首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
Arsenic speciation and cycling in the natural environment are highly impacted via biological processes. Since arsenic is ubiquitous in the environment, microorganisms have developed resistance mechanisms and detoxification pathways to overcome the arsenic toxicity. This study has evaluated the toxicity, transformation and accumulation of arsenic in a soil microalga Scenedesmus sp. The alga showed high tolerance to arsenite. The 72-h 50 % growth inhibitory concentrations (IC50 values) of the alga exposed to arsenite and arsenate in low-phosphate growth medium were 196.5 and 20.6 mg? L?1, respectively. When treated with up to 7.5 mg? L?1 arsenite, Scenedesmus sp. oxidised all arsenite to arsenate in solution. However, only 50 % of the total arsenic remained in the solution while the rest was accumulated in the cells. Thus, this alga has accumulated arsenic as much as 606 and 761 μg? g?1 dry weight when exposed to 750 μg? L?1 arsenite and arsenate, respectively, for 8 days. To our knowledge, this is the first report of biotransformation of arsenic by a soil alga. The ability of this alga to oxidise arsenite and accumulate arsenic could be used in bioremediation of arsenic from contaminated water and soil.  相似文献   

2.
Arsenic (As) is a highly toxic metalloid found in ground and surface water. Arsenic contamination in drinking water leads to harmful effects on human health. To eliminate arsenic from drinking water, several technologies such as coagulation, adsorption, ion exchange, filtration, membrane processes, etc., have been used. In this study, three technologies were evaluated for arsenic removal. Results from batch kinetic experiments showed that iron coated sand (IOCS‐2) can remove more than 90 % of As from synthetic water. Experiments were conducted with three different pH values (6, 7, and 8) and an initial As concentration of 260 μg/L. A new material, developed in this study, namely iron coated sponge (IOCSp), was found to have a high capacity in removing both As (V) and As (III). Each gram of IOCSp adsorbed about 160 μg of As within a 9‐hour contact period of IOCSp with As solution. Low pressure nanofiltration removed more than 94 % of As from an influent containing 440 μg/L As. The applied pressure was varied from 85 to 500 kPa.  相似文献   

3.
The possible arsenic tolerance mechanisms were explored in Arundo donax L. under various supplied arsenic concentrations. The treatments included control (no metal) and five doses of arsenic trioxide i.e., 0, 50, 100, 300, 600 and 1000 μg L−1 As to A. donax. The phytoextraction ability of A. donax L. plants was assessed using both the translocation and bioaccumulation factors. The transpirates were collected to analyze the arsenic concentration volatilized along-with study of anatomical characteristics of the plant parts. In general, the arsenite and arsenate accumulation linearly increased in roots, shoot and leaves with the increasing supplied arsenic levels i.e., from 2.348, 2.775 and 3.25 μg g−1 at 50 μg L−1 to 50, 53.125 and 64.25 μg g−1 arsenite, at 1000 μg L−1, from 4.075, 5.425 and 13.56 μg g−1 at 50 μg L−1 to 71, 62.02 and 436.219 μg g−1 arsenate at 1000 μg L−1, respectively. The order of arsenic accumulation in A. donax L. was: solution As(III) < Root As(III) < Shoot As(III) < Leaf As(III) < Solution As(V) < Root As(V) < Shoot As(V) < Leaf As(V). The range of arsenic volatilization by A. donax L. was 7.2–22% at higher supplied arsenic (300–1000 μg L−1). Volatilization was an important mechanism to avoid toxic effects of arsenic by A. donax L. in addition to bioaccumulation.  相似文献   

4.
This work aimed the influence of zeolites addition on a sludge-straw composting process using a pilot-scale rotary drum reactor. The type and concentration of three commercial natural zeolites were considered: a mordenite and two clinoptilolites (Klinolith and Zeocat). Mordenite caused the greatest carbon removal (58%), while the clinoptilolites halved losses of ammonium. All zeolites removed 100% of Ni, Cr, Pb, and significant amounts (more than 60%) of Cu, Zn and Hg. Zeocat displayed the greatest retention of ammonium and metals, and retention efficiencies increased as Zeocat concentration increased. The addition of 10% Zeocat produced compost compliant with Spanish regulations. Zeolites were separated from the final compost, and leaching studies suggested that zeolites leachates contained very low metals concentrations (<1 mg/kg). Thus, the final compost could be applied directly to soil, or metal-polluted zeolites could be separated from the compost prior to application. The different options have been discussed.  相似文献   

