首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到8条相似文献,搜索用时 0 毫秒
1.
The corpus of the pharynx in the nematode Aphelenchus avenae (Nematoda: Tylenchomorpha) was three‐dimensionally reconstructed to address questions of phylogenetic significance. Reconstructed models are based on serial thin sections imaged by transmission electron microscopy. The corpus comprises six classes of radial cells, two classes of marginal cells, and 13 neurones belonging to eight classes. Between the arcade syncytia and isthmus cells, numbers of cell classes along the pharyngeal lumen and numbers of nuclei per cell class correspond exactly between A. avenae and Caenorhabditis elegans. The number of radial cell classes between the arcade syncytia and the dorsal gland orifice (DGO) in A. avenae is also identical with outgroups. Proposed homologies of the pharynx imply that expression of the anterior two cell classes as epithelial or muscular differs within both Rhabditida and Tylenchomorpha. Numbers of neurone cell bodies within the corpus correspond exactly to C. elegans, other free‐living outgroups, and other Tylenchomorpha. Neurone polarity and morphology support conserved relative positions of cell bodies of putative neurone homologues. The configuration of cells in the procorpus, including the length of individual cell classes along its lumen, differs across representatives of three deep Tylenchomorpha lineages. Nonhomology of the procorpus challenges the homology of DGO position within the metacorpus, the primary taxonomic character for circumscribing ‘Aphelenchoidea’. Comparison of A. avenae with Aphelenchoides blastophthorus shows that, despite gross pharynx similarity, these nematodes have several differences in corpus construction at a cellular level. The possibility of convergent evolution of an ‘aphelenchid’ pharynx in two separate lineages would be congruent with molecular‐based phylogeny. Putative homologies and conserved arrangement of pharyngeal neurones in Tylenchomorpha expand the experimental model of C. elegans. © 2010 The Linnean Society of London, Zoological Journal of the Linnean Society, 2010.  相似文献   

2.
The epidermis of the anterior end (nose) plays an important role in the evolution, development, and functional feeding morphology in nematodes, but information on this complex organ system is limited. Here, we produce a 3D model of 13 of the cells making up this organ system reconstructed from serial transmission electron micrographs of the microbial feeding nematode, Acrobeles complexus. Nose epidermal cells were found to be broadly similar to those of the distantly related model organism Caenorhabditis elegans in the number and arrangement of nuclei in these largely syncytial cells; this similarity demonstrates striking evolutionary conservation that allows for robust statements of homology between the taxa. Examining details of cell shape, however, revealed surprisingly complex subcellular specialization, which differed markedly from C. elegans in the number and arrangement of cell processes. Anterior toroid processes of the anterior arcade, posterior arcade, and HypB syncytia form a nested complex at the base of the labial probolae. Anterior toroid processes of HypC and the inner labial socket cells are associated with the base of the cephalic probolae and radial ridge processes. Extracellular filaments (tendon organs) and radiating cytoskeletal filaments of the posterior arcade syncytium form a connection between the body wall muscle cells and the pharynx. An epidermal cell with no known homolog in other nematodes is identified. Findings provide a basis to propose hypotheses related to the development and evolutionary origin of specialized feeding appendages (probolae) in the Cephalobinae (including Acrobeles), and hypotheses of homology are revised for epidermal cells in the nose of the closely related and primarily plant parasitic group, Tylenchida.  相似文献   

3.
Nematode sensory structures can be divided into two classes; cuticular sensillae, with dendrites ending outside the epidermis, and internal receptors, that typically are single dendrites terminating within the body cavity. Fine structure of the former has been described completely in more than a dozen nematode taxa, while the latter were previously only well understood in the microbial feeder Caenorhabditis elegans. The distantly related nematode Acrobeles complexus has a similar ecology and together the two span a clade representing a large proportion of nematode biodiversity. The cuticular sensillae and internal receptors of A. complexus are here shown to be remarkably similar in number, arrangement, and morphology to those of C. elegans. Several key differences are reported that likely relate to function, and suggest that this nematode has a cuticular sensillum morphology that is closer to that of the common ancestor of the two taxa. Internal sensory receptors have more elaborate termini than those of C. elegans. The existence of a novel form of mechanoreceptor in A. complexus and spatial relationships between sensillum dendrites suggest differences between two classes of sensillae in how a touch-response behavior may be mediated.  相似文献   

4.
5.
Riemann, O. and Ahlrichs, W.H. 2009. The evolution of the protonephridial terminal organ across Rotifera with particular emphasis on Dicranophorus forcipatus, Encentrum mucronatum and Erignatha clastopis (Rotifera: Dicranophoridae). —Acta Zoologica (Stockholm) 91 : 199–211 We report on the ultrastructure of the protonephridial terminal organ in three species of dicranophorid rotifers (Dicranophorus forcipatus, Encentrum mucronatum and Erignatha clastopis). Differences between the three species relate to shape and size, the morphology of the filter region and the number of microvilli and cilia inside the terminal organ. A comparison across Rotifera indicates that the terminal organs in Dforcipatus display a number of plesiomorphic characters, but are modified in Emucronatum and Erclastopis. This is in accordance with the results of phylogenetic analyses suggesting a basal position of Dforcipatus compared with the more derived species Emucronatum and Erclastopis. Moreover, we survey available data on the terminal organ in Rotifera and discuss its evolutionary transformations. The protonephridial terminal organ in the common ancestor of Rotifera consisted of a cytoplasmic cylinder with cilia united into a vibratile flame and a single circle of circumciliary microvilli. Depending on the topology on which characters are optimized, the site of ultrafiltration was formed by longitudinal cytoplasmic columns spanned by a fine filter diaphragm or by pores in the wall of the terminal organ. In several taxa of Rotifera, the terminal organ – probably independently – lost its circumciliary microvilli.  相似文献   

