首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Previous studies have shown that activation of the RON receptor tyrosine kinase inhibits inducible NO production in murine peritoneal macrophages. The purpose of this study is to determine whether inflammatory mediators such as LPS, IFN-gamma, and TNF-alpha regulate RON expression. Western blot analysis showed that RON expression is reduced in peritoneal macrophages collected from mice injected with a low dose of LPS. The inhibition was seen as early as 8 h after LPS challenge. Experiments in vitro also demonstrated that the levels of the RON mRNA and protein are diminished in cultured peritoneal macrophages following LPS stimulation. TNF-alpha plus IFN-gamma abrogated macrophage RON expression, although individual cytokines had no significant effect. Because LPS and TNF-alpha plus IFN-gamma induce NO production, we reasoned that NO might be involved in the RON inhibition. Two NO donors, S-nitroglutathione (GSNO) and (+/-)-S-nitroso-N-acetylpenicillamine (SNAP), directly inhibited macrophage RON expression when added to the cell cultures. Blocking NO production by NO inhibitors like TGF-beta prevented the LPS-mediated inhibitory effect. In Raw264.7 cells transiently transfected with a report vector, GSNO or SNAP inhibited the luciferase activities driven by the RON gene promoter. Moreover, GSNO or SNAP inhibited the macrophage-stimulating protein-induced RON phosphorylation and macrophage migration. We concluded from these data that RON expression in macrophages is regulated during inflammation. LPS and TNF-alpha plus IFN-gamma are capable of down-regulating RON expression through induction of NO production. The inhibitory effect of NO is mediated by suppression of the RON gene promoter activities.  相似文献   

2.
Rat peritoneal macrophages stimulated with lipopolysaccharide (LPS) and Phorbol myristate acetate (PMA) generated increased levels of superoxide anions (O2ú-) by 122% as compared to those stimulated with PMA alone. However, Nitric oxide (NO) synthase inhibitors-n-monomethyl arginine (nMMA) or spermine-HCI lowered the enhanced levels of O2ú- released by LPS treated macrophages. The Superoxide dismutase (SOD) activity in LPS treated macrophages was 51% lower than that observed in resident cells. NO synthase inhibitors prevented the loss of SOD activity in LPS treated cells. Exogenously added SOD during sensitization of cells with LPS also inactivated the enzyme. This inactivation of SOD is inhibited by Nitric oxide synthase inhibitors. PMA alone did not affect SOD activity. NO synthase inhibitors also did not affect PMA activated superoxide anion generation in macrophages. These studies indicate that nitric oxide generated by LPS treated macrophages can inactivate SOD activity.  相似文献   

3.
This investigation describes the ability of Leishmania promastigotes to enhance activation of bone marrow-derived murine macrophages in vitro if added together with rIFN-gamma in the presence or absence of LPS. Activation was defined as the capacity for arginine-derived NO2- production and the killing of intracellular Leishmania. Enhanced NO2- production was observed for either CBA or C3H/HeJ macrophages undergoing phagocytosis at the time of activation. Other phagocytic stimuli including inert polystyrene latex beads were as effective as Leishmania. No correlation could be demonstrated between the enhanced NO2- release and secretion of products of the respiratory burst or PGE2. However, TNF-alpha secretion was elevated in cultures undergoing phagocytosis and a relationship between hexosemonophosphate shunt activity and NO2- levels was evident. These studies confirm and extend previous reports that phagocytosis plays an important role in the regulation of macrophage physiology.  相似文献   