5.
An on-line high-performance liquid chromatographic-microwave assisted oxidation-hydride generation-atomic absorption spectrometric (HG-AAS) system (using columns of different kinds) has been developed for the determination of arsenite, arsenate, dimethylarsinate (DMA), monomethylarsonate (MMA), arsenobetaine (AsB) and arsenocholine (AsC) in environmental samples. Ion-pair reversed-phase chromatography using tetrabutylammonium phosphate as the ion-pair reagent and anion-exchange chromatography were evaluated and the analytical performances of each are reported. The detection limits were 97–143 and 10–30 μg l−1 for ion-pair reversed-phase and anion-exchange chromatography, respectively. The Hamilton PRP-X 100 anionic column was proposed for the determination of the six species; AsB can be quantitated independently of AsC by taking the difference between readings at pH 6 and pH 10.7. The proposed methods were applied to water samples and sediments and their potential for future application was demonstrated.  相似文献   

6.
Arsenic contamination of groundwater sources is a major issue worldwide, since exposure to high levels of arsenic has been linked to a variety of health problems. Effective methods of detection are thus greatly needed as preventive measures. In an effort to develop a fungal biosensor for arsenic, we first identified seven putative arsenic metabolism and transport genes in Aspergillus niger, a widely used industrial organism that is generally regarded as safe (GRAS). Among the genes tested for RNA expression in response to arsenate, acrA, encoding a putative plasma membrane arsenite efflux pump, displayed an over 200-fold increase in gene expression in response to arsenate. We characterized the function of this A. niger protein in arsenic efflux by gene knockout and confirmed that AcrA was located at the cell membrane using an enhanced green fluorescent protein (eGFP) fusion construct. Based on our observations, we developed a putative biosensor strain containing a construct of the native promoter of acrA fused with egfp. We analyzed the fluorescence of this biosensor strain in the presence of arsenic using confocal microscopy and spectrofluorimetry. The biosensor strain reliably detected both arsenite and arsenate in the range of 1.8 to 180 μg/liter, which encompasses the threshold concentrations for drinking water set by the World Health Organization (10 and 50 μg/liter).  相似文献   

7.
Chitin and chitosan are naturally abundant biopolymers which are of interest to research concerning the sorption of metal ions since the amine and hydroxyl groups on their chemical structures act as chelation sites for metal ions. This study evaluates the removal of copper, chromium, and arsenic elements from chromated copper arsenate (CCA)-treated wood via biosorption by chitin and chitosan. Exposing CCA-treated sawdust to various amounts of chitin and chitosan for 1, 5, and 10 days enhanced removal of CCA components compared to remediation by deionized water only. Remediation with a solution containing 2.5 g chitin for 10 days removed 74% copper, 62% chromium, and 63% arsenic from treated sawdust. Remediation of treated sawdust samples using the same amount of chitosan as chitin resulted in 57% copper, 43% chromium, and 30% arsenic removal. The results suggest that chitin and chitosan have a potential to remove copper element from CCA-treated wood. Thus, these more abundant natural amino polysaccharides could be important in the remediation of waste wood treated with the newest formulations of organometallic copper compounds and other water-borne wood preservatives containing copper.  相似文献   

8.
9.
Arsenic is a natural component of the environment and is ubiquitous in soils, water, and the diet. Because dietary intake can be a significant source of background exposure to inorganic arsenic (the most toxicologically significant form), accurate intake estimates are needed to provide a context for risk management of arsenic exposure. Intake of inorganic arsenic by adults is fairly well characterized, but previous estimates of childhood intake were based on inorganic arsenic analyses in a limited number of foods (13 food types). This article estimates dietary intake for U.S. children (1 to 6 years of age) based on reported inorganic arsenic concentrations in 38 foods and in water used in cooking those foods (inorganic arsenic concentration of 0.8 μg/L), and U.S. Department of Agriculture food consumption data. This information is combined using a probabilistic software model to extract food consumption patterns and compute exposure distributions. The mean childhood dietary intake estimate for inorganic arsenic was 3.2 μg/day with a range of 1.6 to 6.2 μg/day for the 10th and 95th percentiles, respectively. For both the mean and 95th percentile inorganic arsenic intake rates, intake was predominantly contributed by grain and grain products, fruits and fruit juices, rice and rice products, and milk.  相似文献   

