首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The female genital organs of the tetrablemmid Indicoblemma lannaianum are astonishingly complex. The copulatory orifice lies anterior to the opening of the uterus externus and leads into a narrow insertion duct that ends in a genital cavity. The genital cavity continues laterally in paired tube-like copulatory ducts, which lead into paired, large, sac-like receptacula. Each receptaculum has a sclerotized pore plate with associated gland cells. Paired small fertilization ducts originate in the receptacula and take their curved course inside the copulatory ducts. The fertilization ducts end in slit-like openings in the sclerotized posterior walls of the copulatory ducts. Huge masses of secretions forming large balls are detectable in the female receptacula. An important function of these secretory balls seems to be the encapsulation of spermatozoa in discrete packages in order to avoid the mixing of sperm from different males. In this way, sperm competition may be completely prevented or at least severely limited. Females seem to have full control over transferred sperm and be able to express preference for spermatozoa of certain males. The lumen of the sperm containing secretory balls is connected with the fertilization duct. Activated spermatozoa are only found in the uterus internus of females, which is an indication of internal fertilization. The sperm cells in the uterus internus are characterized by an extensive cytoplasm and an elongated, cone-shaped nucleus. The male genital system of I. lannaianum consists of thick testes and thin convoluted vasa deferentia that open into the wide ductus ejaculatorius. The voluminous globular palpal bulb is filled with seminal fluid consisting of a globular secretion in which only a few spermatozoa are embedded. The spermatozoa are encapsulated by a sheath produced in the genital system. The secretions in females may at least partly consist of male secretions that could be involved in the building of the secretory balls or play a role in sperm activation. The male secretions could also afford nutriments to the spermatozoa.  相似文献   

2.
3.
The genital morphology of female Pholcus phalangioidesis examined to clarify the composition of the uterus externus and the place of sperm storage in this species. Two conspicuous pore plates serve as exits for glandular secretion that gets discharged into the uterus externus. The secretion accumulates close to the pore plates and to some extent in the region of the heavily sclerotized valve that separates the uterus externus from the uterus internus. During copulation, the male transfers spermatozoa and male secretions into the female genital tract where they are embedded and stored in the female secretion. As Ph. phalangioidesdoes not possess any separate sperm storage organs such as receptacula seminis, the glandular secretion serves to store and fix the sperm mass in a specific position within the uterus externus itself.  相似文献   

4.
Abstract. Fine morphological details of the genitalia have large potential consequences for the understanding of the reproductive biology of a particular species, especially when mating behavioral studies are difficult to conduct. Oonopidae are a highly diverse spider family comprising a variety of species with complex female reproductive systems, which may have evolved under sexual selection by cryptic female choice. The present study describes the female genitalia of five oonopid species belonging to both conventionally recognized subfamilies by means of semi‐thin sections and scanning electron microscopy. In addition, the male palps are briefly described. The organization of the female genitalia in Scaphiella hespera and Scaphiella sp. resembles the entelegyne type. A chitinized canal connects the receptaculum, where sperm are stored, with the uterus. Sperm are also present in the uterus and the canal is suggested to function as fertilization duct. The genitalia of the parthenogenetic species Triaeris stenaspis are surprisingly complex. A large sac with glands is proposed to represent the equivalent of a receptaculum in sexually reproducing females. In females of Opopaea recondita, sperm are stored in a bulge derivating from the uterus. Contractions of muscles attached to the bulge may lead to sperm dumping. The uterus can be closed by a sclerite in its anterior wall. The receptacula of females of Stenoonops reductus are joined together and contain masses of spermatozoa. Additional sperm were found in the receptacula connection suggesting that fertilization takes place there. The male palps of all the investigated species, except for S. hespera, seem to lack a distincly sclerotized sperm duct. Spermatozoa and secretions are stored in a large reservoir inside the genital bulb surrounded by glandular epithelium.  相似文献   