4.
Preexposure of resident mouse peritoneal macrophages for 1 hr to traces of bacterial lipopolysaccharide (LPS) (less than or equal to 1 ng/ml) rendered the cells refractory to activation by recombinant interferon-gamma (rIFN gamma) or recombinant tumor necrosis factor-alpha (rTNF alpha), as evaluated by release of H2O2 upon stimulation with phorbol myristate acetate. Inhibition persisted for at least 4 days. Fifty percent inhibition of activation mediated by rIFN gamma followed 1 hr exposure to 10 pg/ml LPS. Fifty percent inhibition of activation mediated by rTNF alpha was achieved with 1 hr exposure to 1 pg/ml LPS. Such low levels LPS exposures (concentration X time) are far below those reported for many other actions of LPS on host cells. Inhibition was partially prevented by the cyclooxygenase inhibitors indomethacin, ibuprofen, and acetylsalicylic acid. Exogenous prostaglandins PGE1 and PGE2, and the 3',5'-cyclic adenosine monophosphate analog dibutyryl cyclic adenosine monophosphate (cAMP), mimicked the inhibitory effect of LPS in a dose-dependent manner, consistent with the hypothesis that formation of endogenous cyclooxygenase products in response to LPS may elevate intracellular cAMP and that the latter may mediate the observed inhibition. In addition, neutralizing antibody against IFN alpha and IFN beta selectively prevented LPS inhibition of activation mediated by rIFN gamma, but not by rTNF alpha. This suggests that IFN alpha and/or IFN beta induced by LPS also contributed to inhibition of activation by rIFN gamma. Thus, release of LPS may afford microorganisms a means by which to interfere with immunologically mediated enhancement of the respiratory burst-dependent antimicrobial capacity of macrophages.  相似文献   

5.
The signaling pathway for lipopolysaccharide (LPS)-induced nitric oxide (NO) release in RAW 264.7 macrophages involves the protein kinase C and p38 activation pathways (Chen, C. C., Wang, J. K., and Lin, S. B. (1998) J. Immunol. 161, 6206-6214; Chen, C. C., and Wang, J. K. (1999) Mol. Pharmacol. 55, 481-488). In this study, the role of the cAMP-dependent protein kinase A (PKA) pathway was investigated. The PKA inhibitors, KT-5720 and H8, reduced LPS-induced NO release and inducible nitric oxide synthase (iNOS) expression. The direct PKA activator, Bt(2)cAMP, caused concentration-dependent NO release and iNOS expression, as confirmed by immunofluorescence studies. The intracellular cAMP concentration did not increase until after 6 h of LPS treatment. Two cAMP-elevating agents, forskolin and cholera toxin, potentiated the LPS-induced NO release and iNOS expression. Stimulation of cells with LPS or Bt(2)cAMP for periods of 10 min to 24 h caused nuclear factor-kappaB (NF-kappaB) activation in the nuclei, as shown by detection of NF-kappaB-specific DNA-protein binding. The PKA inhibitor, H8, inhibited the NF-kappaB activation induced by 6- or 12-h treatment with LPS but not that induced after 1, 3, or 24 h. The cyclooxygenase-2 (COX-2) inhibitors, NS-398 and indomethacin, attenuated LPS-induced NO release, iNOS expression, and NF-kappaB DNA-protein complex formation. LPS induced COX-2 expression in a time-dependent manner, and prostaglandin E(2) production was induced in parallel. These results suggest that 6 h of treatment with LPS increases intracellular cAMP levels via COX-2 induction and prostaglandin E(2) production, resulting in PKA activation, NF-kappaB activation, iNOS expression, and NO production.  相似文献   

6.
7.
8.
Bacterial lipopolysaccharide (LPS) is a powerful activator of the innate immune system. Exposure to LPS induces an inflammatory reaction in the lung mediated primarily by human blood monocytes and alveolar macrophages, which release an array of inflammatory chemokines and cytokines including IL-8, TNF-alpha, IL-1beta, and IL-6. The signaling mechanisms utilized by LPS to stimulate the release of cytokines and chemokines are still incompletely understood. Pretreatment with the protein tyrosine kinase-specific inhibitors genistein and herbimycin A effectively blocked LPS-induced NF-kappaB activation as well as IL-8 gene expression in human peripheral blood monocytes. However, when genistein was added 2 min after the addition of LPS, no inhibition was observed. Utilizing a coimmunoprecipitation assay, we further showed that LPS-stimulated tyrosine phosphorylation of Toll-like receptor 4 (TLR4) may be involved in downstream signaling events induced by LPS. These findings provide evidence that LPS-induced NF-kappaB activation and IL-8 gene expression use a signaling pathway requiring protein tyrosine kinase and that such regulation may occur through tyrosine phosphorylation of TLR4.  相似文献   