10.
Shrub willows have demonstrated potential in many types of phytoremediation applications. Hydroponic culture was used to assess arsenic (As) tolerance and uptake by four shrub willow clones and to determine the effects of phosphate on As accumulation. After 4 weeks of growth in the absence of As, plants received one of four treatments: 0.25X Hoagland's minus P (?P), 0.25X Hoagland's minus P plus 100 μM arsenate (As100(?P)), 0.25X Hoagland's minus P plus 250 μM arsenate (As250(?P)), and 0.25X Hoagland's plus 250 μM arsenate (As250(+P)). Except for treatment As250(+P), phosphate was excluded due to its tendency to interfere with As uptake. After 3 weeks of treatment, plants were separated into root, leaf, and stem tissues. Biomass production and transpiration were used to quantify As tolerance. There was wide variation among clones in As tolerance and uptake. The presence of phosphate in solution alleviated the negative impacts of As on biomass and transpiration and also increased aboveground As accumulation, suggesting that phosphate may play a role in reducing toxicity and enhancing As uptake by willow shrubs. These findings offer insight into As tolerance and uptake in Salix spp. and add to the growing body of evidence supporting the use of shrub willow for phytoremediation.  相似文献   

11.
The role of arsenic-resistant bacteria (ARB) in arsenic solubilization from growth media and growth enhancement of arsenic-hyperaccumulator Pteris vittata L. was examined. Seven ARB (tolerant to 10 mM arsenate) were isolated from the P. vittata rhizosphere and identified by 16S rRNA sequencing as Pseudomonas sp., Comamonas sp. and Stenotrophomonas sp. During 7-d hydroponic experiments, these bacteria effectively solubilized arsenic from the growth media spiked with insoluble FeAsO? and AlAsO? minerals (from < 5 μg L?1 to 5.04-7.37 mg L?1 As) and enhanced plant arsenic uptake (from 18.1-21.9 to 35.3-236 mg kg?1 As in the fronds). Production of (1) pyochelin-type siderophores by ARB (fluorescent under ultraviolet illumination and characterized with thin layer chromatography) and (2) root exudate (dissolved organic C) by P. vittata may be responsible for As solubilization. Increase in P. vittata root biomass from 1.5-2.2 to 3.4-4.2 g/plant dw by ARB and by arsenic was associated with arsenic-induced plant P uptake. Arsenic resistant bacteria may have potential to enhance phytoremediation of arsenic-contaminated soils by P. vittata.  相似文献   

12.
The arsenic metabolism in different biological organisms has been studied extensively. However, little is known about protozoa. Herein, we investigated the cell stress responses of the freshwater ciliate Tetrahymena pyriformis to arsenate toxicity. An acute toxicity assay revealed an 18-h EC(50) arsenate concentration of ca. 40 μM, which caused significant changes in the cell shape, growth and organism mobility. Whereas, under exposure to 30 μM arsenate, T. pyriformis could grow reasonably well, indicating a certain resistance of this organism. Arsenic speciation analysis revealed that 94-98% of the total arsenate in cells of T. pyriformis could be transformed to monomethylarsonic acid, dimethylarsinic acid and a small proportion of arsenite after 18 h of arsenate exposure, thus indicating the major detoxification pathway by arsenic oxidation/reduction and biomethylation. Finally, comparative proteomic analysis unveiled significant changes in the expression of multiple proteins involved in anti-oxidation, sugar and energy metabolism, proteolysis, and signal transduction. Our results revealed multiple pathways of arsenate detoxification in T. pyriformis, and indicated that protozoa may play important roles in the biogeochemical cycles of arsenic.  相似文献   

13.
To support the key role of glutathione (GSH) in the mechanisms of tolerance and accumulation of arsenic in plants, this work examines the impact of several effectors of GSH synthesis or action in the response of maize (Zea mays L.) to arsenic. Maize was exposed in hydroponics to iso-toxic rates of 150 μM arsenate or 75 μM arsenite for 9 days and GSH effectors, flurazole (an herbicide safener), l-buthionine-sulfoximine (BSO, a known inhibitor of GSH biosynthesis), and dimercaptosuccinate (DMS) and dimercaptopropanesulfonate (DMPS) (two thiols able to displace GSH from arsenite-GSH complexes) were assayed. The main responses of plants to arsenic exposure consisted of a biomass reduction (fresh weight basis) of about 50%, an increase of non-protein thiol (NPTs) levels (especially in the GSH precursor γ-glutamylcysteine and the phytochelatins PC? and PC?) in roots, with little effect in shoots, and an accumulation of between 600 and 1000 ppm of As (dry weight basis) in roots with very little translocation to shoots. Growth inhibition caused by arsenic was partially or completely reversed in plants co-treated with flurazole and arsenate or arsenite, respectively, highly exacerbated in plants co-treated with BSO, and not modified in plants co-treated with DMS or DMPS. These responses correlated well with an increase of both NPTs levels in roots and glutathione transferase activity in roots and shoots due to flurazole treatment, the decrease of NPTs levels in roots caused by BSO and the lack of effect on NPT levels caused by both DMS and DMPS. Regarding to arsenic accumulation in roots, it was not modified by flurazole, highly reduced by BSO, and increased between 2.5- and 4.0-fold by DMS and DMPS. Therefore, tolerance and accumulation of arsenic by maize could be manipulated pharmacologically by chemical effectors of GSH.  相似文献   

