首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The turnover of tumor necrosis factor (TNF) mRNA in permanently transfected macrophages of the RAW 264.7 cell line was studied directly (by Northern blot analysis using a probe specific for TNF) and indirectly (through studies of the turnover of various reporter mRNAs, either containing or lacking the TNF 3' untranslated region (UTR)). The TNF mRNA was found to be very unstable in RAW 264.7 cells. Instability appeared to result from two distinguishable nucleolytic processes. The major degradative process involved was not specific for the TNF 3' UTR of reporter mRNAs, and was inhibited by actinomycin D pretreatment. It appeared to be expressed constitutively, in that cell activation by lipopolysaccharide (LPS) did not modify message stability. When cells were treated with actinomycin D, a minor nucleolytic activity was 'uncovered'. This minor activity was noted to increase with time following LPS activation. It also exhibited specificity, in that reporter mRNAs bearing the 3' UTR of TNF were more susceptible to degradation in the presence of actinomycin D than were constructs lacking the 3' UTR of TNF. Thus, TNF mRNA turnover appears complex, and depends upon at least two separable degradative pathways. The TNF 3' UTR apparently contributes only modestly to the instability of this mRNA under normal conditions.  相似文献   

3.
Lipopolysaccharide (LPS) is a potent bone resorbing factor. The effect of LPS on osteoclast formation was examined by using murine RAW 264.7 macrophage cells. LPS-induced the formation of multinucleated giant cells (MGC) in RAW 264.7 cells 3 days after the exposure. MGCs were positive for tartrate-resistant acid phosphatase (TRAP) activity. Further, MGC formed resorption pits on calcium-phosphate thin film that is a substrate for osteoclasts. Therefore, LPS was suggested to induce osteoclast formation in RAW 264.7 cells. LPS-induced osteoclast formation was abolished by anti-tumor necrosis factor (TNF)-alpha antibody, but not antibodies to macrophage-colony stimulating factor (M-CSF) and receptor activator of nuclear factor (NF)-kappaB ligand (RANKL). TNF-alpha might play a critical role in LPS-induced osteoclast formation in RAW 264.7 cells. Inhibitors of NF-kappaB and stress activated protein kinase (SAPK/JNK) prevented the LPS-induced osteoclast formation. The detailed mechanism of LPS-induced osteoclast formation is discussed.  相似文献   

4.
5.
The effect of D-galactosamine (D-GalN) on nitric oxide (NO) production in lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophage cells was examined. D-GalN augmented the production of NO, but not tumor necrosis factor (TNF)-alpha in LPS-stimulated RAW 264.7 cells. Pretreatment of D-GalN augmented the NO production whereas its post-treatment did not. D-GalN augmented the NO production in RAW 264.7 cells stimulated with either TNF-alpha and interferon-gamma. The augmentation of LPS-induced NO production by D-GalN was due to enhanced expressions of an inducible type of NO synthase mRNA and proteins. Intracellular reactive oxygen species (ROS) were exclusively generated in RAW 264.7 cells stimulated with D-GalN and LPS. Scavenging of intracellular ROS abrogated the augmentation of NO production. It was therefore suggested that D-GalN might augment LPS-induced NO production through the generation of intracellular ROS.  相似文献   

6.
7.
The effect of bacterial lipopolysaccharide (LPS) on macrophage receptors for tumor necrosis factor/cachectin (TNF-R) was studied. At equilibrium, iodinated recombinant human TNF alpha (rTNF alpha) bound to 1100 +/- 200 sites/cell on macrophage-like RAW 264.7 cells with a Kd of 1.3 +/- 0.1 x 10(-9) M. Preexposure of RAW 264.7 cells to 10 ng/ml LPS for 1 h at 37 degrees C resulted in complete loss of cell surface TNF alpha binding sites. 50% loss ensued after 1 h with 0.6 ng/ml LPS, or after 15 min with 10 ng/ml LPS. Complete loss of TNF alpha binding sites occurred without change in numbers of complement receptor type 3. No decrease in TNF-R followed preexposure to LPS at 4 degrees C, nor could LPS displace 125I-rTNF alpha from its binding sites. Although TNF-R disappeared from the surface of intact macrophages following exposure to LPS, specific TNF alpha binding sites were unchanged in permeabilized macrophages, indicating that TNF-R were rapidly internalized. Conditioned media from LPS-treated RAW 264.7 cells induced 30% down-regulation of TNF-R on macrophages from LPS-hyporesponsive mice (C3H/HeJ), suggesting that a soluble macrophage product may be responsible for a minor portion of the LPS effect. Additional evidence against endogenous TNF alpha being the major cause of TNF-R internalization was the rapid onset of the effect of LPS on TNF-R compared to the reported onset of TNF alpha production, the relatively high concentrations of exogenous rTNF alpha required to mimic the effect of LPS, and the inability of TNF alpha-neutralizing antibody to block the effect of LPS. LPS-induced down-regulation of TNF-R was complete or nearly complete not only in RAW 264.7 cells, but also in primary macrophages of both human and murine origin, was less marked in human endothelial cells, and was absent in human granulocytes and melanoma cells and mouse L929 cells. Thus, in situ, macrophages and some other host cells may be resistant to the actions of TNF alpha produced during endotoxinemia, because such cells may internalize their TNF-R in response to LPS before TNF alpha is produced.  相似文献   

