首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study was carried out to investigate the effects of resveratrol on cigarette smoke (CS)–induced lung injury. Experimental mice were administrated with 1 mg/kg or 3 mg/ kg resveratrol orally, 1 h prior to CS exposure (five cigarettes a day for 3 consecutive days). Airway inflammation and gene expression changes were assessed. CS exposure increased the number of pulmonary inflammatory cells, coupled with elevated production of tumor necrosis factor α and interleukin‐6 in bronchoalveolar lavage fluids. Resveratrol treatment decreased CS‐induced lung inflammation. Resveratrol restored the activities of superoxide dismutase, GSH peroxidase, and catalase in CS‐treated mice. CS significantly enhanced the nuclear translocation of nuclear factor κB (NF‐κB) and NF‐κB DNA binding activity, which was impaired by resveratrol pretreatment. In addition, resveratrol promoted CS‐induced heme oxygenase‐1 (HO‐1) expression and activation. Our results collectively indicate that resveratrol attenuates CS‐induced lung oxidative injury, which involves decreased NF‐κB activity and the elevated HO‐1 expression and activity.  相似文献   

2.
3.
Cullin‐RING‐ubiquitin‐ligase (CRL)‐dependent ubiquitination of the nuclear factor kappa B (NF‐κB) inhibitor IκBα and its subsequent degradation by the proteasome usually precede NF‐κB/RelA nuclear activity. Through removal of the CRL‐activating modification of their cullin subunit with the ubiquitin (Ub)‐like modifier NEDD8, the COP9 signalosome (CSN) opposes CRL Ub‐ligase activity. While RelA phosphorylation was observed to mediate NF‐κB activation independent of Ub‐proteasome‐pathway (UPP)‐dependent turnover of IκBα in some studies, a strict requirement of the p97/VCP ATPase for both, IκBα degradation and NF‐κB activation, was reported in others. In this study, we thus aimed to reconcile the mechanism for tumour necrosis factor (TNF)‐induced NF‐κB activation. We found that inducible phosphorylation of RelA is accomplished in an IKK‐complex‐dependent manner within the NF‐κB/RelA‐IκBα‐complex contemporaneous with the phosphorylation of IκBα, and that RelA phosphorylation is not sufficient to dissociate NF‐κB/RelA from IκBα. Subsequent to CRL‐dependent IκBα ubiquitination functional p97/VCP is essentially required for efficient liberation of (phosphorylated) RelA from IκBα, preceding p97/VCP‐promoted timely and efficient degradation of IκBα as well as simultaneous NF‐κB/RelA nuclear translocation. Collectively, our data add new facets to the knowledge about maintenance of IκBα and RelA expression, likely depending on p97/VCP‐supported scheduled basal NF‐κB activity, and the mechanism of TNF‐induced NF‐κB activation.  相似文献   

4.
5.
Gastric cancer is one of the most common causes of cancer‐related death worldwide. Immunotherapy via programmed cell death protein 1 (PD‐1)/programmed cell death‐ligand 1 (PD‐L1) blockade has shown benefits for gastric cancer. Epigenetic DNA methylation critically regulates cancer immune checkpoints. We investigated how the natural compound oleanolic acid (OA) affected PD‐L1 expression in gastric cancer cells. Interleukin‐1β (IL‐1β) at 20 ng/mL was used to stimulate human gastric cancer MKN‐45 cells. IL‐1β significantly increased PD‐L1 expression, which was abolished by OA. Next, OA‐treated MKN‐45 cells were co‐cultured with activated and PD‐1‐overexpressing Jurkat T cells. OA restored IL‐2 levels in the co‐culture system and increased T cell killing toward MKN‐45 cells. Overexpression of PD‐L1 eliminated OA‐enhanced T cell killing capacity; however, PD‐1 blocking antibody abrogated the cytotoxicity of T cells. Moreover, OA abolished IL‐1β‐increased DNA demethylase activity in MKN‐45 cells. DNA methyltransferase inhibitor 5‐azacytidine rescued OA‐reduced PD‐L1 expression; whereas DNA demethylation inhibitor gemcitabine inhibited PD‐L1 expression, and, in combination with OA, provided more potent inhibitory effects. Furthermore, OA selectively reduced the expression of DNA demethylase TET3 in IL‐1β‐treated MKN‐45 cells, and overexpression of TET3 restored OA‐reduced PD‐L1 expression. Finally, OA disrupted nuclear factor κB (NF‐κB) signaling IL‐1β‐treated MKN‐45 cells, and overexpression of NF‐κB restored OA downregulation of TET3 and PD‐L1. The cytotoxicity of T cells toward MKN‐45 cells was also weakened by NF‐κB overexpression. Altogether, OA blocked the IL‐1β/NF‐κB/TET3 axis in gastric cancer cells, leading to DNA hypomethylation and downregulation of PD‐L1. Our discoveries suggested OA as an epigenetic modulator for immunotherapy or an adjuvant therapy against gastric cancer.  相似文献   