5.
Spider genital morphology usually provides the best characters for taxonomy. Furthermore, functional genital morphology helps to understand the evolution of complex genitalia and their role in the context of sexual selection. The genital systems of most haplogyne spider families are poorly investigated with respect to their morphology. The present study investigates the female genitalia of the oonopids Oonops pulcher, Oonopinus kilikus, and Pseudotriaeris sp. by means of light microscopy and SEM. The male palps are briefly described. Females of O. pulcher store spermatozoa in an anterior and a posterior receptaculum (PRe). The genitalia resemble the primitive dysderoid genitalia supporting the hypothesis that the subfamily Oonopinae contains more basal oonopids. In O. kilikus, the anterior receptaculum is reduced to a sclerite. Spermatozoa are stored in a PRe. The receptacula of Pseudotriaeris sp. are reduced to sclerites. Spermatozoa in the uterus internus indicate that fertilization happens there or in the ovary. The anterior sclerite might serve females to lock the uterus during copulation as suggested for other gamasomorphines. The male palp of O. kilikus is simple, whereas the palps of O. pulcher and Pseudotriaeris sp. appear more complex. Complicated structures on the palp of Pseudotriaeris sp. indicate that males exert copulatory courtship.  相似文献   

6.
The genital structures of most spiders are poorly investigated in respect of their functional morphology because the traditional taxonomic practice is to inspect slide-mounted genitalia only. The present study describes the female genitalia of three members belonging to the megadiverse haplogyne spider family Oonopidae by means of histological serial sections, scanning electron microscopy, and X-ray ultramicroscopy. The female genitalia of Neoxyphinus ogloblini, Dysderina sp., and Heteroonops spinimanus are complex and might have evolved under sexual selection by cryptic female choice. However, there is no direct evidence for cryptic female choice in these species based on the results of the present study. In N. ogloblini and Dysderina sp., spermatozoa and secretion are stored in a large receptaculum. Highly elongated gland cells filled with secretory vesicles extend over the receptaculum of N. ogloblini. In addition, sperm are present in the uterus internus of female N. ogloblini and Dysderina sp. The location of fertilization is still unknown for most spiders. One female of Dysderina sp. had sperm in the uterus and ovary strongly suggesting that fertilization in this species takes place in the ovary. An anterior sclerite with attached muscles should serve females to lock the uterus externus during copulation as suggested for other oonopids. The male palp of N. ogloblini shows a simple embolus whereas the embolus of Dysderina sp. is more complicated and accompanied by a cork-screw-shaped conductor. Females of H. spinimanus have an anterior sclerite in which thread-like gland ducts lead. The chitinized posterior diverticulum shows peculiar papillae in its anterior wall. The exact location of sperm storage in H. spinimanus remains unknown since spermatozoa were not present in the anterior sclerite and the posterior diverticulum. The anterior sclerite might be used to lock the uterus externus similar to N. ogloblini and Dysderina sp. H. spinimanus was previously suggested to be parthenogenetic and a male has only been recently associated with this species. The male was not investigated for this study.  相似文献   

7.
The ovoid seminal receptacula in Peripatus acacioi are located at the junctions of the short paired oviducts with the two horns of the uterus. Associated with each is a tubular funnel that opens into the haemocoel. In P. acacioi, spermatozoa may be stored in the seminal receptacula for several years (Campiglia and Walker '95, J. Morphol. 224:179–198). Observations of the structure of the seminal receptaculum using transmission electron microscopy (TEM) show that there are numerous tracheae within its wall indicating a good oxygen supply. The ultrastructure of the epithelium lining the seminal receptaculum indicates that these cells secrete the material that forms the luminal matrix that surrounds and provides nutrition for the stored spermatozoa. The ducts that interconnect the ovary, seminal receptaculum, funnel, and uterus are all packed with cilia. The structure of the seminal receptaculum and associated parts in the mature virgin female is identical to that of the gravid female, but the luminal matrix does not contain any spermatozoa. J. Morphol. 237:127–136, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