9.
氧化修饰LDL(OX-LDL)可抑制脂多糖(LPS)诱导的巨噬细胞NO释放, 而正常(N-LDL)和乙酰化LDL(AC-LDL)则没有抑制作用.OX-LDL对NO释放的抑制作用随LDL修饰程度的升高而增强,且具有浓度和时间效应.狭缝杂交结果显示OX-LDL处理可使LPS诱导的巨噬细胞NOS mRNA含量下降,提示OX-LDL对NO释放的抑制作用可能发生在转录水平.  相似文献   

10.
The goal of this study was to elucidate whether triggering the sphingomyelin pathway modulates LPS-initiated responses. For this purpose we investigated the effects of N-acetylsphingosine (C(2)-ceramide) on LPS-induced production of NO and PGE(2) in murine RAW 264.7 macrophages and explored the signaling pathways involved. We found that within a range of 10-50 microM, C(2)-ceramide inhibited LPS-elicited NO synthase and cyclooxygenase-2 induction accompanied by a reduction in NO and PGE(2) formation. By contrast, a structural analog of C(2)-ceramide that does not elicit functional activity, C(2)-dihydroceramide, did not affect the LPS response. The nuclear translocation and DNA binding study revealed that ceramide can inhibit LPS-induced NF-kappaB and AP-1 activation. The immunocomplex kinase assay indicated that IkappaB kinase activity stimulated by LPS was inhibited by ceramide, which concomitantly reduced the IkappaBalpha degradation caused by LPS within 1-6 h. In concert with the decreased cytosolic p65 protein level, LPS treatment resulted in rapid nuclear accumulation of NF-kappaB subunit p65 and its association with the cAMP-responsive element binding protein. Ceramide coaddition inhibited all the LPS responses. In addition, LPS-induced PKC and p38 mitogen-activated protein kinase activation were overcome by ceramide. In conclusion, we suggest that ceramide inhibition of LPS-mediated induction of inducible NO synthase and cyclooxygenase-2 is due to reduction of the activation of NF-kappaB and AP-1, which might result from ceramide's inhibition of LPS-stimulated IkappaB kinase, p38 mitogen-activated protein kinase, and protein kinase C.  相似文献   

11.
The effect of LPS on the respiratory burst in resident rat peritoneal macrophages has been examined. Rat macrophages secreted high levels of both O2- and H2O2 in response to triggering with phorbol esters, opsonized zymosan, and immune complexes. After culture in vitro with LPS these macrophages exhibited a marked diminution in their capacity to secrete high levels of respiratory burst products. The LPS-mediated loss of secretory activity was apparent after 2 hr of exposure to LPS and was inhibitable by polymyxin B in a dose-dependent fashion. The effect was not selective for any triggering agent type as inhibition of secretory activity occurred after triggering with PMA, zymosan and immune complexes. PGE2 added at levels secreted by the macrophages in response to LPS also inhibited respiratory burst product secretion. In addition, indomethacin prevented the LPS-mediated inhibition of secretion. Because the inhibition of secretion was common to all triggering agents tested, this suggested that the basis for the impaired secretion was at a level other than the receptor for the triggering agent. Both LPS and PGE2 treatment of the macrophages increased the Km of the oxidase for NADPH (1.7- to 2.3-fold) without affecting significantly the Vmax of the enzyme. These data suggest that stimulation of rat peritoneal macrophages by LPS results in an impaired ability to secrete respiratory burst products as a result of a PGE2-mediated decrease in NADPH oxidase affinity and that this alteration is independent of alterations in tumoricidal activity.  相似文献   

