首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Human social evolution has most often been treated in a piecemeal fashion, with studies focusing on the evolution of specific components of human society such as pair‐bonding, cooperative hunting, male provisioning, grandmothering, cooperative breeding, food sharing, male competition, male violence, sexual coercion, territoriality, and between‐group conflicts. Evolutionary models about any one of those components are usually concerned with two categories of questions, one relating to the origins of the component and the other to its impact on the evolution of human cognition and social life. Remarkably few studies have been concerned with the evolution of the entity that integrates all components, the human social system itself. That social system has as its core feature human social structure, which I define here as the common denominator of all human societies in terms of group composition, mating system, residence patterns, and kinship structures. The paucity of information on the evolution of human social structure poses substantial problems because that information is useful, if not essential, to assess both the origins and impact of any particular aspect of human society.  相似文献   

2.
A pair‐living social organisation can typically be explained by obligate biparental care. We investigated pair‐living in the absence of biparental care in the Australian sleepy lizard, Tiliqua rugosa, which forms exceptionally strong pair bonds. We fitted 10 lizards, five male–female pairs, with Global Positioning System (GPS) recorders and continuously monitored social associations and separations between active pair partners, based on location records taken every 10 min over 3 mo. Males temporarily separated and reunited the pair more frequently than females, but females also contributed to the maintenance of the pair bond. These behavioural data were consistent with the hypothesis that females successfully coerce males into associations with one female. Lower frequencies of social association between pair partners once mating had finished support this interpretation. Males that are coerced into pair associations appear to experience higher costs of pair‐living than females, because males initiated temporary separations of the pair more frequently than females. Males showed higher movement activity and remained active later each day. This sex bias in activity may be an important mechanism to mitigate the higher costs of pair‐living for males. Costs for males might include within‐pair competition for food as females appear more competitive. Our study provides detailed empirical data on a lizard pair bond and provides important insights into pair‐living in the absence of biparental care.  相似文献   

3.
The benefits of stable pair bonds (that persist between breeding attempts) have been well described, but are relatively less well known in cooperatively breeding species. If pair bonds are beneficial, then it is possible that the bond between the behaviorally and socially dominant pair may influence factors such as reproductive success and group stability in cooperative species. Here, we used long‐term data to investigate the relationships between pair bond tenure, reproductive success, and group stability in the cooperatively breeding pied babbler (Turdoides bicolor). Pair bond tenure positively influenced both the number of offspring recruited annually per pair and total reproductive success (over entire pair bond duration), indicating that pair bond tenure has an important influence on reproductive success. The likelihood of immigration into the group was lower for groups containing a bonded pair with long tenure, indicating that the duration of pair bonds may impact group stability. These findings suggest that pair tenure, a hitherto relatively unexplored factor in cooperative species, may have an important influence on group dynamics.  相似文献   

4.
Despite widespread evidence that mating and intrasexual competition are costly, relatively little is known about how these costs dynamically change male and female phenotypes. Here, we test multiple hypotheses addressing this question in replicate flocks of red junglefowl (Gallus gallus). First, we test the interrelationships between social status, comb size (a fleshy ornament) and body mass at the onset of a mating trial. While comb size covaried positively with body mass across individuals of both sexes, comb size was positively related to social status in females but not in males. Second, we test for changes within individuals in body mass and comb size throughout the mating trial. Both body mass and comb size declined at the end of a trial in both sexes, suggesting that mating effort and exposure to the opposite sex are generally costly. Males lost more body mass if they (a) were socially subordinate, (b) were chased by other males or (c) mated frequently, indicating that subordinate status and mating are independently costly. Conversely, females lost more body mass if they were exposed to a higher frequency of coerced matings, suggesting costs associated with male sexual harassment and female resistance, although costs of mating per se could not be completely ruled out. Neither competitive nor mating interactions predicted comb size change in either sex. Collectively, these results support the notion that sex‐specific costs associated with social status and mating effort result in differential, sex‐specific dynamics of phenotypic change.  相似文献   

