral water). For comparison, experiments were conducted with 0.1 M EDTA, 0.1 M Na2CO3, and 0.1 M H2SO4. Neither the use of dolomite nor the use of water containing various carbonate (HCO3) concentrations could confirm the recent results on the favorable role of AsIII‐carbonate complexes on the arsenic transport in the environment. On the other hand, iron hydroxide phases (from Fe0 and FeS2) univocally delayed the As release in both experimental procedures. Furthermore, the theoretically expected effects of the particle size of the ore material was observed. If one takes into consideration that the used HCO3 concentrations were up to six times larger then those of natural surface waters (≤ 5.5 mM) but up to five times lower than those currently used in the literature (≥ 100 mM), it is concluded that the reported conflicting results for As leaching from sediments may be a misinterpretation of processes occurring in the sediment and yielding increased As release with increasing HCO3/CO32– concentration.  相似文献   

12.
Denitrification of a synthetic wastewater containing nitrates and methanol as carbon source was carried out in two systems – a fluidized‐bed biofilm reactor (FBBR) and a stirred tank reactor (STR) – using Pseudomonas denitrificans over a period of five months. Nitrogen loading was varied during operation of both reactors to assess differences in the response to transient conditions. Experimental data were analyzed to obtain a comparison of denitrification kinetics in biofilm and suspended growth reactors. The comparison showed that the volumetric degradation capacity in the FBBR (5.36 kg N · m–3 · d–1) was higher than in the STR, due to higher biomass concentration (10 kg BM · m–3 vs 1.2 kg BM m–3).  相似文献   

13.
A new 2,5‐diphenyl‐1,3,4‐oxadiazole‐based derivative (L) was synthesized and applied as a highly selective and sensitive fluorescent sensor for relay recognition of Cu2+ and S2? in water (Tris–HCl 10 mM, pH = 7.0) solution. L exhibits an excellent selectivity to Cu2+ over other examined metal ions with a prominent fluorescence ‘turn‐off’ at 392 nm. L interacts with Cu2+ through a 1:2 binding stoichiometry with a detection limit of 4.8 × 10–7 M. The on‐site formed L–2Cu2+ complex exhibits excellent selectivity to S2? with a fluorescence ‘off–on’ response via a Cu2+ displacement approach. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

14.
Lithium–sulfur batteries have attracted extensive attention because of their high energy density. However, their application is still impeded by the inherent sluggish kinetics and solubility of intermediate products (i.e., polysulfides) of the sulfur cathode. Herein, graphene‐supported Ni nanoparticles with a carbon coating are fabricated by directly carbonizing a metal–organic framework/graphene oxide composite, which is then dispersed on a commercial glass fiber membrane to form a separator with electrocatalytic activity. In situ analysis and electrochemical investigation demonstrate that this modified separator can effectively suppress the shuttle effect and regulate the catalytic conversion of intercepted polysulfides, which is also confirmed by density functional theory calculations. It is found that Ni–C sites can chemically interact with polysulfides and stabilize the radical S3?? through Ni? S bonds to enable fast dynamic equilibrium with S62?, while Ni nanoparticles reduce the oxidation barrier of Li2S and accelerate ion/electron transport. As a result, the corresponding lithium–sulfur battery shows a high cycle stability (88% capacity retention over 100 cycles) even with a high sulfur mass loading of 8 mg cm?2 and lean electrolyte (6.25 µ L mg?1). Surprisingly, benefitting from the improved kinetics, the battery can work well at ?50 °C, which is rarely achieved by conventional Li–S batteries.  相似文献   

15.
The optically active mixed‐ligand fac(S)‐tris(thiolato)rhodium(III) complexes, ΔLfac(S)‐[Rh(aet)2(L‐cys‐N,S)]? (aet = 2‐aminoethanethiolate, L‐cys = L‐cysteinate) ( 1 ) and ΔLLfac(S)‐[Rh(aet)(L‐cys‐N,S)2]2? were newly prepared by the equatorial preference of the carboxyl group in the coordinated L‐cys ligand. The amide formation reaction of 1 with 1,10‐diaminodecane and polyallylamine gave the diamine‐bridged dinuclear Rh(III) complex and the single‐chain polymer‐supported Rh(III) complex with retention of the ΔL configuration of 1 , respectively. These Rh(III) complexes reacted with Co(III) or Co(II) to give the linear‐type trinuclear structure with the S‐bridged Co(III) center and the two Δ‐Rh(III) terminal moieties. The polymer‐supported Rh(III) complex was applied not only to the CD spectropolarimetric detection and determination of a trace of precious metal ions such as Au(III), Pt(II), and Pd(II) but also to concentration and extraction of these metal ions into the solid polymer phase. Chirality 28:85–91, 2016. © 2015 Wiley Periodicals, Inc.  相似文献   