12.
13.
Several studies have already demonstrated that oxidized- LDL decreases nitric oxide (NO) generation by cytokine-stimulated macrophages. However, the mechanisms of such an inhibition have not been yet elucidated. NO generation by inducible nitric oxide synthase (iNOS) is dependent on the presence of cofactors for NO generation, tetrathydrobiopterin (BH4) among them. The NO generation by these cells is also regulated by some endogenous inhibitors, like TGF-beta. Therefore, the aim of our recent study was to investigate the influence of ox-LDL on the expression of iNOS and GTP cyclohydrolase I (GTP-CH I), the key enzyme involved in the BH4 synthesis as well as the ox-LDL effect on TGF-beta expression in rat macrophages stimulated with IFNgamma (250 U/ml) and LPS (500 ng/ml). Macrophages, activated in this way, express iNOS, GTP-CH I, and TGF-beta mRNA. This expression was inhibited when the macrophages were preincubated for 24 hours with ox-LDL (100 microg/ml). Quantitative PCR revealed about 10-fold inhibition of iNOS gene expression by ox-LDL. As a consequence of down-regulation of iNOS and GTP-CH I genes, almost 3-fold diminished generation of NO2- by rat macrophages was observed. An inhibition of the TGFbeta mRNA expression was also found. Our studies indicate that decreased NO generation by ox-LDL treated macrophages may be the result of the diminished expression of both iNOS and GTP-CH I genes. This effect may be mediated by the activity of certain endogenous inhibitors of gene expression, however, our studies exclude the TGF-beta as a candidate for this activity.  相似文献   

14.
In evaluation of macrophage-activating principles other than lymphokines, we systematically investigated the effects of endotoxin on the formation of reactive oxygen intermediates measured by chemiluminescence. Surprisingly, endotoxin exposure of human blood monocytes cultured in vitro for 36 h lessened in a dose-dependent manner the amount of O2- and H2O2 secreted in response to phagocytosis of opsonized particles or to PMA, a soluble stimulant. Blunting of the respiratory burst by endotoxin was independent from the state of macrophage activation. Endotoxin thus impaired formation of reactive oxygen metabolites before, during, or after activation of macrophages by IFN-gamma. The median effective concentration (EC50) was 1.95 ng/ml LPS in resting macrophages and 7.22 ng/ml in IFN-gamma-activated macrophages with as little as 0.1 ng/ml reproducibly giving detectable inhibition. Lipid A, but not "detoxified" monophosphoryl lipid A gave an inhibition comparable to that of complete LPS. The inhibitory effect of endotoxin was attenuated by dexamethasone, but not by inhibitors of arachidonic acid metabolism. Because endotoxin induces and dexamethasone inhibits production of some monokines, it is tempting to speculate that endotoxin is part of an autoregulatory system of mononuclear phagocytes for the control of excessive production of potentially harmful oxidants. The two monokines identified to be secreted in response to LPS and to be inhibited by dexamethasone, IL-1 and TNF, had, however, no comparable effect on chemiluminescence.  相似文献   

15.
Previous studies have demonstrated that exposure of guinea pig macrophages to a primary signal, such as lipopolysaccharide (LPS), stimulates the synthesis of prostaglandin E2 (PGE2) which, in turn, elevates cAMP levels resulting in the production of the enzyme, collagenase. The potential of regulating the biochemical events in this activation sequence was examined with the anti-inflammatory agents dexamethasone and colchicine, which suppress the destructive sequelae in chronic inflammatory lesions associated with the degradation of connective tissue. The addition of dexamethasone with LPS to macrophage cultures resulted in a dose-dependent inhibition of PGE2 and collagenase production, which was reversed by the exogenous addition of phospholipase A2. Collagenase production was also restored in dexamethasone-treated cultures by the addition of products normally produced as a result of phospholipase action, such as arachidonic acid, PGE2 or dibutyryl-cAMP. Since the effect of dexamethasone was thus linked to phospholipase A2 inhibition, mepacrine, a phospholipase inhibitor, was also tested. Mepacrine, like dexamethasone, caused a dose-dependent inhibition of PGE2 and collagenase. In addition to corticosteroid inhibition, colchicine was also found to block collagenase production. However, this anti-inflammatory agent had no effect on PGE2 synthesis. Colchicine was effective only when added at the onset of culture and not 24 h later, implicating a role for microtubules in the transmission of the activation signal rather than enzyme secretion. The failure of lumicolchicine to inhibit collagenase activity provided additional evidence that microtubules are involved in the activation of macrophages. These findings demonstrate that dexamethasone and colchicine act at specific steps in the activation sequence of guinea pig macrophages to regulate collagenase production.  相似文献   