6.
《Journal of morphology》2017,278(4):523-546
Male clam shrimps (Crustacea: Branchiopoda: Laevicaudata, Spinicaudata, and Cyclestherida) have their first one or two trunk limb pairs modified as “claspers,” which are used to hold the female during mating and mate guarding. Clasper morphology has traditionally been important for clam shrimp taxonomy and classification, but little is known about how the males actually use the claspers during amplexus (clasping). Homologies of the various clasper parts (“movable finger,” “large palp,” “palm,” “gripping area,” and “small palp”) have long been discussed between the three clam shrimp taxa, and studies have shown that only some structures are homologous while others are convergent (“partial homology”). We studied the clasper functionality in four spinicaudatan species using video recordings and scanning electron microscopy, and compared our results with other clam shrimp groups. General mating behavior and carapace morphology was also studied. Generally, spinicaudatan and laevicaudatan claspers function similarly despite some parts being nonhomologous. We mapped clasper morphology and functionality aspects on a branchiopod phylogeny. We suggest that the claspers of the three groups were adapted from an original, simpler clasper, each for a “stronger” grip on the female's carapace margin: 1) Spinicaudata have two clasper pairs bearing an elongated apical club/gripping area with one setal type; 2); Cyclestherida have one clasper pair with clusters of molariform setae on the gripping area and at the movable finger apex; and 3) Laevicaudata have one clasper pair, but have incorporated an additional limb portion into the clasper palm and bear a diverse set of setae. J. Morphol. 278:523–546, 2017. © 2017 Wiley Periodicals, Inc.  相似文献   

7.
Abstract Parasitism by the endoparasitic wasp Pteromalus puparum (Hymenoptera: Pteromalidae) by using only its associated venom, can suppress the immunal responses of Pieris rapae (Lepidoptera: Pieridae). However, up to now, current knowledge of the mechanisms has been limited. The response of host hemocytes to parasitism was investigated using a combination of light and transmission electron microscopy (TEM). Five hemocyte types, prohemocytes (PRs), granulocytes (GRs), plasmatocytes (PLs), oenocytoids (OEs) and coagulocytes (COs), were observed and characterized from both unparasitized and parasitized Pieris rapae pupae. Light microscopy showed that both GRs and PLs became more round and spread abnormally after parasitism, whereas the shape of other types of hemocytes remained unaffected. In addition, the size of PRs and PLs became larger while OEs became smaller. The proportion of PRs significantly increased after parasitism and that of PLs decreased by 43.9%, but there was no significant increase of GRs and OEs. TEM showed that all types of hemocytes except COs were damaged to various degrees after parasitism, especially resulting in electron opaque cytoplasm and nucleus, fewer cell organelles of rough endoplasmic reticulum, mitochondria and vesicles. Our results indicate that parasitism by P. puparum affects differential hemocyte counts and structures of host hemocytes, particularly for GRs and PLs, which may be the main cause of the parasitoid suppressing host cellular immune responses.  相似文献   

8.
Snowshoe hares (Lepus americanus) are an ecologically important herbivore because they modify vegetation through browsing and serve as a prey resource for multiple predators. We implemented a multiscale approach to characterize habitat relationships for snowshoe hares across the mixed conifer landscape of the northern Rocky Mountains, USA. Our objectives were to (1) assess the relationship between horizontal cover and snowshoe hares, (2) estimate how forest metrics vary across the gradient of snowshoe hare use and horizontal cover, and (3) model and map snowshoe hare occupancy and intensity of use. Results indicated that both occupancy and intensity of use by snowshoe hares increased with horizontal cover and that the effect became stronger as intensity of use increased. This underscores the importance of dense horizontal cover to achieve high use, and likely density, of snowshoe hares. Forest structure in areas with high snowshoe hare use and horizontal cover was characterized as multistoried with dense canopy cover and medium‐sized trees (e.g., 12.7–24.4 cm). The abundance of lodgepole pine (Pinus contorta) was associated with snowshoe hare use within a mixed conifer context, and the only species to increase in abundance with horizontal cover was Engelmann spruce (Picea engelmannii) and subalpine fir (Abies lasiocarpa). Our landscape‐level modeling produced similar patterns in that we observed a positive effect of lodgepole pine and horizontal cover on both occupancy and use by snowshoe hares, but we also observed a positive yet parabolic effect of snow depth on snowshoe hare occupancy. This work is among the first to characterize the multiscale habitat relationships of snowshoe hares across a mixed conifer landscape as well as to map their occupancy and intensity of use. Moreover, our results provide stand‐ and landscape‐level insights that directly relate to management agencies, which aids in conservation efforts of snowshoe hares and their associated predators.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号