5.
It is widely accepted that the genetic divergence and reproductive incompat- ibility between closely related species and/or populations is often viewed as an important step toward speciation. In this study, sexual compatibility in crosses between the southern XS population and the northern TA population of the polyandrous cabbage beetle Co- laphellus bowringi was investigated by testing their mating preferences, mating latency, copulation duration, and reproductive performances of post-mating. In choice mating ex- periments, the percentages ofmatings were significantly higher in intra-population crosses than in inter-population crosses. Both isolation index (/) and index of pair sexual isolation (/PSi) indicated partial mating incompatibility or assortative mating in crosses between the two different geographical populations. In single pair mating experiments, XS females in inter-population crosses mated significantly later and copulated significantly shorter than those in intra-population crosses. However, TA females in inter-population crosses mated significantly earlier and copulated longer than those in intra-population crosses, suggesting that larger XS males may enhance heterotypic mating. The lifetime fecundity was highest in XS homotypic matings, lowest in TA homotypic matings, and intermedi- ate in heterotypic rnatings between their parents. The inter-population crosses resulted in significantly lower egg hatching rate and shorter female longevity than intra-population crosses. These results demonstrated that there exist some incompatibilities in premating, postmating-prezygotic, and postzygotic stages between the southern XS population and northern TA population of the cabbage beetle Colaphellus bowringi.  相似文献   

6.
Prairie voles (Microtus ochrogaster) exhibit a monogamous mating system characterized by long-term pair bonds between mates. The purpose of this study was to examine the effect of cohabitation time and sexual experience on the development of pair bond formation in female prairie voles. Females that were allowed to cohabit for 24 hr or more, with or without mating, exhibited a strong social preference for a familiar partner versus a strange male. Females that cohabited and mated for 6 hr showed strong preferences for a familiar partner, while cohabitation for less than 24 hr, without mating, did not result in preferences for the familiar male. These results indicate that mating was not essential for partner preference formation; however, preferences developed more rapidly when mating occurred.  相似文献   

7.
Multilevel societies are unique in their ability to facilitate the maintenance of strong and consistent social bonds among some individuals while allowing separation among others, which may be especially important when social and sexual bonds carry significant and reliable benefits to individuals within social groups. Here we examine the importance of social and sexual bonds in the multilevel society of hamadryas baboons (Papio hamadryas) and apply these principles to social evolution in Plio-Pleistocene hominins. The behavior, adaptations, and socioecology of baboons (Papio spp.) have long been recognized as providing an important comparative sample to elucidate the processes of human evolution, and the social system of hamadryas baboons in particular shares even more similarities with humans than that of other baboons. Here we draw parallels between processes during the evolution of hamadryas social organization and those characterizing late Pliocene or early Pleistocene hominins, most likely Homo erectus. The higher costs of reproduction faced by female Homo erectus, exacerbated by an increased reliance on difficult to acquire, nutrient-dense foods, are commonly thought to have been alleviated by a strengthening of male–female bonds (via male provisioning and the evolution of monogamy) or by the assistance of older, postreproductive females (via grandmothering). We suggest that both of these social arrangements could have been present in Plio-Pleistocene hominins if we assume the development of a multilevel society such as that in hamadryas baboons. The evolution of a multilevel society thus underlies the adaptive potential for the complexity that we see in modern human social organization.  相似文献   

8.
In socially monogamous species, extra‐pair paternity may increase the strength of intersexual selection by allowing males with preferred phenotypes to monopolize matings. Several studies have found relationships between male signals and extra‐pair mating, but many others fail to explain variation in extra‐pair mating success. A greater appreciation for the role that ecological contingencies play in structuring behavioural processes may help to reconcile contradictory results. We studied extra‐pair mating in a spatial context in the common yellowthroat (Geothlypis trichas), a territorial wood warbler. Over the course of 6 years, we observed 158 breeding attempts by 99 males, resulting in a total of 369 nests and 520 sampled nestlings. The spatial distribution of territories varied greatly, with males having between 0 and 10 close neighbours and between three and 39 neighbouring nestlings close enough to represent extra‐pair siring opportunities. Both within‐pair and extra‐pair reproductive success increased with breeding density, but the opportunity for sexual selection and strength of selection varied with density. Total variance in reproductive success was highest at low density and was mostly explained by variation in within‐pair success. In contrast, at high density, both within‐pair and extra‐pair successes contributed substantially to variance in reproductive success. The relationships between plumage and extra‐pair mating also varied by density; plumage was under strong sexual selection via extra‐pair mating success at high density, but no selection was detected at low density. Thus, ecological factors that structure social interactions can drive patterns of sexual selection by facilitating or constraining the expression of mating preferences.  相似文献   