8.
Prostaglandin E2 (PGE2) is the major cyclooxygenase metabolite in macrophages with complex proinflammatory and immunoregulatory properties. In the present study, we have compared the modulatory role of PGE2/cAMP-dependent signaling on induced nitric oxide (NO) production in two murine macrophages, J774 and RAW 264.7. With no effect on NO release by itself, PGE2 co-addition with lipopolysaccharide (LPS) resulted in a concentration-dependent enhancement in NO release and inducible NO synthase induction in J774, but not in RAW 264.7, macrophages. The potentiation effect of PGE2 in J774 cells was still seen when applied within 9 h after LPS treatment. Whereas RAW 264.7 macrophages release PGE2 with greater extent than J774 macrophages in response to LPS, indomethacin and NS-398, upon abolishing LPS-induced PGE2 release, caused a more obvious inhibition of NO release from J774 than RAW 264.7 cells. Thus, we suggest a higher positive modulatory role of PGE2--either endogenous or exogenous--on NO formation in J774 cells. Supporting these findings, exogenous PGE2 triggers cAMP formation in J774 cells with higher potency and efficacy. Of interest, dBcAMP also elicits higher sensitivity in potentiating NO release in J774 cells. We conclude that the opposite effect of PGE2/cAMP signaling on macrophage NO induction depends on its signaling efficacy and might be associated with the difference in endogenous PGE2 levels.  相似文献   

9.
Lipopolysaccharide (LPS) signaling is critical for the innate immune response to gram-negative bacteria. Here, evidence is presented for LPS stimulation of sphingosine kinase (SPK) in the RAW 264.7 murine macrophage cell line and rat primary hepatic macrophages (HMs). LPS treatment of RAW 264.7 cells resulted in a time- and dose-dependent activation of SPK and membrane translocation of SPK1. Further, LPS-induced SPK activation was blocked by SPK1-specific small interfering RNA (siRNA). Overexpression of Toll-like receptor 4 and MD2, the receptor and coreceptor of LPS, in HEK 293 cells activated SPK activity in the absence of LPS treatment. Inhibition of SPK by the pharmacological inhibitor N,N-dimethylsphingosine (DMS) or SPK1-specific siRNA blocked LPS stimulation of extracellular signal-regulated kinase 1/2 and p38 but enhanced LPS-induced c-Jun N-terminal kinase activation. The SPK inhibitor DMS and dominant-negative SPK1 also blocked LPS activation of Elk-1 and NF-kappaB reporters in RAW 264.7 cells. Inhibition of SPK sensitized RAW 264.7 cells and HMs to LPS-induced apoptosis. These data demonstrate the critical role of SPK1 in LPS signaling in macrophages and suggest that SPK1 is a potential therapeutic target to block hyperimmune responses induced by gram-negative bacteria.  相似文献   

10.
The role of p38 mitogen-activated protein kinase (MAPK) on vacuole formation in lipopolysaccharide (LPS)-stimulated RAW 264.7 cells was examined. LPS definitely induced the formation of vacuoles in RAW 264.7 cells and SB202190 as a p38 specific inhibitor also induced slight vacuole formation. The simultaneous treatment with LPS and SB202190 induced many more vacuoles in RAW 264.7 cells than the treatment with LPS or SB202190 alone, and the vacuoles were extraordinarily large in size. On the other hand, an inactive inhibitor of p38 MAPK did not augment LPS-induced vacuole formation. Further, the inhibitors of other MAPKs and nuclear factor (NF)-kappaB pathways did not affect it. The extraordinarily large vacuoles in RAW 264.7 cells treated with LPS and SB202190 were possibly formed via fusion of small vacuoles. However, SB202190 did not augment vacuole formation in CpG DNA or interferon (IFN)-gamma-stimulated RAW 264.7 cells. The role of p38 MAPK in the vacuole formation in LPS-stimulated macrophages is discussed.  相似文献   

