首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
D C Merz  H Zheng  M T Killeen  A Krizus  J G Culotti 《Genetics》2001,158(3):1071-1080
Cell and growth cone migrations along the dorsoventral axis of Caenorhabditis elegans are mediated by the UNC-5 and UNC-40 receptor subtypes for the secreted UNC-6 guidance cue. To characterize UNC-6 receptor function in vivo, we have examined genetic interactions between unc-5 and unc-40 in the migrations of the hermaphrodite distal tip cells. We report that cell migration defects as severe as those associated with a null mutation in unc-6 are produced only by null mutations in both unc-5 and unc-40, indicating that either receptor retains some partial function in the absence of the other. We show that hypomorphic unc-5 alleles exhibit two distinct types of interallelic genetic interactions. In an unc-40 wild-type genetic background, some pairs of hypomorphic unc-5 alleles exhibit a partial allelic complementation. In an unc-40 null background, however, we observed that unc-5 hypomorphs exhibit dominant negative effects. We propose that the UNC-5 and UNC-40 netrin receptors can function to mediate chemorepulsion in DTC migrations either independently or together, and the observed genetic interactions suggest that this flexibility in modes of signaling results from the formation of a variety of oligomeric receptor complexes.  相似文献   

3.
Many protein-coding genes identified by genome sequencing remain without functional annotation or biological context. Here we define a novel protein-coding gene, Nmf9, based on a forward genetic screen for neurological function. ENU-induced and genome-edited null mutations in mice produce deficits in vestibular function, fear learning and circadian behavior, which correlated with Nmf9 expression in inner ear, amygdala, and suprachiasmatic nuclei. Homologous genes from unicellular organisms and invertebrate animals predict interactions with small GTPases, but the corresponding domains are absent in mammalian Nmf9. Intriguingly, homozygotes for null mutations in the Drosophila homolog, CG45058, show profound locomotor defects and premature death, while heterozygotes show striking effects on sleep and activity phenotypes. These results link a novel gene orthology group to discrete neurological functions, and show conserved requirement across wide phylogenetic distance and domain level structural changes.  相似文献   

4.
T. Schedl  P. L. Graham  M. K. Barton    J. Kimble 《Genetics》1989,123(4):755-769
In wild-type Caenorhabditis elegans there are two sexes, self-fertilizing hermaphrodites (XX) and males (XO). To investigate the role of tra-1 in controlling sex determination in germline tissue, we have examined germline phenotypes of nine tra-1 loss-of-function (lf) mutations. Previous work has shown that tra-1 is needed for female somatic development as the nongonadal soma of tra-1(lf) XX mutants is masculinized. In contrast, the germline of tra-1(lf) XX and XO animals is often feminized; a brief period of spermatogenesis is followed by oogenesis, rather than the continuous spermatogenesis observed in wild-type males. In addition, abnormal gonadal (germ line and somatic gonad) phenotypes are observed which may reflect defects in development or function of somatic gonad regulatory cells. Analysis of germline feminization and abnormal gonadal phenotypes of the various mutations alone or in trans to a deficiency reveals that they cannot be ordered in an allelic series and they do not converge to a single phenotypic endpoint. These observations lead to the suggestion that tra-1 may produce multiple products and/or is autoregulated. One interpretation of the germline feminization is that tra-1(+) is necessary for continued specification of spermatogenesis in males. We also report the isolation and characterization of tra-1 gain-of-function (gf) mutations with novel phenotypes. These include temperature sensitive, recessive germline feminization, and partial somatic loss-of-function phenotypes.  相似文献   

5.
Phenotype-based mutagenesis experiments will increase the mouse mutant resource, generating mutations at previously unmarked loci as well as extending the allelic series at known loci. Mapping, molecular characterization, and phenotypic analysis of nine independent Pax6 mutations of the mouse recovered in mutagenesis experiments is presented. Seven mutations result in premature termination of translation and all express phenotypes characteristic of null alleles, suggesting that Pax6 function requires all domains to be intact. Of major interest is the identification of two possible hypomorph mutations: Heterozygotes express less severe phenotypes and homozygotes develop rudimentary eyes and nasal processes and survive up to 36 hr after birth. Pax6(4Neu) results in an amino acid substitution within the third helix of the homeodomain. Three-dimensional modeling indicates that the amino acid substitution interrupts the homeodomain recognition alpha-helix, which is critical for DNA binding. Whereas cooperative dimer binding of the mutant homeodomain to a paired-class DNA target sequence was eliminated, weak monomer binding was observed. Thus, a residual function of the mutated homeodomain may explain the hypomorphic nature of the Pax6(4Neu) allele. Pax6(7Neu) is a base pair substitution in the Kozak sequence and results in a reduced level of Pax6 translation product. The Pax6(4Neu) and Pax6(7Neu) alleles may be very useful for gene-dosage studies.  相似文献   