8.
The female genital structures of the entelegyne spider Latrodectus revivensis are described using semithin sections and scanning electron microscopy. Apart from the tactile hairs overhanging the opening of the atrium, the contact zones of the female epigynum are devoid of any sensilla, indicating that the female does not discriminate in favor or against males due to their genital size or stimulation through copulatory courtship. The dumb-bell shape and the spatial separation of the entrance and the exit of the paired spermathecae suggest that they are functionally of the conduit type. Not described for other entelegyne spiders so far, the small fertilization ducts originating from the spermathecae of each side lead to a common fertilization duct that connects the spermathecae to the uterus externus. During oviposition, it is most likely that spermatozoa are indiscriminately sucked out of the spermathecal lumina by the low pressure produced by the contraction of the muscle extending from the epigynal plate to the common fertilization duct. As no greater amounts of secretion are produced by the female during oviposition, and no activated sperm are present within the female genital tract, the secretion produced by the spermathecal epithelium does not serve in displacement or (selective) activation of spermatozoa. These findings suggest that female L. revivensis are not able to exert cryptic female choice by selectively choosing spermatozoa of certain males.  相似文献   

9.
Female Harpactea lepida possess a single genital opening leading into a diverticulum. This diverticulum shows no secretory layer. It continues posteriorly into a receptaculum which is associated with gland cells. In the two already described dysderids, Dysdera crocata and D. erythrina, the bilobed spermatheca lies anteriorly to the diverticulum. Gland cells are associated with the spermatheca and the diverticulum. In H. lepida, the sclerotized genital structures lie dorsally to the diverticulum and consist of a posterior and an anterior part. The posterior part shows a lamella extending laterally to sclerites functioning as muscle attachments. The anterior part has two roundish structures. A hollow stalk-like sclerite functioning as muscle attachment extends towards anterior. The posterior and the anterior part of the sclerotized genital structures fit together. A narrow uterine valve connecting the uterus externus with the diverticulum forms between them. It may be opened by muscles as also suggested for D. erythrina. In H. lepida, spermatozoa embedded in secretion are found in the diverticulum and the receptaculum. There is no evidence that they are stored under different conditions like in D. erythrina. Additional spermatozoa are found in the uterus externus of H. lepida which could be an indication for internal fertilization. Spermatogenesis occurs in cysts in the testes of male H. lepida. In the vasa deferentia, the ductus ejaculatorius and the palpal bulb, the spermatozoa are embedded in homogenous secretion. The palpal bulb has a distal extension bearing a crown-like structure. The embolus is situated at the base of the extension. In memoriam of Konrad Thaler.  相似文献   

10.
Abstract The functional anatomy of the extremely complex copulatory organs of the millipede Craspedosoma transsilvanicum Verhoeff, 1897, was investigated by scanning electron microscopy and serial semi-thin sectioning after fixation of the animals by freezing in copula. There is no male organ for sperm transfer which inserts into the receptacula seminis. Sperm secretion is only brushed over the openings of the receptacula by cuticular projections of the anterior gonopods (‘brush’). Other parts of the gonopods (projections of the cheirites, podosternite) bring the brush and the openings of the receptacula in the proper position. Examination of the gonopods from series of Craspedosoma from locations near Vienna showed that there are intermediary specimens between the nominal species C. transsilvanicum and C. alemannicum Verhoeff, 1910. Obviously, a mechanical isolation mechanism, as supposed by Verhoeff, does not exist between these nominal species. At the beginning of a copulation, the male forces the female into the mating position. When touched by males, the females try to evade them by rolling up. The possibilities are discussed that females thereby test the actual fitness of males, and that males use their clasper-like copulatory organs to prevent females from escaping.  相似文献   