9.
Many vertebrates form monogamous pairs to mate and care for their offspring. However, genetic tools have increasingly shown that offspring often arise from matings outside of the monogamous pair bond. Social monogamy is relatively common in coral reef fishes, but there have been few studies that have confirmed monogamy or extra‐pair reproduction, either for males or for females. Here, long‐term observations and genetic tools were applied to examine the parentage of embryos in a paternally mouth‐brooding cardinalfish, Sphaeramia nematoptera. Paternal care in fishes, such as mouth‐brooding, is thought to be associated with a high degree of confidence in paternity. Two years of observations confirmed that S. nematoptera form long‐term pair bonds within larger groups. However, genetic parentage revealed extra‐pair mating by both sexes. Of 105 broods analysed from 64 males, 30.1% were mothered by a female that was not the partner and 11.5% of broods included eggs from two females. Despite the high paternal investment associated with mouth‐brooding, 7.6% of broods were fertilized by two males. Extra‐pair matings appeared to be opportunistic encounters with individuals from outside the immediate group. We argue that while pair formation contributes to group cohesion, both males and females can maximize lifetime reproductive success by taking advantage of extra‐pair mating opportunities.  相似文献   

10.
There are several hypotheses suggesting that social complexity, including pair bonding, is important in the evolution of increased brain size. I examined whether genetic or social monogamy was related to large brain size in birds. Recent work has indicated that the length and strength of pair bonds are associated with large brain size. I tested several hypotheses for the evolution of large brain size in 42 species of bird by including life history variables in a regression model. A test on 100 phylogenetic trees revealed no phylogenetic signal in brain size. Controlling for body size, a principal components analysis was run on the life history variables and degrees of extra‐pair paternity. The main principal component (PC1) was regressed on brain size revealing a strong, positive association. Social, but not genetic, monogamy was positively related to brain size. Large brain size is related to the selective pressures of procuring extra‐pair copulations whilst maintaining a social partnership. However, other life history variables also loaded positively and significantly on brain size. These results indicate that the evolution of large brain size in birds was driven by several important selective pressures. © 2014 The Linnean Society of London, Biological Journal of the Linnean Society, 2014, 111 , 668–678.  相似文献   

11.
Enduring social bonds play an essential role in human society. These bonds positively affect psychological, physiological, and behavioral functions. Here, we review the recent literature on the neurobiology, particularly the role of oxytocin and dopamine, of pair bond formation, bond disruption, and social buffering effects on stress responses, from studies utilizing the socially monogamous prairie vole (Microtus ochrogaster).  相似文献   

12.
For species showing sexual monogamy, once one male and one female form a mating pair bond, they will be faithful to each other in subsequent breeding events. However, if their pair bond is broken for some reason, do they continue to prefer their partner when they come together again for mating? In other words, can the broken pair bond of sexually monogamous species be repaired? This is an interesting question but not yet well answered. To address this question, in the present study we used the lined seahorse (Hippocampus erectus), a typical sexually monogamous species, to study the partner preference of a female individual who experienced a complete separation followed by a reunion with her partner. Our main findings are as follows: (i) The female seahorse no longer prefers her partner after a separation, whether it is a former partner or a recent partner. No preference for partner-males may indicate that the broken pair bond cannot be repaired. (ii) The female seahorse maintains sexual fidelity to her partner in the absence of separation. However, once the health of her partner decreases, the female will switch mate, and her courtship with the new partner can take place during the pregnancy of her original partner. The first finding may provide insight into whether monogamous species still have an opportunity to reselect a new partner in the future to correct their poor choice once they have mated with a low-quality partner. The answer is that they can still gain an opportunity as long as the pair bonds with their current partners are broken. The second finding may reveal the conditions and timing at which a female seahorse switches her mate. These findings help us better understand the mating system of the seahorse H. erectus.  相似文献   

13.
Abstract Although most reptiles have polygynous mating systems without long‐term pair bonds, one lineage of large scincid lizards in Australia is exceptional in this respect. Reports of complex sociality in the genus Egernia led us to conduct the first radiotelemetric field study of a species within this group. Land mullets (Egernia major) are large (60 cm total length), viviparous lizards from rainforest habitats in south‐eastern Australia. To document the spatial ecology and social organization of this species, we captured 12 adult lizards in the Barrington Tops area of eastern New South Wales and implanted them with miniature radiotransmitters. The lizards were released at their sites of capture and located daily for the next 6 weeks. All of the radiotracked lizards had discrete home ranges of approximately 10 000 m2, based around well‐defined core areas (approximately 2000–3000 m2). Females tended to move further, and to range over wider areas, than did males. All of the radiotracked lizards lived in social groups consisting of one or more adult males and females plus juveniles of all age classes. Subgroups were apparent within one group of five radio‐tagged lizards: individual animals consistently shared their shelter sites and home ranges with one or more specific individuals. Male/female pairings were more frequent than expected under the null hypothesis of random association among individuals. The data in the present study support anecdotal reports of pair bonds in E. major and support suggestions that the social systems of species in this genus are more complex than those of previously studied reptiles.  相似文献   