6.
Phenotypic characterization of Akt1 and Igf2 null mice has revealed roles for each in the regulation of placentation, and fetal and postnatal growth. Insulin-like growth factor 2 (IGF2) is encoded by the Igf2 gene and influences cellular function, at least in part, through activation of an intracellular serine/threonine kinase called AKT1. Akt1 and Igf2 null mice were originally characterized on inbred and mixed genetic backgrounds, prohibiting direct comparisons of their phenotypes. The impact of loss of AKT1 or IGF2 on placental, fetal, and postnatal function were examined following transfer of Akt1 and Igf2 null mutations to an outbred CD1 genetic background. Disruption of IGF2 did not affect AKT expression or activation. Both Akt1-/- and Igf2-/- mice exhibited decreased placental weight, fetal weight and viability. Deregulation of placental growth was similar in Akt1 and Igf2 nulls; however, disruption of Igf2 had a more severe impact on prenatal survival and postnatal growth. Placental structure, including organization of junctional and labyrinth zones and development of the interstitial, invasive, trophoblast lineage, were similar in mutant and wild-type mice. Akt1 and Igf2 null mutations affected postnatal growth. The relative impact of each gene differed during pre-weaning versus post-weaning growth phases. AKT1 had a more significant role during pre-weaning growth, whereas IGF2 was a bigger contributor to post-weaning growth. Akt1 and Igf2 null mutations impact placental, fetal and postnatal growth. Placental phenotypes are similar; however, fetal and postnatal growth patterns are unique to each mutation.  相似文献   

7.
Of the three structural maintenance of chromosomes (SMC) complexes, Smc5/6 remains the most poorly understood. Genetic studies have shown that Smc5/6 mutants are defective in homologous recombination (HR), and consistent with this, Smc5/6 is enriched at lesions. However, Smc5/6 is essential for viability, but HR is not, and the terminal phenotype of null Smc5/6 mutants is mitotic failure. Here we analyze the function of Nse1, which contains a variant RING domain that is characteristic of ubiquitin ligases. Whereas deletion of this domain causes DNA damage sensitivity and mitotic failure, serine mutations in conserved cysteines do not. However, these mutations suppress the DNA damage sensitivity of Smc5/6 hypomorphs but not that of HR mutants and remarkably decrease the recruitment of Smc5/6 to loci containing lesions marked for HR-mediated repair. Analysis of DNA repair pathways in suppressed double mutants suggests that lesions are channeled into recombination-dependent and error-free postreplication repair. Thus the HR defect in Smc5/6 mutants appears to be due to the presence of dysfunctional complexes at lesions rather than to reflect an absolute requirement for Smc5/6 to complete HR.  相似文献   

8.
Fibroblast growth factor (FGF) signaling is essential for the development of the gonadotropin-releasing hormone (GnRH) system. Mice harboring deficiencies in Fgf8 or Fgf receptor 1 (Fgfr1) suffer a significant loss of GnRH neurons, but their reproductive phenotypes have not been examined. This study examined if female mice hypomorphic for Fgf8, Fgfr1, or both (compound hypomorphs) exhibited altered parameters of pubertal onset, estrous cyclicity, and fertility. Further, we examined the number of kisspeptin (KP)-immunoreactive (ir) neurons in the anteroventral periventricular/periventricular nuclei (AVPV/PeV) of these mice to assess if changes in the KP system, which stimulates the GnRH system, could contribute to the reproductive phenotypes. Single hypomorphs (Fgfr1(+/-) or Fgf8(+/-)) had normal timing for vaginal opening (VO) but delayed first estrus. However, after achieving the first estrus, they underwent normal expression of estrous cycles. In contrast, the compound hypomorphs underwent early VO and normal first estrus, but had disorganized estrous cycles that subsequently reduced their fertility. KP immunohistochemistry on Postnatal Day 15, 30, and 60 transgenic female mice revealed that female compound hypomorphs had significantly more KP-ir neurons in the AVPV/PeV compared to their wild-type littermates, suggesting increased KP-ir neurons may drive early VO but could not maintain the cyclic changes in GnRH neuronal activity required for female fertility. Overall, these data suggest that Fgf signaling deficiencies differentially alter the parameters of female pubertal onset and cyclicity. Further, these deficiencies led to changes in the AVPV/PeV KP-ir neurons that may have contributed to the accelerated VO in the compound hypomorphs.  相似文献   