6.
7.
8.
9.
Retinitis pigmentosa (RP) is a group of inherited neurodegenerative diseases characterized by the loss of photoreceptor cells through apoptosis. N‐methyl‐N‐nitrosourea (MNU) is an alkylating toxicant that induces photoreceptor cell death resembling hereditary RP. This study aimed to investigate the role of nuclear factor κB (NF‐κB) in MNU‐induced photoreceptor degeneration. Adult rats received a single intraperitoneal injection of MNU (60 mg/kg bodyweight). Hematoxylin and eosin staining demonstrated progressive outer nuclear layer (ONL) loss after MNU treatment. Transmission electron microscopy revealed nuclear pyknosis, chromatin margination in the photoreceptors, increased secondary lysosomes, and lobulated retinal‐pigmented epithelial cells in MNU‐treated rats. Numerous photoreceptor cells in the ONL showed positive TUNEL staining and apoptosis rate peaked at 24 hours. Enhanced depth imaging spectral‐domain optical coherence tomography showed ONL thinning and decreased choroid thickness. Electroretinograms showed decreased A wave amplitude that predominated in scotopic conditions. Western blot analysis showed that nuclear IκBα level increased, whereas nuclear NF‐κB p65 decreased significantly in the retinas of MNU‐treated rats. These findings indicate that MNU leads to selective photoreceptor degradation, and this is associated with the inhibition of NF‐κB activation.  相似文献   

10.
Inactivation of survival pathways such as NF‐κB, cyclooxygenase (COX‐2), or epidermal growth factor receptor (EGFR) signaling individually may not be sufficient for the treatment of advanced pancreatic cancer (PC) as suggested by recent clinical trials. 3,3′‐Diindolylmethane (B‐DIM) is an inhibitor of NF‐κB and COX‐2 and is a well‐known chemopreventive agent. We hypothesized that the inhibition of NF‐κB and COX‐2 by B‐DIM concurrently with the inhibition of EGFR by erlotinib will potentiate the anti‐tumor effects of cytotoxic drug gemcitabine, which has been tested both in vitro and in vivo. Inhibition of viable cells in seven PC cell lines treated with B‐DIM, erlotinib, or gemcitabine alone or their combinations was evaluated using 3‐(4,5‐dimetylthiazol‐2‐yl)‐2,5‐diphenyltetrazolium bromide (MTT) assay. Significant inhibition in cell viability was observed in PC cells expressing high levels of COX‐2, EGFR, and NF‐κB proteins. The observed inhibition was associated with an increase in apoptosis as assessed by ELISA. A significant down‐regulation in the expression of COX‐2, NF‐κB, and EGFR in BxPC‐3, COLO‐357, and HPAC cells was observed, suggesting that simultaneous targeting of EGFR, NF‐κB, and COX‐2 is more effective than targeting either signaling pathway separately. Our in vitro results were further supported by in vivo studies showing that B‐DIM in combination with erlotinib and gemcitabine was significantly more effective than individual agents. Based on our preclinical in vitro and in vivo results, we conclude that this multi‐targeted combination could be developed for the treatment of PC patients whose tumors express high levels of COX‐2, EGFR, and NF‐κB. J. Cell. Biochem. 110: 171–181, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

11.
The retinal pigment epithelium (RPE) plays a central role in neuroretinal homoeostasis throughout life. Altered proteolysis and inflammatory processes involving RPE contribute to the pathophysiology of age‐related macular degeneration (AMD), but the link between these remains elusive. We report for the first time the effect of advanced glycation end products (AGE)—known to accumulate on the ageing RPE's underlying Bruch's membrane in situ—on both key lysosomal cathepsins and NF‐κB signalling in RPE. Cathepsin L activity and NF‐κB effector levels decreased significantly following 2‐week AGE exposure. Chemical cathepsin L inhibition also decreased total p65 protein levels, indicating that AGE‐related change of NF‐κB effectors in RPE cells may be modulated by cathepsin L. However, upon TNFα stimulation, AGE‐exposed cells had significantly higher ratio of phospho‐p65(Ser536)/total p65 compared to non‐AGEd controls, with an even higher fold increase than in the presence of cathepsin L inhibition alone. Increased proportion of active p65 indicates an AGE‐related activation of NF‐κB signalling in a higher proportion of cells and/or an enhanced response to TNFα. Thus, NF‐κB signalling modulation in the AGEd environment, partially regulated via cathepsin L, is employed by RPE cells as a protective (para‐inflammatory) mechanism but renders them more responsive to pro‐inflammatory stimuli.  相似文献   

12.
13.
14.
15.
16.
Synovial fibroblasts (SFs) play a crucial role in the inflammatory process of rheumatoid arthritis (RA). The highly activated NF‐κB signal in SFs is responsible for most of the synovial inflammation associated with this disease. In this study, we have developed an SF‐targeting liposomal system that encapsulates the NF‐κB‐blocking peptide (NBD peptide) HAP‐lipo/NBD. HAP‐lipo/NBDs demonstrated efficient SF‐specific targeting in vitro and in vivo. Our study also showed a significant inhibitory effect of HAP‐lipo/NBD on NF‐κB activation, inflammatory cytokine release and SF migration capability after zymosan stimulation. Furthermore, the systemic administration of HAP‐lipo/NBDs significantly inhibited synovial inflammation and improved the pathological scores of arthritis induced by zymosan. Thus, these results suggest that an SF‐targeting NF‐κB‐blocking strategy is a potential approach for the development of alternative, targeted anti‐RA therapies.  相似文献   