16.
17.
Many flowering plants show self‐incompatibility, an intra‐specific reproductive barrier by which pistils reject self‐pollen to prevent inbreeding and accept non‐self pollen to promote out‐crossing. In Petunia, the polymorphic S–locus determines self/non‐self recognition. The locus contains a gene encoding an S–RNase, which controls pistil specificity, and multiple S‐locus F‐box (SLF) genes that collectively control pollen specificity. Each SLF is a component of an SCF (Skp1/Cullin/F‐box) complex that is responsible for mediating degradation of non‐self S‐RNase(s), with which the SLF interacts, via the ubiquitin–26S proteasome pathway. A complete set of SLFs is required to detoxify all non‐self S‐RNases to allow cross‐compatible pollination. Here, we show that SLF1 of Petunia inflata is itself subject to degradation via the ubiquitin–26S proteasome pathway, and identify an 18 amino acid sequence in the C‐terminal region of S2‐SLF1 (SLF1 of S2 haplotype) that contains a degradation motif. Seven of the 18 amino acids are conserved among all 17 SLF proteins of S2 haplotype and S3 haplotype involved in pollen specificity, suggesting that all SLF proteins are probably subject to similar degradation. Deleting the 18 amino acid sequence from S2‐SLF1 stabilized the protein but abolished its function in self‐incompatibility, suggesting that dynamic cycling of SLF proteins is an integral part of their function in self‐incompatibility.  相似文献   

18.
3D CoNi2S4‐graphene‐2D‐MoSe2 (CoNi2S4‐G‐MoSe2) nanocomposite is designed and prepared using a facile ultrasonication and hydrothermal method for supercapacitor (SC) applications. Because of the novel nanocomposite structures and resultant maximized synergistic effect among ultrathin MoSe2 nanosheets, highly conductive graphene and CoNi2S4 nanoparticles, the electrode exhibits rapid electron and ion transport rate and large electroactive surface area, resulting in its amazing electrochemical properties. The CoNi2S4‐G‐MoSe2 electrode demonstrates a maximum specific capacitance of 1141 F g?1, with capacitance retention of ≈108% after 2000 cycles at a high charge–discharge current density of 20 A g?1. As to its symmetric device, 109 F g?1 at a scan rate of 5 mV s?1 is exhibited. This pioneering work should be helpful in enhancing the capacitive performance of SC materials by designing nanostructures with efficient synergetic effects.  相似文献   

19.
Exploiting noble‐metal‐free cocatalysts is of huge interest for photocatalytic water splitting using solar energy. As an efficient cocatalyst in photocatalysis, MoS2 is shown promise as a low‐cost alternative to Pt for hydrogen evolution. Here we report a systematical study on controlled synthesis of MoS2 with layer number ranging from ≈1 to 112 and their activities for photocatalytic H2 evolution over commercial CdS. A drastic increase in photocatalytic H2 evolution is observed with decreasing MoS2 layer number. Particularly for the single‐layer (SL) MoS2, the SL‐MoS2/CdS sample reaches a high H2 generation rate of ≈2.01 × 10?3m h?1 in Na2S–Na2SO3 solutions and ≈2.59 × 10?3m h?1 in lactic acid solutions, corresponding to an apparent quantum efficiency of 30.2% and 38.4% at 420 nm, respectively. In addition to the more exposed edges and unsaturated active S atoms, valence band–XPS and Mott–Schottky plots analysis indicate that the SL MoS2 has the more negative conduction band energy level than the H+/H2 potential, facilitating the hydrogen reduction.  相似文献   

20.
The biological degradation of quinoline by suspended and immobilized Comamonas acidovorans was studied under continuous and discontinuous operating conditions in a three‐phase fluidized bed reactor. C. acidovorans degrades quinoline into biomass and carbon dioxide. Quinoline and the intermediates of its metabolic pathway are found only by quinoline shockloads. The continuous degradation of quinoline by suspended biomass was only possible, if the dilution rate was less than the growth rate (μmax =0.42 h–1) and the concentration of a shockload was less than 1 kg/m3. A concentration greater than 1 kg/m3 led to an irreversible damage of the cells. Hence, two different carrier materials were used for immobilization by attachment, to increase the stability of the process. Using immobilization of biomass on carriers decouples the hydrodynamic retention time and the growth rate of the microorganisms. A comparison of the carrier material showed no differences with respect of activity and stability of the biofilm. The process stability of a three‐phase fluidized bed reactor was increased by immobilized biomass. The degradation of toxic shockloads was only possible with immobilized biomass. A dynamic model has been developed to describe the concentration profile of quinoline, 2‐hydroxyquinoline as metabolite and the suspended biomass. A comparison of the measured and calculated values showed good agreement.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号