9.
A new autosomal recessive coat color mutant in the Mongolian gerbil (Meriones unguiculatus) is described: recessive yellow. On the dorsal side the mutant has a rich yellow to ginger color. Ventrally it shows the typical creamy white belly of a wild-type Mongolian gerbil. The dorsal yellow hairs have short black tips, and a light olive green base. A clear demarcation line between dorsal and ventral color is present. Crosses between recessive yellow animals and multiple homozygous recessive tester animals (a/a; cchm/cchm; g/g; p/p) resulted only in animals of an agouti (wild-type) phenotype, showing that the new allele is not allelic with any of the known coat color mutations in the Mongolian gerbil. Molecular studies showed that the new mutant is caused by a missence mutation at the extension (E) locus. On a non-agouti background (a/a; e/e) mutant animals look like a dark wild-type agouti. In contrast to wild-type agouti it shows yellow pigmentation and dark ticking at the ventral side, resulting in the absence of a demarcation line. Since black pigment is present in both the agouti and non-agouti variant (A/A; e/e and a/a; e/e), we conclude that recessive yellow in the Mongolian gerbil is non-epistatic to agouti. Additionally we describe a second mutation at the same locus leading to a similar phenotype, however without black pigment and diminishing yellow pigment during life. Fertility and viability of both new mutants are within normal range. The extension (E) gene is known to encode the melanocortin 1 receptor (MC1R). Interestingly, this is the only gene that is known to account for substantial variation in skin and hair color in humans. Many different mutations are known of which some are associated with higher skin cancer incidence.  相似文献   

10.
11.
To understand the roles of secretory peptides in developmental signaling, we have studied Drosophila mutant for the gene peptidylglycine alpha-hydroxylating monooxygenase (PHM). PHM is the rate-limiting enzyme for C-terminal alpha-amidation, a specific and necessary modification of secretory peptides. In insects, more than 90% of known or predicted neuropeptides are amidated. PHM mutants lack PHM protein and enzyme activity; most null animals die as late embryos with few morphological defects. Natural and synthetic PHM hypomorphs revealed phenotypes that resembled those of animals with mutations in genes of the ecdysone-inducible regulatory circuit. Animals bearing a strong hypomorphic allele contain no detectable PHM enzymatic activity or protein; approximately 50% hatch and initially display normal behavior, then die as young larvae, often while attempting to molt. PHM mutants were rescued with daily induction of a PHM transgene and complete rescue was seen with induction limited to the first 4 days after egg-laying. The rescued mutant adults produced progeny which survived to various stages up through metamorphosis (synthetic hypomorphs) and displayed prepupal and pupal phenotypes resembling those of ecdysone-response gene mutations. Examination of neuropeptide biosynthesis in PHM mutants revealed specific disruptions: Amidated peptides were largely absent in strong hypomorphs, but peptide precursors, a nonamidated neuropeptide, nonpeptide transmitters, and other peptide biosynthetic enzymes were readily detected. Mutant adults that were produced by a minimal rescue schedule had lowered PHM enzyme levels and reproducibly altered patterns of amidated neuropeptides in the CNS. These deficits were partially reversed within 24 h by a single PHM induction in the adult stage. These genetic results support the hypothesis that secretory peptide signaling is critical for transitions between developmental stages, without strongly affecting morphogenetic events within a stage. Further, they show that PHM is required for peptide alpha-amidating activity throughout the life of Drosophila. Finally, they define novel methods to study neural and endocrine peptide biosynthesis and functions in vivo.  相似文献   

12.
Developmental effects of six mutations in the gene encoding the majority of alpha-tubulin in all tissues at all stages of Drosophila melanogaster development have been examined. All six alleles produce at least partially stable alpha 84B protein. In genetic assays, two of these alleles approximate the null condition. The other four alleles appear to form a graded series of hypomorphs. The two most severe alleles produce a semidominant maternal-effect polyphasic lethality, plus a predominantly larval recessive zygotic lethality. Clonal analysis of one of these alleles suggests it is a cell lethal. Worsening of the lethal phenotype (negative complementation) occurs in most interallelic heterozygotes involving these two mutations. As hemizygotes, the other four alleles are predominantly larval/pupal lethals. Partial complementation is achieved by most interallelic heterozygotes involving these four alleles. Phenotypic defects associated with the six tubulin mutation include disrupted embryos, pseudopupae, pharate adults with defects in various cuticular pattern elements, pharate adults with retarded head development, adults with leg tremors and extremely short life spans, and viable but sterile adults with bristle defects.  相似文献   