14.
Understanding the evolution of mating systems, a central topic in evolutionary biology for more than 50 years, requires examining the genetic consequences of mating and the relationships between social systems and mating systems. Among pair-living mammals, where genetic monogamy is extremely rare, the extent of extra-group paternity rates has been associated with male participation in infant care, strength of the pair bond and length of the breeding season. This study evaluated the relationship between two of those factors and the genetic mating system of socially monogamous mammals, testing predictions that male care and strength of pair bond would be negatively correlated with rates of extra-pair paternity (EPP). Autosomal microsatellite analyses provide evidence for genetic monogamy in a pair-living primate with bi-parental care, the Azara''s owl monkey (Aotus azarae). A phylogenetically corrected generalized least square analysis was used to relate male care and strength of the pair bond to their genetic mating system (i.e. proportions of EPP) in 15 socially monogamous mammalian species. The intensity of male care was correlated with EPP rates in mammals, while strength of pair bond failed to reach statistical significance. Our analyses show that, once social monogamy has evolved, paternal care, and potentially also close bonds, may facilitate the evolution of genetic monogamy.  相似文献   

15.
The contribution of extra‐pair paternity (EPP) to sexual selection has received considerable attention, particularly in socially monogamous species. However, the importance of EPP remains difficult to assess quantitatively, especially when many extra‐pair young have unknown sires. Here, we combine measurements of the opportunity for selection (I), the opportunity for sexual selection (IS), and the strength of selection on mating success (Bateman gradient, βSS) with a novel simulation of random mating tailored to the specific mating system of the blue tit (Cyanistes caeruleus). In a population where social polygyny and EPP are common, the opportunity for sexual selection was significantly stronger and Bateman gradients significantly steeper for resident males than for females. In general, success with the social mate(s) contributed most to variation in male reproductive success. Effects of EPP were small, but significantly higher than expected under random mating. We used sibship analysis to estimate the number of unknown sires in our population. Under the assumption that the unknown sires are nonbreeding males, EPP reduced the variance in and the strength of selection on mating success, a possibility that hitherto has not been considered.  相似文献   

16.
The condition dependence of male sexual traits plays a central role in sexual selection theory. Relatively little, however, is known about the condition dependence of chemical signals used in mate choice and their subsequent effects on male mating success. Furthermore, few studies have isolated the specific nutrients responsible for condition‐dependent variation in male sexual traits. Here, we used nutritional geometry to determine the effect of protein (P) and carbohydrate (C) intake on male cuticular hydrocarbon (CHC) expression and mating success in male decorated crickets (Gryllodes sigillatus). We show that both traits are maximized at a moderate‐to‐high intake of nutrients in a P:C ratio of 1 : 1.5. We also show that female precopulatory mate choice exerts a complex pattern of linear and quadratic sexual selection on this condition‐dependent variation in male CHC expression. Structural equation modelling revealed that although the effect of nutrient intake on mating success is mediated through condition‐dependent CHC expression, it is not exclusively so, suggesting that other traits must also play an important role. Collectively, our results suggest that the complex interplay between nutrient intake, CHC expression and mating success plays an important role in the operation of sexual selection in G. sigillatus.  相似文献   