11.
The female genital system of the oonopid Silhouettella loricatula is astonishingly complex. The genital opening is situated medially and leads into an oval receptaculum that is heavily sclerotized except for the ventral half of the posterior wall that appears chitinized only. A large striking sclerite lying in the posterior wall of the uterus externus is attached anteriorly to the receptaculum and continues dorsally into a globular appendix that bears a furrow. The uterus externus shows a peculiar modification in its anterior wall: a paddle-like sclerite with a nail-like posterior process. This sclerite lies opposite to the furrow proceeding in the globular appendix and may serve females to lock the uterus externus by muscle contractions. Massive muscles connect the sclerite with the anterior scutum of the opisthosoma and with two other sclerites that are attached to the receptaculum and serve as attachments for further muscles. Gland cells extend around a pore field of the receptaculum. They produce secretion that encloses spermatozoa in a discrete package (secretory sac) inside the receptaculum. In this way, the mixing of sperm from different males and thus sperm competition may be severely limited or completely prevented. During a copulation in the laboratory the ejection of a secretory sac that most probably contained spermatozoa was observed, indicating sperm dumping in S. loricatula. The ejection of the secretory sac may be caused by female muscle contractions or by male pedipalp movements. The majority of the investigated females have microorganisms in the receptacula that could represent symbionts or infectious agents. The microorganisms can be identified partly as bacteria. They are enclosed in secretion and are always found in the same position inside the receptaculum.  相似文献   

12.
Female genital morphology of secondarily haplogyne spiders has been poorly studied, hampering the analysis of its possible phylogenetic significance. We conduct a comparative morphological study of 12 species of the secondarily haplogyne spider genus Glenognatha Simon, 1887 using scanning electron microscopy. Representatives of the closely related genera Pachygnatha Sundevall, 1823 and Dyschiriognatha Simon, 1893 were also examined. The female genitalia of Glenognatha, Dyschiriognatha, and Pachygnatha species examined are composed of a spiracle‐shape gonopore, a membranous chamber, a pair of copulatory ducts (CD) leading to spermathecae and a large uterus externus (UE). The most significant variation among Glenognatha species, previously unregistered within Araneoidea, is related with the absence or presence of CD and spermathecae. In addition, several characters as the form and distribution of long stem gland ductules and compartmentalization of the UE may be important for phylogenetic inference at species and generic level. Our results corroborate the close relationship between Dyshiriognatha and Glenognatha. A table with potentially informative female genitalic characters for phylogenetic inference within Glenognatha is provided. Understanding the general structure of the female genitalia in secondarily haplogyne taxa is a crucial step in order to propose characters for phylogenetic inference and to understand its possible functional significance. J. Morphol. 275:1027–1040, 2014. © 2014 Wiley Periodicals, Inc.  相似文献   

13.
The unusual reproductive biology of many spider species makes them compelling targets for evolutionary investigations. Mating behavior studies combined with genital morphological investigations help to understand complex spider reproductive systems and explain their function in the context of sexual selection. Oonopidae are a diverse spider family comprising a variety of species with complex internal female genitalia. Data on oonopid phylogeny are preliminary and especially studies on their mating behavior are very rare. The present investigation reports on the copulatory behavior of an Orchestina species for the first time. The female genitalia are described by means of serial semi-thin sections and scanning electron microscopy. Females of Orchestina sp. mate with multiple males. On average, copulations last between 15.4 and 23.54 min. During copulation, the spiders are in a position taken by most theraphosids and certain members of the subfamily Oonopinae: the male pushes the female back and is situated under her facing the female's sternum. Males of Orchestina sp. possibly display post-copulatory mate-guarding behavior. The female genitalia are complex. The genital opening leads into the uterus externus from which a single receptaculum emerges. The dorsal wall of the receptaculum forms a sclerite serving as muscle attachment. A sclerotized plate with attached muscles lies in the posterior wall of the uterus externus. The plate might be used to lock the uterus during copulation. The present study gives no direct evidence for cryptic female choice in Orchestina sp. but suggests that sexual selection occurs in the form of sperm competition through sperm mixing.  相似文献   