13.
TILLING (Targeting induced local lesions in genomes) is a general reverse-genetic strategy that is used to locate an allelic series of induced point mutations in genes of interest. High-throughput TILLING allows the rapid and cost-effective detection of induced point mutations in populations of chemically mutagenized individuals. The technique can be applied not only to model organisms but also to economically important organisms in plants. Owing to its full of advantages such as simple procedure, high sensitivity, and high efficiency, TILLING provides a powerful approach for gene discovery, DNA polymorphism assessment, and plant improvement. Coupled with other genomic resources, TILLING and EcoTILLING can be used immediately as a haplotyping tool in plant breeding for identifying allelic variation in genes exhibiting expression correlating with phenotypes and establishing an allelic series at genetic loci for the traits of interest in germplasm or induced mutants.  相似文献   

14.
TILLING技术在植物功能基因组及育种中的应用   总被引:2,自引:0,他引:2  
汪得凯  孙宗修  陶跃之 《遗传学报》2006,33(11):957-964
随着拟南芥、水稻等模式植物基因组测序计划的全面完成,数据库中大量的DNA序列需要进行功能注释,而用传统的正向遗传学进行基因克隆和近年来发展的反向遗传学(如插入突变、反义RNA、RNAi等技术)方法已不能适应基因组学的发展需求,因此,研发大规模、高通量的基因功能分析方法成为当务之急。TILLING技术(Targeting induced local lesions in genomes)就是在基因组生物学大背景下出现的一种全新的反向遗传学技术。TILLING技术的基本步骤是通过化学诱变方法产生一系列点突变,经过PCR扩增放大和变性复性过程产生异源双链DNA分子,再通过特异性酶切和双色电泳分析识别异源双链中错配碱基,从而检测出突变发生的准确位置。由于具有高通量、大规模、高灵敏度和自动化等特点,能够适应植物功能基因组学研究的要求,TILLING技术已经和即将在功能基因组领域发挥越来越重要的作用。TILLING技术应用于已测序完成的拟南芥和水稻中的突变位点检测并取得了巨大成功;TILLING技术应用于农作物的品种改良,可以帮助实现快速、定向改良作物的品种,同时由于TILLING采用的化学诱变技术与传统诱变育种并无二致,因此在作物改良中采用TILLING技术不存在外源基因转入引发的转基因作物(GMO)争论;由TILLING技术发展来的EcoTILLING技术,具有通量高、成本低、定位准确等优点,可以很好地进行多态性检测和研究基因的功能,已成为开展物种DNA多态性检测和不同物种演替进化研究的有力工具。本文简要介绍了TILLING的原理及操作步骤,讨论了TILLING技术的特点和优点及TILLING技术的应用前景。  相似文献   

15.
To evaluate if loci responsible for coat color phenotypes contribute to behavioral characteristics, we specified novel gene loci associated with social exploratory behavior and examined the effects of the frequency of each allele at distinct loci on behavioral expression. We used the F2 generation, which arose from the mating of F1 mice obtained by interbreeding DBA/2 and ICR mice. Phenotypic analysis indicated that the agouti and albino loci affect behavioral traits. A genotype-based analysis revealed that novel exploratory activity was suppressed in a manner dependent on the frequency of the dominant wild-type allele at the agouti, but not albino, locus. The allele-dependent suppression was restricted to colored mice and was not seen in albino mice. The present results suggest that the agouti locus contributes to a particular behavioral trait in the presence of a wild-type allele at the albino locus, which encodes a structural gene for tyrosinase.  相似文献   

16.
Mutations in the progressive ankylosis gene (Ank/ANKH) cause surprisingly different skeletal phenotypes in mice and humans. In mice, recessive loss-of-function mutations cause arthritis, ectopic crystal formation, and joint fusion throughout the body. In humans, some dominant mutations cause chondrocalcinosis, an adult-onset disease characterized by the deposition of ectopic joint crystals. Other dominant mutations cause craniometaphyseal dysplasia, a childhood disease characterized by sclerosis of the skull and abnormal modeling of the long bones, with little or no joint pathology. Ank encodes a multiple-pass transmembrane protein that regulates pyrophosphate levels inside and outside tissue culture cells in vitro, but its mechanism of action is not yet clear, and conflicting models have been proposed to explain the effects of the human mutations. Here, we test wild-type and mutant forms of ANK for radiolabeled pyrophosphate-transport activity in frog oocytes. We also reconstruct two human mutations in a bacterial artificial chromosome and test them in transgenic mice for rescue of the Ank null phenotype and for induction of new skeletal phenotypes. Wild-type ANK stimulates saturable transport of pyrophosphate ions across the plasma membrane, with half maximal rates attained at physiological levels of pyrophosphate. Chondrocalcinosis mutations retain apparently wild-type transport activity and can rescue the joint-fusion phenotype of Ank null mice. Craniometaphyseal dysplasia mutations do not transport pyrophosphate and cannot rescue the defects of Ank null mice. Furthermore, microcomputed tomography revealed previously unappreciated phenotypes in Ank null mice that are reminiscent of craniometaphyseal dysplasia. The combination of biochemical and genetic analyses presented here provides insight into how mutations in ANKH cause human skeletal disease.  相似文献   

