首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We present a multimodal in vivo skin imaging instrument that is capable of simultaneously acquiring multiphoton and reflectance confocal images at up to 27 frames per second with 256 × 256 pixel resolution without the use of exogenous contrast agents. A single femtosecond laser excitation source is used for all channels ensuring perfect image registration between the two‐photon fluorescence (TPF), second harmonic generation (SHG), and reflectance confocal microscopy (RCM) images. Images and videos acquired with the system show that the three imaging channels provide complementary information in in vivo human skin measurements. In the epidermis, cell boundaries are clearly seen in the RCM channel, while cytoplasm is better seen in the TPF imaging channel, whereas in the dermis, SHG and TPF channels show collagen bundles and elastin fibers, respectively. The demonstrated fast imaging speed and multimodal imaging capabilities of this MPM/RCM instrument are essential features for future clinical application of this technique. (© 2013 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

2.
用二次谐波成像技术研究经飞秒激光切削后角膜变化   总被引:2,自引:2,他引:0  
本文用二次谐波成像技术(second harmonic generation SHG)来研究飞秒激光切削后角膜结构的变化.在生物学研究,材料科学等方面都有很广泛应用的SHG成像技术能在不破坏的角膜情况下获得高对比度的角膜层析图像,分辨率为500 nm,实验装置是利用现有的双光子显微镜.本文还根据成像结果评价了飞秒激光在角膜切削中的质量,为飞秒激光微米级的精确切削和临床应用提供了实验支持.  相似文献   

3.
Laser scanning microscopy (LSM) is a common technique for high resolution fluorescent imaging. Here we describe a fast algorithm for non‐negative deconvolution and apply it to readout of LSM detector photocurrents. By broadening photon impulses and deconvolving sampled photocurrent, effective quantum efficiency of the imaging system is increased. Using simulation and imaging with a custom‐built two‐photon microscope, we demonstrate improved fidelity of images acquired at short dwell times over a wide range of photon rates. Images formed show increased correlation‐to‐sample equivalent to a 25% increase in photon rate, lower noise, and reduced bleed‐through compared to conventional image generation. (© 2013 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

4.
In recent years, two‐photon fluorescence microscopy has gained significant interest in bioimaging. It allows the visualization of deeply buried inhomogeneities in tissues. The near‐infrared (NIR) dyes are also used for deep tissue imaging. Indocyanine green (ICG) is the only U.S. Food and Drug Administration (FDA) approved exogenous contrast agent in the NIR region for clinical applications. However, despite its potential candidature, it had never been used as a two‐photon contrast agent for biomedical imaging applications. This letter provides an insight into the scope and application of the two‐photon excitation property of ICG to the second excited singlet (S2) state in aqueous solution. Furthermore, in this work, we demonstrate the two‐photon cellular imaging application of ICG using direct fluorescence emission from S2 state for the first time. Our results show that two‐photon excitation to S2 state of ICG could be achieved with approximately 790 nm wavelength of femtosecond laser, which lies in well‐known “tissue‐optical window.” This property would enable light to penetrate much deeper in the turbid medium such as biological tissues. Thus, ICG could be used as the first FDA approved NIR exogenous contrast agent for two‐photon imaging. These findings can make remarkable influence on preclinical and clinical cell imaging.   相似文献   

5.
Optical imaging is a key modality for observing biological specimen with higher spatial resolution. However, scattering and absorption of light in tissues are inherent barriers in maximizing imaging depth in biological tissues. To achieve this goal, use of light at near‐infrared spectrum can improve the present situation. Here, the capability of saturated two‐photon saturated excitation (TP‐SAX) fluorescence microscopy to image at depths of >2.0 mm, with submicron resolution in transparent mouse brain imaging, is demonstrated. At such depths with scattering‐enlarged point spread function (PSF), we find that TP‐SAX is capable to provide spatial resolution improvement compared to its corresponding TPFM, which is on the other hand already providing a much improved resolution compared with single‐photon confocal fluorescence microscopy. With the capability to further improve spatial resolution at such deep depth with scattering‐enlarged PSF, TP‐SAX can be used for exquisite visualization of delicate cerebral neural structure in the scattering regime with a submicron spatial resolution inside intact mouse brain.   相似文献   