14.
Microbial biotransformations are major contributors to the arsenic biogeocycle. In parallel with transformations of inorganic arsenic, organoarsenicals pathways have recently been recognized as important components of global cycling of arsenic. The well‐characterized pathway of resistance to arsenate is reduction coupled to arsenite efflux. Here, we describe a new pathway of arsenate resistance involving biosynthesis and extrusion of an unusual pentavalent organoarsenical. A number of arsenic resistance (ars) operons have two genes of unknown function that are linked in these operons. One, gapdh, encodes the glycolytic enzyme glyceraldehyde‐3‐phosphate dehydrogenase. The other, arsJ, encodes a major facilitator superfamily (MFS) protein. The two genes were cloned from the chromosome of Pseudomonas aeruginosa. When expressed together, but not alone, in Escherichia coli, gapdh and arsJ specifically conferred resistance to arsenate and decreased accumulation of As(V). Everted membrane vesicles from cells expressing arsJ accumulated As(V) in the presence of purified GAPDH, D‐glceraldehylde 3‐phosphate (G3P) and NAD+. GAPDH forms the unstable organoarsenical 1‐arseno‐3‐phosphoglycerate (1As3PGA). We propose that ArsJ is an efflux permease that extrudes 1As3PGA from cells, where it rapidly dissociates into As(V) and 3‐phosphoglycerate (3PGA), creating a novel pathway of arsenate resistance.  相似文献   

15.
1. The impact of 8–12 weeks exposure to up to 55–60 μg arsenic/g diet as disodium arsenate (DSA) on the hepatobiliary and hematological systems of rainbow trout was assessed.2. Bile and washed gallbladder tissue arsenic residues in exposed fish were 2–4 times higher than in liver. Plasma arsenic concentration was slightly elevated following dietary DSA exposure.3. Chronic exposure to dietary DSA caused a mild to moderate responsive anemia.4. Lipid, but not protein, digestibility after 12 weeks of exposure showed an inverse relationship with severity of gallbladder inflammation in these fish.5. Changes in the hepatobiliary system appear to provide the most sensitive indicators of dietary DSA exposure in rainbow trout.  相似文献   

16.
Arsenate is a major toxic constituent in arsenic-contaminated water supplies. Saccharomyces cerevisiae was engineered as a potential biosorbent for enhanced arsenate accumulation. The phosphate transporter, Pho84p, known to import arsenate, was overexpressed using a 2μ-based vector carrying PHO84 under the control of the late-phase ADH2 promoter. Arsenate uptake was then evaluated using a resting cell system. In buffer solutions containing high arsenate concentrations (12,000 and 30,000 ppb), the engineered strains internalized up to 750 μg of arsenate per gram of cells, a 50% improvement over control strains. Increasing the cell mass 2.5-fold yielded a proportional increase in the volumetric arsenate uptake, while maintaining the same level of specific uptake. At high levels of arsenate, loss from the intact cells to the medium was observed with time; knockouts of two known arsenic extrusion genes, ACR3 and FPS1, did not prevent this loss. At trace level concentrations (120 ppb), rapid and total arsenate removal was observed. The presence of 50 μM phosphate reduced uptake by approximately 15% in buffer containing 80 μM (6,000 ppb) arsenate. At trace levels of arsenate (70 ppb), the phosphate reduced the initial rate of uptake, but not the total amount removed. PHO84 mRNA levels were nearly 30 times higher in the engineered strains relative to the control strains. Uptake may no longer be a limiting factor in the engineered system and further increases should be possible by upregulating the downstream reduction and sequestration pathways.  相似文献   