14.
Pholcus phalangioidesdoes not possess receptacular seminis. The uterus externus (genital cavity) itself functions as a sperm storage structure. Two accessory glands are situated in the dorsal part of the uterus externus; they discharge their secretory product into the genital cavity. The secretion is considered to serve primarily as a matrix for sperm storage, i.e. to keep the spermatozoa in a fixed position. The accessory glands consist of numerous glandular units, each being composed of four cells: two secretory cells are always joined and surrounded twice by an inner and an outer envelope cell. Both envelope cells take part in forming a cuticular ductule that leads from the secretory cells to the pore plates of the uterus externus. The inner envelope cell produces the proximal part of the canal close to the microvilli of the secretory cells, whereas the outer envelope cell produces the distal part of the canal leading to the pore plate. Close to the pore the latter exhibits prominent microvilli that might indicate additional secretory activity.  相似文献   

15.
Mesonemoura sbordonii, a new species of Nemouridae (Plecoptera) from Yunnan (China) is described. Remarks on its relationships with the closest species, M. vaillanti, are given.  相似文献   

16.
The male copulatory system of the European pinnotherid species Pinnotheres pisum, Pinnotheres pectunculi, and Nepinnotheres pinnotheres was investigated by gross morphology, scanning electron microscopy, histological methods, and confocal laser scanning microscopy. The brachyuran copulatory system is consistently formed by paired penes and two pairs of abdominal appendages, the gonopods, functioning in sperm transfer. In pinnotherids, the long first gonopods transfer the sperm mass into the female ducts. The first gonopod has the ejaculatory canal inside that opens both basally and distally. The second gonopod is solid, short, and conical. During copulation, the penis and the second gonopod are inserted into the basal lumen of the first gonopod. While the penis injects the sperm mass, the second gonopod functions in the transport of spermatozoa inside the ejaculatory canal toward its distal opening. The second gonopod is adapted for the sealing of the tubular system in the first gonopod by its specific shape and the ability to swell. Longitudinal cuticle foldings of the second gonopod hook into structures inside the first gonopod. The second gonopod can interact with the penis during copulation by a flexible flap separating the lumina in which the second gonopod and the penis are inserted. J. Morphol., 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

17.
Summary The annual changes of the spermatic duct ofSalaria pavo and the characteristics of the spermatic ducts of spawningAidablennius sphynx, Lipophrys adriaticus, L. dalmatinus, andParablennius incognitus are described by fine structural and histochemical methods. The spermatic duct ofS. pavo has an inactive phase during the interspawning period, a proliferation phase during the prespawning period, a phase of high secretory activity during the spawning period and a regression phase in the postspawning period. During spawning the spermatic duct ofS. pavo is involved in the secretion of glycogen, lipids, and sulfomucins and has similar fine structural and histochemical characteristics as the spermatic ducts ofA. sphynx, L. adriaticus, L. dalmatinus, andP. incognitus. The spermatic ducts of bleniid fish function (1) in stabilizing and continuation of the final differentiation processes of spermatozoa, (2) in storage of mature spermatozoa, (3) in nutrition of germ cells by glycogen, and (4) in the production of sulfomucins regarded as important for the mode of fertilization. Possible meanings of the varying size of the spermatic ducts in different species of blennies are discussed.  相似文献   

18.
19.
20.
The spermatic ducts and the testicular efferent ducts were investigated in different marine teleost fish species (Diplodus sargus, Mullus barbatus, Thalassoma pavo, Trachinus draco, Uranuscopus scaber, Sparisoma cretense, Synodon saurus). From the morphological, histological, fine structural and biochemical investigations it appeared that the testicular main ducts and spermatic ducts of the investigated marine fish have the following functions: storage of spermatozoa, monosacharide synthesis for nutrition of spermatozoa, synthesis of steroid glucuronides, synthesis of seminal plasma proteins, formation of a ionic gradient in the seminal fluid and phagocytotic activity. Species-specific differences were only found in the morphology of the gonads and in the histology of the spermatic duct epithelium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号