6.
Stimulated Raman scattering (SRS) microscopy is a label‐free method generating images based on chemical contrast within samples, and has already shown its great potential for high‐sensitivity and fast imaging of biological specimens. The capability of SRS to collect molecular vibrational signatures in bio‐samples, coupled with the availability of powerful statistical analysis methods, allows quantitative chemical imaging of live cells with sub‐cellular resolution. This application has substantially driven the development of new SRS microscopy platforms. Indeed, in recent years, there has been a constant effort on devising configurations able to rapidly collect Raman spectra from samples over a wide vibrational spectral range, as needed for quantitative analysis by using chemometric methods. In this paper, an SRS microscope which exploits spectral shaping by a narrowband and rapidly tunable acousto‐optical tunable filter (AOTF) is presented. This microscope enables spectral scanning from the Raman fingerprint region to the Carbon‐Hydrogen (CH)‐stretch region without any modification of the optical setup. Moreover, it features also a high enough spectral resolution to allow resolving Raman peaks in the crowded fingerprint region. Finally, application of the developed SRS microscope to broadband hyperspectral imaging of biological samples over a large spectral range from 800 to 3600 cm?1, is demonstrated.  相似文献   

7.
The optical properties of colloidal ZnO nanoparticle (NP) solutions, with size ranging from several nm to around 200 nm, have been tailored to have high optical nonlinearity for bioimaging with no auto‐fluorescence above 750 nm and minimal auto‐fluorescence below 750 nm. The high second harmonic conversion efficiency enables selective tissue imaging and cell tracking using tunable near‐infrared femtosecond laser source ranging from 750‐980 nm. For laser energies exceeding the two‐photon energy of the bandgap of ZnO (half of 3.34 eV), the SHG signal greatly decreases and the two‐photon emission becomes the dominant signal. The heat generated due to two‐photon absorption within the ZnO NPs enable selective cell or localized tissue destruction using excitation wavelength ranging from 710–750 nm. (© 2012 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

8.
Increased accumulation of specific carotenoids in plastids through plant breeding or genetic engineering requires an understanding of the limitations that storage sites for these compounds may impose on that accumulation. Here, using Capsicum annuum L. fruit, we demonstrate directly the unique sub‐organellar accumulation sites of specific carotenoids using live cell hyperspectral confocal Raman microscopy. Further, we show that chromoplasts from specific cultivars vary in shape and size, and these structural variations are associated with carotenoid compositional differences. Live‐cell imaging utilizing laser scanning confocal (LSCM) and confocal Raman microscopy, as well as fixed tissue imaging by scanning and transmission electron microscopy (SEM and TEM), all demonstrated morphological differences with high concordance for the measurements across the multiple imaging modalities. These results reveal additional opportunities for genetic controls on fruit color and carotenoid‐based phenotypes.  相似文献   

9.
Liu Y  Ding Y  Alonas E  Zhao W  Santangelo PJ  Jin D  Piper JA  Teng J  Ren Q  Xi P 《PloS one》2012,7(6):e40003
In this report, a Ti:Sapphire oscillator was utilized to realize synchronization-free stimulated emission depletion (STED) microscopy. With pump power of 4.6 W and sample irradiance of 310 mW, we achieved super-resolution as high as 71 nm. With synchronization-free STED, we imaged 200 nm nanospheres as well as all three cytoskeletal elements (microtubules, intermediate filaments, and actin filaments), clearly demonstrating the resolving power of synchronization-free STED over conventional diffraction limited imaging. It also allowed us to discover that, Dylight 650, exhibits improved performance over ATTO647N, a fluorophore frequently used in STED. Furthermore, we applied synchronization-free STED to image fluorescently-labeled intracellular viral RNA granules, which otherwise cannot be differentiated by confocal microscopy. Thanks to the widely available Ti:Sapphire oscillators in multiphoton imaging system, this work suggests easier access to setup super-resolution microscope via the synchronization-free STED.  相似文献   

10.
Localization of mRNA and small RNAs (sRNAs) is important for understanding their function. Fluorescent in situ hybridization (FISH) has been used extensively in animal systems to study the localization and expression of sRNAs. However, current methods for fluorescent in situ detection of sRNA in plant tissues are less developed. Here we report a protocol (sRNA‐FISH) for efficient fluorescent detection of sRNAs in plants. This protocol is suitable for application in diverse plant species and tissue types. The use of locked nucleic acid probes and antibodies conjugated with different fluorophores allows the detection of two sRNAs in the same sample. Using this method, we have successfully detected the co‐localization of miR2275 and a 24‐nucleotide phased small interfering RNA in maize anther tapetal and archesporial cells. We describe how to overcome the common problem of the wide range of autofluorescence in embedded plant tissue using linear spectral unmixing on a laser scanning confocal microscope. For highly autofluorescent samples, we show that multi‐photon fluorescence excitation microscopy can be used to separate the target sRNA‐FISH signal from background autofluorescence. In contrast to colorimetric in situ hybridization, sRNA‐FISH signals can be imaged using super‐resolution microscopy to examine the subcellular localization of sRNAs. We detected maize miR2275 by super‐resolution structured illumination microscopy and direct stochastic optical reconstruction microscopy. In this study, we describe how we overcame the challenges of adapting FISH for imaging in plant tissue and provide a step‐by‐step sRNA‐FISH protocol for studying sRNAs at the cellular and even subcellular level.  相似文献   