17.
Arsenate respiration and Fe(III) reduction are important processes that influence the fate and transport of arsenic in the environment. The goal of this study was to investigate the impact of arsenate on Fe(III) reduction using arsenate and Fe(III) reduction deficient mutants of Shewanella sp. strain ANA‐3. Ferrihydrite reduction in the absence of arsenate was similar for an arsenate reduction mutant (arrA and arsC deletion strain of ANA‐3) compared with wild‐type ANA‐3. However, the presence of arsenate adsorbed onto ferrihydrite impeded Fe(III) reduction for the arsenate reduction mutant but not in the wild‐type. In an Fe(III) reduction mutant (mtrDEF, omcA, mtrCAB null mutant of ANA‐3), arsenate was reduced similarly to wild‐type ANA‐3 indicating the Fe(III) reduction pathway is not required for ferrihydrite‐associated arsenate reduction. Expression analysis of the mtr/omc gene cluster of ANA‐3 showed that omcA and mtrCAB were expressed under soluble Fe(III), ferrihydrite and arsenate growth conditions and not in aerobically grown cells. Expression of arrA was greater with ferrihydrite pre‐adsorbed with arsenate relative to ferrihydrite only. Lastly, arrA and mtrA were simultaneously induced in cells shifted to anaerobic conditions and exposed to soluble Fe(III) and arsenate. These observations suggest that, unlike Fe(III), arsenate can co‐induce operons (arr and mtr) implicated in arsenic mobilization.  相似文献   

18.
Arsenic metabolism in freshwater and terrestrial plants   总被引:3,自引:0,他引:3  
Freshwater and terrestrial plants differ markedly in their ability to metabolize arsenate. In experiments with higher terrestrial plants, e.g. tomato, Lycopersicon esculentum Mill. cv. Better boy, 74As-arsenate was readily taken up and reduced to arsenite. Methylation and reduction to methanearsonic acid, methanearsinic acid (indicated for the first time) and dimethylarsinic acid were apparent only in phosphate deficient plants. Lower and higher freshwater plants, e.g. Nitella tenuissima Kütz. and Lemna minima Phill., not only methylated arsenic but also produced considerable amounts of an arsoniumphospholipid previously identified in marine algae. These differences indicate that freshwater but not terrestrial plants have evolved mechanisms for rapid detoxication of arsenate, arsenite and other toxic arsenic species.  相似文献   

19.
Arsenic species excretion after controlled seafood consumption   总被引:1,自引:0,他引:1  
Influence of controlled consumption of marine fish on the urinary excretion of arsenite, arsenate, dimethylarsinic and monomethylarsonic acid (DMA, MMA) was investigated in two experiments. Arsenic species were separated by anion-exchange chromatography and detected with hydride-technique atomic absorption spectrometry (detection limit 1, 10, 2, 2 microg/l). Firstly, 13 probands ate different types of seafood after having refrained from any seafood for 1 week. DMA levels rose from 3.4+/-1.3 microg/g creatinine (n=12; a day before seafood) to a mean peak level of 28.2+/-20.6 microg/g (n=13; 10-23 h after; P<0.001; max. 77.7 microg/g). No other species were excreted before the meal, but small amounts of arsenite (8.5% positive; max. 1.7 microg/g) and MMA (1.2%; 1.6 microg/g) within 2 days after it (n=82). Consumption of white herring caused the highest DMA levels. Secondly, eight probands ingested white herring (dose 3.5 g/kg; DMA content 32.1+/-15.3 ng/g wet weight; n=36). No arsenite, arsenate and MMA was found in the urine or in the herring tissues. The mean DMA mass excreted after the meal (65.3+/-22.0 microg/24 h) was about 6-fold higher than the sum of base DMA excretion (3.0+/-1.7 microg/24 h) and the ingested DMA mass (7.9+/-2.7 microg). This indicates that the elevated DMA excretion after herring consumption is not caused by the metabolism of inorganic arsenic but of other arsenic species present in the fish tissue, e.g. arsenobetaine or fat-soluble arsenic species.  相似文献   

20.
To obtain bacteria with arsenic accumulation potential that can be used to remove arsenic from contaminated waters, experiments were made to investigate the tolerance and accumulation to arsenic of an indigenous bacterium XZM002 isolated from aquifer sediments of Datong Basin, northern China. The results showed that strain XZM002 belongs to the genus Bacillus and has evolved defense mechanisms to reduce arsenic injury: the change of cellular shape from initial rod to oval and then to round with increment of arsenic toxicity. The effect of arsenate or arsenite on the bacterial growth was also investigated. Results showed that growth of the strain was inhibited under As(III) and high concentration As(V) (over 1200 μg l?1) conditions in the first 2 days and promoted under low concentration As(V) (under 400 μg l?1) condition. Its arsenic bioaccumulation potential was surveyed by monitoring the concentration changes of total arsenic and arsenic speciation in the medium and in the cytoplasm, and those of total arsenic on the membrane. Methylated arsenic species were not detected throughout the experiment. The results indicated that 11.5% of arsenic was removed from liquid medium into the bacterial cells and 9.22% of As(V) in the medium was transformed gradually to As(III) during 4 d of incubation. Approximately 80% of the total accumulated arsenic was adsorbed onto the membrane instead of into cytoplasm; and the arsenic accumulation almost approached saturation after incubation for 72 h.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号