16.
Reactive molecules O(-)(2), H(2)O(2), and nitrogen monoxide (NO) are produced from macrophages following exposure to lipopolysaccharide (LPS) and involved in cellular signaling for gene expression. Experiments were carried out to determine whether these molecules regulate inducible nitric oxide synthase (iNOS) gene expression in RAW264.7 macrophages exposed to LPS. NO production was inhibited by the antioxidative enzymes catalase, horseradish peroxidase, and myeloperoxidase but not by superoxide dismutase (SOD). In contrast, the NO-producing activity of LPS-stimulated RAW264.7 cells was enhanced by the NO scavengers hemoglobin (Hb) and myoglobin. The antioxidant enzymes decreased levels of iNOS mRNA and protein in LPS-stimulated RAW264.7 cells, whereas the NOS inhibitor N(G)-monomethyl-L-arginine as well as Hb increased the level of iNOS protein but not mRNA, indicating that NO inhibits iNOS protein expression. NF-kappa B was activated in LPS-stimulated RAW264.7 cells and the activation was significantly inhibited by antioxidant enzymes, but not by Hb. Similar results were obtained using LPS-stimulated rodent peritoneal macrophages. Extracellular O(-)(2) generation by LPS-stimulated macrophages was suppressed by SOD, but not by antioxidative enzymes, while accumulation of intracellular reactive oxygen species was inhibited by antioxidative enzymes, but not by SOD. Exogenous H(2)O(2) induced NF-kappa B activation in macrophages, which was inhibited by catalase and pyrroline dithiocarbamate (PDTC). H(2)O(2) enhanced iNOS expression and NO production in peritoneal macrophages when added with interferon-gamma, and the effect of H(2)O(2) was inhibited by catalase and PDTC. These findings suggest that H(2)O(2) production from LPS-stimulated macrophages participates in the upregulation of iNOS expression via NF-kappa B activation and that NO is a negative feedback inhibitor of iNOS protein expression.  相似文献   

17.
Treatment of the macrophage cell line RAW 264.7 with the short-lived NO donor S-nitrosoglutathione triggers apoptosis through the release of mitochondrial mediators. However, continuous supply of NO by long-lived NO donors protected cells from apoptosis through mechanisms that involved the maintenance or an increase in the levels of the inhibitor of apoptosis proteins (IAPs) cIAP-1, cIAP-2, and xIAP and decreases in the accumulation of p53 and in the levels and targeting of Bax to the mitochondria. As a result of these changes, the activation of caspases 9 and 3 was notably delayed, expanding the time of viability of the macrophages. Moreover, inhibition of NO synthase 2 activity after 8 h of stimulation of RAW 264.7 cells with LPS and IFN-gamma accelerated apoptosis via an increase in the processing and activation of caspases. These data suggest that NO exerts an important role in the autoregulation of apoptosis in macrophages.  相似文献   