11.
Three‐photon microscopy excited at the 1700‐nm window (roughly covering 1600‐1840 nm) is especially suitable for deep‐brain imaging in living animals. To match the brain refractive index, D2O has been exclusively used as the immersion medium. However, the hygroscopic property of D2O leads to a decrease of transmittance of the excitation light and as a result a decrease in three‐photon signals over time. Solutions such as replacing D2O from time to time, wrapping both the objective lens and the immersion D2O, and sealing D2O with paraffin liquid have all been demonstrated, which add to the system complexity. Based on our recent characterization of immersion oils, we propose using silicone oil as a potential alternative to D2O for deep‐brain imaging. Excited at 1600 nm, our comparative deep‐brain imaging using both D2O and silicone oil immersion show that silicone oil immersion yields 17% higher three‐photon signal in third‐harmonic generation imaging within the white matter. Besides, silicone oil immersion also enables three‐photon fluorescence imaging of vasculature up to 1460 μm (mechanical depth) into the mouse brain in vivo acquired at 2 seconds/frame. Together with the nonhygroscopic physical property, silicone oil is promising for long‐span three‐photon brain imaging excited at the 1700‐nm window.   相似文献   

12.
Light-sheet microscopy has been developed as a powerful tool for live imaging in biological studies. The efficient illumination of specimens using light-sheet microscopy makes it highly amenable to high-speed imaging. We therefore applied this technology to the observation of amoeboid movements, which are too rapid to capture with conventional microscopy. To simplify the setup of the optical system, we utilized the illumination optics from a conventional confocal laser scanning microscope. Using this set-up we achieved high-speed imaging of amoeboid movements. Three-dimensional images were captured at the recording rate of 40 frames/s and clearly outlined the fine structures of fluorescent-labeled amoeboid cellular membranes. The quality of images obtained by our system was sufficient for subsequent quantitative analysis for dynamics of amoeboid movements. This study demonstrates the application of light-sheet microscopy for high-speed imaging of biological specimens.  相似文献   

13.
Here we describe a two‐photon microscope and laser ablation setup combined with optical tweezers. We tested the setup on the fission yeast Schizosaccharomyces pombe, a commonly used model organism. We show that long‐term imaging can be achieved without significant photo‐bleaching or damage of the sample. The setup can precisely ablate sub‐micrometer structures, such as microtubules and mitotic spindles, inside living cells, which remain viable after the manipulation. Longer exposure times lead to ablation, while shorter exposures lead to photo‐bleaching of the target structure. We used optical tweezers to trap intracellular particles and to displace the cell nucleus. Two‐photon fluorescence imaging of the manipulated cell can be performed simultaneously with trapping. The combination of techniques described here may help to solve a variety of problems in cell biology, such as positioning of organelles and the forces exerted by the cytoskeleton. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

14.
We describe a versatile optical projection tomography system for rapid three-dimensional imaging of microscopic specimens in vivo. Our tomographic setup eliminates the in xy and z strongly asymmetric resolution, resulting from optical sectioning in conventional confocal microscopy. It allows for robust, high resolution fluorescence as well as absorption imaging of live transparent invertebrate animals such as C. elegans. This system offers considerable advantages over currently available methods when imaging dynamic developmental processes and animal ageing; it permits monitoring of spatio-temporal gene expression and anatomical alterations with single-cell resolution, it utilizes both fluorescence and absorption as a source of contrast, and is easily adaptable for a range of small model organisms.  相似文献   

15.
Elastic fibers are key constituents of the skin. The commonly adopted optical technique for visualizing elastic fibers in the animal skin in vivo is 2‐photon microscopy (2 PM) of autofluorescence, which typically suffers from low signal level. Here we demonstrate a new optical methodology to image elastic fibers in animal models in vivo: 3‐photon microscopy (3 PM) excited at the 1700‐nm window combining with preferential labeling of elastic fibers using sulforhodamine B (SRB). First, we demonstrate that intravenous injection of SRB can circumvent the skin barrier (encountered in topical application) and preferentially label elastic fibers, as verified by simultaneous 2 PM of both autofluorescence and SRB fluorescence from skin structures. Then through 3‐photon excitation property characterization, we show that 3‐photon fluorescence can be excited from SRB at the 1700‐nm window, and 1600‐nm excitation is most efficient according to our 3‐photon action cross section measurement. Based on these results and using our developed 1600‐nm femtosecond laser source, we finally demonstrate 3 PM of SRB‐labeled elastic fibers through the whole dermis in the mouse skin in vivo, with only 3.7‐mW optical power deposited on the skin surface. We expect our methodology will provide novel optical solution to elastic fiber research.  相似文献   