17.
Assortative mating is non-random mating by the mutual choice of phenotypes or behavioral types. In polygynandrous species, competition for mating by social rank can lead to assortative mating. However, although not an individual trait, social bonds also influence mating opportunities resembling assortative mating. Stump-tailed macaques form long-term close bonds and organize in a linear dominance–subordination hierarchy. Therefore, we studied whether the strength of the social bond and rank closeness influenced mating decisions and increased mating opportunities, particularly for low- and middle-ranking animals. Firstly, we observed whether females directed proceptive behavior to close-bonded or adjacent rank males. Secondly, we measured whether successful copulations were related to the strength of social bonds and close ranking. Thirdly, to ensure that copulations owed mainly to the aforementioned factors, we also evaluated whether sexual coercion was unrelated to social bonds and rank similarities. Finally, we assessed whether close bonds mediated agonistic support to females. The study subjects were 12 adult female and 11 male captive stump-tailed macaques. We monitored daily females' reproductive status by vaginal cytology. Sexual behavior was recorded by all occurrences sampling and scan sampling to collect the agonistic and affiliative instances required to calculate social ranks, social bond strength, and agonistic support. The results indicated that the probability of females displaying proceptivity increased during the follicular phase toward close-bonded and high-ranking males. Copulation chances increased with male–female social bonds and rank closeness. Forced copulation decreased in close-bonded individuals, while agonistic support increased in close-ranking strong-bonded animals. In conclusion, close social bonds and similar social rank result in non-random mating in stump-tailed macaques.  相似文献   

18.
Most birds rely on cooperation between pair partners for breeding. In long‐term monogamous species, pair bonds are considered the basic units of social organization, albeit these birds often form foraging, roosting or breeding groups in which they repeatedly interact with numerous conspecifics. Focusing on jackdaws Corvus monedula, we here investigated 1) the interplay between pair bond and group dynamics in several social contexts and 2) how pair partners differ in individual effort of pair bond maintenance. Based on long‐term data on free‐flying birds, we quantified social interactions between group members within three positive contexts (spatial proximity, feeding and sociopositive interactions) for different periods of the year (non‐breeding, pre‐breeding, parental care). On the group level, we found that the number of interaction partners was highest in the spatial proximity context while in the feeding and sociopositive contexts the number of interaction partners was low and moderately low, respectively. Interactions were reciprocated within almost all contexts and periods. Investigating subgrouping within the flock, results showed that interactions were preferentially directed towards the respective pair partner compared to unmated adults. When determining pair partner effort, both sexes similarly invested most into mutual proximity during late winter, thereby refreshing their bond before the onset of breeding. Paired males fed their mates over the entire year at similar rates while paired females hardly fed their mates at all but engaged in sociopositive behaviors instead. We conclude that jackdaws actively seek out positive social ties to flock members (close proximity, sociopositive behavior), at certain times of the year. Thus, the group functions as a dynamic social unit, nested within are highly cooperative pair bonds. Both sexes invested into the bond with different social behaviors and different levels of effort, yet these are likely male and female proximate mechanisms aimed at maintaining and perpetuating the pair bond.  相似文献   

19.
Large-sized Barnacle Geese Branta leucopsis of both sexes had a higher probability of breeding successfully in any particular year and produced more goslings than did smaller birds. Large females paired at an earlier age, suggesting that they were preferred as mates and were likely to have entered the breeding population earlier. The relative sizes of the pair bond members also affected fitness. Most birds were able to maximize their breeding performance by mating with relatively similar sized partners; the greater the size disparity of mates, the lower the breeding performance. This supports the idea that compatibility of mates may be important in determining fitness of the pair. The success of different pair types was also affected by environmental conditions, with certain size combinations doing better in some years and poorly in other years.  相似文献   

20.
This article is part of a Special Issue “Parental Care”.Mother–infant bonding is a characteristic of virtually all mammals. The maternal neural system may have provided the scaffold upon which other types of social bonds in mammals have been built. For example, most mammals exhibit a polygamous mating system, but monogamy and pair bonding between mating partners occur in ~ 5% of mammalian species. In mammals, it is plausible that the neural mechanisms that promote mother–infant bonding have been modified by natural selection to establish the capacity to develop a selective bond with a mate during the evolution of monogamous mating strategies. Here we compare the details of the neural mechanisms that promote mother–infant bonding in rats and other mammals with those that underpin pair bond formation in the monogamous prairie vole. Although details remain to be resolved, remarkable similarities and a few differences between the mechanisms underlying these two types of bond formation are revealed. For example, amygdala and nucleus accumbens–ventral pallidum (NA–VP) circuits are involved in both types of bond formation, and dopamine and oxytocin actions within NA appear to promote the synaptic plasticity that allows either infant or mating partner stimuli to persistently activate NA–VP attraction circuits, leading to an enduring social attraction and bonding. Further, although the medial preoptic area is essential for maternal behavior, its role in pair bonding remains to be determined. Our review concludes by examining the broader implications of this comparative analysis, and evidence is provided that the maternal care system may have also provided the basic neural foundation for other types of strong social relationships, beyond pair bonding, in mammals, including humans.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号