18.
Previous results have indicated that lipopolysaccharide (LPS) plus interferon-gamma (IFNgamma) inhibits nitric-oxide synthase (NOS)-I activity in glial cells. We report here that arachidonic acid (AA) plays a pivotal role in this response, which was consistently reproduced in different glial cell lines and in primary rat astrocytes. This notion was established using pharmacological inhibitors of phospholipase A2 (PLA2), cytosolic PLA2 (cPLA2) antisense oligonucleotides, and AA add-back experiments. This approach not only allowed the demonstration that AA promotes inhibition of NOS-I activity but also produced novel experimental evidence that LPS/IFNgamma itself is a potential stimulus for NOS-I. Indeed, LPS/IFNgamma fails to generate nitric oxide (NO) via NOS-I activation simply because it activates the AA-dependent signal that impedes NOS-I activity. Otherwise, LPS/IFNgamma promotes NO formation, sensitive to exogenous AA, in cells in which cPLA2 is pharmacologically inhibited or genetically depleted. Because NO suppresses the NFkappaB-dependent NOS-II expression, inactivation of NOS-I by the LPS/IFNgamma-induced AA pathway provides optimal conditions for NFkappaB activation and subsequent NOS-II expression. Inhibition of cPLA2 activity, while reducing the availability of AA, consistently inhibited NFkappaB activation and NOS-II mRNA induction and delayed NO formation. These responses were promptly reestablished by addition of exogenous AA. Finally, we have demonstrated that the LPS/IFNgamma-dependent tyrosine phosphorylation of NOS-I and inhibition of its activity are mediated by endogenous AA.  相似文献   

19.
Nitric oxide (NO) and prostaglandins are produced as a result of the stimulation of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2, respectively, in response to cytokines or lipopolysaccharide (LPS). We demonstrate that the activity of integrin-linked kinase (ILK) is stimulated by LPS activation in J774 macrophages. Inhibition of ILK activity by dominant-negative ILK or a highly selective small molecule ILK inhibitor, in epithelial cells or LPS-stimulated J774 cells and murine macrophages, resulted in inhibition of iNOS expression and NO synthesis. LPS stimulates the phosphorylation of IkappaB on Ser-32 and promotes its degradation. Inhibition of ILK suppressed this LPS-stimulated IkappaB phosphorylation and degradation. Similarly, ILK inhibition suppressed the LPS-stimulated iNOS promoter activity. Mutation of the NF-kappaB sites in the iNOS promoter abolished LPS- and ILK-mediated regulation of iNOS promoter activity. Overexpression of ILK-stimulated NF-kappaB activity and inhibition of ILK or protein kinase B (PKB/Akt) suppressed this activation. We conclude that ILK can regulate NO production in macrophages by regulating iNOS expression through a pathway involving PKB/Akt and NF-kappaB. Furthermore, we also demonstrate that ILK activity is required for LPS stimulated cyclooxygenase-2 expression in murine and human macrophages. These findings implicate ILK as a potential target for anti-inflammatory applications.  相似文献   

20.
Resident rat peritoneal macrophages synthesize a variety of prostanoids and leukotrienes from arachidonic acid. Overnight treatment with lipopolysaccharide (LPS) induces the synthesis of cyclooxygenase-2 (COX-2) and an altered prostanoid profile that emphasizes the preferential conversion of arachidonic acid to prostacyclin and prostaglandin E2. In these studies, we report that exposure to LPS also caused a strong suppression of 5-lipoxygenase but not 12-lipoxygenase activity, indicated by the inhibition of synthesis of both leukotriene B4 and 5-hydroxyeicosatetraenoic acid (5-HETE), but not of 12-HETE. Inhibition of 5-lipoxygenase activity by LPS was both time- and dose-dependent. Treatment of macrophages with prostaglandin E2 partially inhibited leukotriene synthesis, and cyclooxygenase inhibitors partially blocked the inhibition of leukotriene generation in LPS-treated cells. In addition to COX-2, nitric oxide synthase (NOS) was also induced by LPS. Treatment of macrophages with an NO donor mimicked the ability of LPS to significantly reduce leukotriene B4 synthesis. Inhibition of NOS activity in LPS-treated cells blunted the suppression of leukotriene synthesis. Inhibition of both inducible NOS and COX completely eliminated leukotriene suppression. Finally, macrophages exposed to prolonged LPS demonstrated impaired killing of Klebsiella pneumoniae and the combination of NOS and COX inhibitors restored killing to the control level. These results indicate that prolonged exposure to LPS severely inhibits leukotriene production via the combined action of COX and NOS products. The shift in mediator profile, to one that minimizes leukotrienes and emphasizes prostacyclin, prostaglandin E2 and NO, provides a signal that reduces leukocyte function, as indicated by impaired killing of Gram-negative bacteria.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号