16.
Two‐photon imaging is a noninvasive imaging technique with increasing importance in the biological and medical fields since it allows intratissue cell imaging with high resolution. We demonstrate the feasibility of using a single 2‐photon instrument to evaluate the cornea, the crystalline lens and the retina based on their autofluorescence (AF). Image acquisition was performed using a custom‐built 2‐photon microscope for 5‐dimensional microscopy with a near infrared broadband sub‐15 femtosecond laser centered at 800 nanometers. Signals were detected using a spectral photomultiplier tube. The spectral ranges for the analysis of each tissue/layer AF were determined based on the spectra of each tissue as well as of pure endogenous fluorophores. The cornea, lens and retina are characterized at multiple depths with subcellular resolution based on their morphology and AF lifetime. Additionally, the AF lifetime of NAD(P)H was used to assess the metabolic activity of the cornea epithelium, endothelium and keratocytes. The feasibility to evaluate the metabolic activity of lens epithelial cells was also demonstrated, which may be used to further investigate the pathogenesis of cataracts. The results illustrate the potential of multimodal multiphoton imaging as a novel ophthalmologic technique as well as its potential as a diagnostic tool.   相似文献   

17.
We describe the construction of a video-rate two-photon laser scanning microscope, compare its performance to a similar confocal microscope, and illustrate its use for imaging local Ca(2+) transients from cortical neurons in brain slices. Key features include the use of a Ti-sapphire femtosecond laser allowing continuous tuning over a wide (700-1000 nm) wavelength range, a resonant scanning mirror to permit frame acquisition at 30 Hz, and efficient wide-field fluorescence detection. Two-photon imaging provides compelling advantages over confocal microscopy in terms of improved imaging depth and reduced phototoxicity and photobleaching, but the high cost of commercial instruments has limited their widespread adoption. By constructing one's own system the expense is greatly reduced without sacrifice of performance, and the microscope can be more readily tailored to specific applications.  相似文献   

18.
We demonstrate simultaneous multi‐site two‐photon photolysis of caged neurotransmitters with close to diffraction‐limited resolution in all three dimensions (3D). We use holographic projection of multiple focal spots, which allows full control over the 3D positions of uncaging sites with a high degree of localized excitation. Our system incorporates a two‐photon imaging setup to visualize the 3D morphology of the neurons in order to accurately determine the photostimulation sites. We show its application to studies of synaptic integration by performing simultaneous and controlled glutamate delivery at multiple locations on dendritic trees. (© 2012 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

19.
郑明杰 《激光生物学报》2010,19(3):423-426,F0003,390
光学显微镜的发展历史是一段不断提高显微镜的分辨率和对比度的历史。双光子显微镜是近30年来非线性显微镜的研究发展的代表。它在分辨率上与共聚焦显微镜相当,但在成像的层析穿透深度上有显著提高,并且大大减少了光毒性与光漂白。由于生物细胞组织中富有各种自家荧光源,因此双光子显微镜被广泛应用于皮肤组织甚至癌组织以及细胞的成像。基于共聚焦扫描显微镜的双光子显微镜可以很容易的与二次谐波显微镜组合,对皮肤组织中的重要成分胶原纤维进行成像。双光子显微镜还可以结合其他非线性光学现象对组织以及细胞进行成像,显示其强大的生命力。将来随着携带方便且廉价的双光子显微镜的出现,双光子显微镜有望在临床医学上发挥其有效的作用。  相似文献   

20.
In this work highly localized femtosecond laser ablation is used to dissect single axons within a living Caenorhabditis elegans (C. elegans). We present a multimodal imaging methodology for the assessment of the collateral damage induced by the laser. This relies on the observation of the tissues surrounding the targeted region using a combination of different high resolution microscopy modalities. We present the use of Second Harmonic Generation (SHG) and Polarization Sensitive SHG (PSHG) to determine damage in the neighbor muscle cells. All the above is done using a single instrument: multimodal microscopy setup that allows simultaneous imaging in the linear and non-linear regimes and femtosecond-laser ablation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号