17.
We have identified the molecular lesions associated with six point mutations in the Drosophila TGF-β homologue decapentaplegic (dpp). The sites of these mutations define residues within both the pro and ligand regions that are essential for dpp function in vivo. While all of these mutations affect residues that are highly conserved among TGF-β superfamily members, the phenotypic consequences of the different alleles are quite distinct. Through an analysis of these mutant phenotypes, both in cuticle preparations and with molecular probes, we have assessed the functional significance of specific residues that are conserved among the different members of the superfamily. In addition, we have tested for conditional genetic interactions between the different alleles. We show that two of the alleles are temperature sensitive for the embyronic functions of dpp, such that these alleles are not only embryonic viable as homozygotes but also partially complement other dpp hypomorphs at low temperatures. Our results are discussed with regard to in vitro mutagenesis data on other TGF-β-like molecules, as well as with regard to the regulation of dpp cell signaling in Drosophila.  相似文献   

18.
We have shown that the phenotypes resulting from hypomorphic mutations (causing reduction but not complete loss of function) in two X-linked genes can be used as a genetic assay for X-chromosome dosage compensation in Caenorhabditis elegans between males (XO) and hermaphrodites (XX). In addition we show that recessive mutations in two autosomal genes, dpy-21 V and dpy-26 IV, suppress the phenotypes resulting from the X-linked hypomorphic mutations, but not the phenotypes resulting from comparable autosomal hypomorphic mutations. This result strongly suggests that the dpy-21 and dpy-26 mutations cause increased X expression, implying that the normal function of these genes may be to lower the expression of X-linked genes. Recessive mutations in two other dpy genes, dpy-22 X and dpy-23 X, increase the severity of phenotypes resulting from some X-linked hypomorphic mutations, although dpy-23 may affect the phenotypes resulting from the autosomal hypomorphs as well. The mutations in all four of the dpy genes show their effects in both XO and XX animals, although to different degrees. Mutations in 18 other dpy genes do not show these effects.  相似文献   

19.
Recent work indicates that thyroid hormone receptor-associated protein 220 (TRAP220), a subunit of the multiprotein TRAP coactivator complex, is essential for embryonic survival. We have generated TRAP220 conditional null mice that are hypomorphic and express the gene at reduced levels. In contrast to TRAP220 null mice, which die at embryonic d 11.5 (E11.5), hypomorphic mice survive until E13.5. The reduced expression in hypomorphs results in hepatic necrosis, defects in hematopoiesis, and hypoplasia of the ventricular myocardium, similar to that observed in TRAP220 null embryos at an earlier stage. The embryonic lethality of null embryos at E11.5 is due to placental insufficiency. Tetraploid aggregation assays partially rescues embryonic development until E13.5, when embryonic loss occurs due to hepatic necrosis coupled with poor myocardial development as observed in hypomorphs. These findings demonstrate that, for normal placental function, there is an absolute requirement for TRAP220 in extraembryonic tissues at E11.5, with an additional requirement in embryonic tissues for hepatic and cardiovascular development thereafter.  相似文献   

20.
An allelic series for the chalcone synthase locus in Arabidopsis   总被引:11,自引:0,他引:11  
Saslowsky DE  Dana CD  Winkel-Shirley B 《Gene》2000,255(2):127-138
Five new alleles of the Arabidopsis chalcone synthase (CHS) locus, tt4, have been characterized at the gene, protein, and end product levels as a genetic approach to understanding structure-function relationships in a key enzyme of plant secondary metabolism. Together with two previously described mutants, these tt4 lines represent one of the first allelic series for a central enzyme of the flavonoid pathway and include both null alleles and alleles with leaky, apparently temperature-sensitive, phenotypes. A variety of effects on accumulation of CHS protein and flavonoid glycosides were observed among these lines, including alterations in the apparent stability and activity of the enzyme. Assembly of the CHS homodimer also appeared to be impacted in several cases. A three-dimensional model of the Arabidopsis CHS protein, based on the recently determined structure for alfalfa CHS, predicts significant effects on protein structure or folding for several of the mutations. This allelic series should provide a useful genetic resource for ongoing studies of flavonoid enzyme structure, function, and subcellular organization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号