17.
Tumor necrosis factor‐α (TNF‐α) is a pleiotropic cytokine produced by activated macrophages. Nitric oxide (NO) is a highly reactive nitrogen radical implicated in inflammatory responses. We investigated the signaling pathway involved in inducible nitric oxide synthase (iNOS) expression and NO production stimulated by TNF‐α in cultured myoblasts. TNF‐α stimulation caused iNOS expression and NO production in myoblasts (G7 cells). TNF‐α‐mediated iNOS expression was attenuated by integrin‐linked kinase (ILK) inhibitor (KP392) and siRNA. Pretreatment with Akt inhibitor, mammalian target of rapamycin (mTOR) inhibitor (rapamycin), NF‐κB inhibitor (PDTC), and IκB protease inhibitor (TPCK) also inhibited the potentiating action of TNF‐α. Stimulation of cells with TNF‐α increased ILK kinase activity. TNF‐α also increased the Akt and mTOR phosphorylation. TNF‐α mediated an increase of NF‐κB‐specific DNA–protein complex formation, p65 translocation into nucleus, NF‐κB‐luciferase activity was inhibited by KP392, Akt inhibitor, and rapamycin. Our results suggest that TNF‐α increased iNOS expression and NO production in myoblasts via the ILK/Akt/mTOR and NF‐κB signaling pathway. J. Cell. Biochem. 109: 1244–1253, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

18.
Tripalmitoyl‐S‐glycero‐Cys‐(Lys) 4 (Pam3CSK4) interacted with TLR2 induces inflammatory responses through the mitogen‐activated protein kinases (MAPKs) and nuclear factor‐κB (NF‐κB) signal pathway. Rapamycin can suppress TLR‐induced inflammatory responses; however, the detailed molecular mechanism is not fully understood. Here, the mechanism by which rapamycin suppresses TLR2‐induced inflammatory responses was investigated. It was found that Pam3CSK4‐induced pro‐inflammatory cytokines were significantly down‐regulated at both the mRNA and protein levels in THP‐1 cells pre‐treated with various concentrations of rapamycin. Inhibition of phosphatidylinositol 3‐kinase/protein kinase‐B (PI3K/AKT) signaling did not suppress the expression of pro‐inflammatory cytokines, indicating that the immunosuppression mediated by rapamycin in THP1 cells is independent of the PI3K/AKT pathway. RT‐PCR showed that Erk and NF‐κB signal pathways are related to the production of pro‐inflammatory cytokines. Inhibition of Erk or NF‐κB signaling significantly down‐regulated production of pro‐inflammatory cytokines. Additionally, western blot showed that pre‐treatment of THP‐1 cells with rapamycin down‐regulates MAPKs and NF‐κB signaling induced by Pam3CSK4 stimulation, suggesting that rapamycin suppresses Pam3CSK4‐induced pro‐inflammatory cytokines via inhibition of TLR2 signaling. It was concluded that rapamycin suppresses TLR2‐induced inflammatory responses by down‐regulation of Erk and NF‐κB signaling.  相似文献   

19.
Anxiety disorders are associated with a high social burden worldwide. Recently, increasing evidence suggests that nuclear factor kappa B (NF‐κB) has significant implications for psychiatric diseases, including anxiety and depressive disorders. However, the molecular mechanisms underlying the role of NF‐κB in stress‐induced anxiety behaviors are poorly understood. In this study, we show that chronic mild stress (CMS) and glucocorticoids dramatically increased the expression of NF‐κB subunits p50 and p65, phosphorylation and acetylation of p65, and the level of nuclear p65 in vivo and in vitro , implicating activation of NF‐κB signaling in chronic stress‐induced pathological processes. Using the novelty‐suppressed feeding (NSF) and elevated‐plus maze (EPM) tests, we found that treatment with pyrrolidine dithiocarbamate (PDTC; intra‐hippocampal infusion), an inhibitor of NF‐κB, rescued the CMS‐ or glucocorticoid‐induced anxiogenic behaviors in mice. Microinjection of PDTC into the hippocampus reversed CMS‐induced up‐regulation of neuronal nitric oxide synthase (nNOS), carboxy‐terminal PDZ ligand of nNOS (CAPON), and dexamethasone‐induced ras protein 1 (Dexras1) and dendritic spine loss of dentate gyrus (DG) granule cells. Moreover, over‐expression of CAPON by infusing LV‐CAPON‐L‐GFP into the hippocampus induced nNOS‐Dexras1 interaction and anxiety‐like behaviors, and inhibition of NF‐κB by PDTC reduced the LV‐CAPON‐L‐GFP‐induced increases in nNOS‐Dexras1 complex and anxiogenic‐like effects in mice. These findings indicate that hippocampal NF‐κB mediates anxiogenic behaviors, probably via regulating the association of nNOS‐CAPON‐Dexras1, and uncover a novel approach to the treatment of anxiety disorders.

  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号