11.
12.
CD14-transfected Chinese hamster ovary K1 fibroblasts (CHO/CD14) respond to lipopolysaccharide (LPS) by metabolizing arachidonic acid and with translocation of NF-kappaB to the nucleus. Although previous experiments failed to identify the production of tumor necrosis factor-alpha and interleukin (IL)-1beta by CHO/CD14 cells, LPS did induce the expression of IL-6 mRNA and the subsequent release of the IL-6 protein. To identify additional LPS-inducible genes, a cDNA library derived from LPS-stimulated CHO/CD14 cells was screened by subtractive hybridization. Fourteen genes were found to be expressed differentially, and two were analyzed in detail: hop (Hsp70/Hsp90-organizing protein), which is the hamster homologue of the stress-inducible yeast gene, STI1, and clone H411, which encodes a novel LPS-inducible growth factor. In response to LPS, the expression of Hop mRNA was also increased in both the murine macrophage cell line, RAW 264.7, as well as in primary hamster macrophages. This suggested that the up-regulation of Hop expression is part of the macrophage stress response to LPS. Clone H411 encodes a protein in the epidermal growth factor-like repeat protein family. Overexpression of H411 cDNA in the RAW 264.7 macrophage cell line promoted an increased growth rate, suggesting that expression of H411 is part of the proliferative cell response to LPS. Both Hop and H411 represent novel gene products not previously recognized as part of the complex biological response to endotoxin.  相似文献   

13.
5-Aminoimidazole-4-carboxamide riboside (AICAR) is an adenosine analog and a widely used activator of AMP-activated protein kinase (AMPK). We examined the effect of AICAR on LPS-induced TNF-alpha production in RAW 264.7 and peritoneal macrophages and its molecular mechanism in RAW 264.7 macrophages. Treatment with AICAR inhibited LPS-induced increases in TNF-alpha mRNA and protein levels in these cells. AICAR or LPS did not alter the AMPK activity as well as the phosphorylations of AMPK alpha (Thr172) and ACC (Ser79). Moreover, an adenosine kinase inhibitor 5'-iodotubercidin enhanced the suppressive effect of AICAR on TNF-alpha levels. These results suggest that the effect of AICAR on TNF-alpha suppression in RAW 264.7 cells is independent of AMPK activation. In addition, an adenosine receptor antagonist 8-SPT had no effect on AICAR-induced suppression of TNF-alpha levels. Finally, we observed that AICAR inhibited LPS-induced activation of PI 3-kinase and Akt, whereas it had no effect on the activation of p38 and ERK1/2. Taken together, these results suggest that the anti-inflammatory action of AICAR in RAW 264.7 macrophages is independent of AMPK activation and is associated with inhibition of LPS-induced activation of PI 3-kinase/Akt pathway.  相似文献   

14.
15.
Porphyran, extracted from an edible red alga (Porphyra yezoensis), is a sulphated polysaccharide with a wide variety of biological activities including anti-tumour, antioxidant and immuno-modulating activities. In this study, we examined the effect of porphyran on nitric oxide (NO) production in mouse macrophage cell line RAW264.7 cells. Although no significant activity of porphyran to induce NO or tumour necrosis factor-α (TNF-α) production in RAW264.7 cells was observed at the concentration range tested (10-500 μg/ml), it was found for the first time that porphyran inhibited NO production and expression of inducible nitric oxide synthase (iNOS) in RAW264.7 cells stimulated with lipopolysaccharide (LPS). In the presence of 500 μg/ml porphyran, NO production and expression of iNOS in LPS-treated RAW264.7 cells were completely suppressed. On the other hand, porphyran showed only a marginal effect on the secretion of TNF-α from LPS-stimulated RAW264.7 cells. Electrophoretic mobility shift assay (EMSA) using infrared dye labelled oligonucleotide with nuclear factor-κB (NF-κB) consensus sequence suggested that porphyran inhibited the LPS-induced NF-κB activation. The LPS-inducible nuclear translocation of p65, and the phosphorylation and degradation of IκB-α were also inhibited by the pre-treatment with porphyran. Our results obtained in in vitro analysis suggest that porphyran suppresses NO production in LPS-stimulated macrophages by the blocking of NF-κB activation.  相似文献   

16.
Ahn KS  Noh EJ  Zhao HL  Jung SH  Kang SS  Kim YS 《Life sciences》2005,76(20):2315-2328
Saponins are glycosidic compounds present in many edible and inedible plants. They exhibit potent biological activities in mammalian systems, including several beneficial effects such as anti-inflammation and immunomodulation. In this study, we investigated the effects of seven platycodin saponins on the activities of inducible nitric oxide synthase (iNOS) and cyclooxygenase II (COX-2) in lipopolysaccharide (LPS)-induced RAW 264.7 macrophages. We found that 2"-O-acetyl polygalacin D (S1), platycodin A (S2), platycodin D (S3), and polygalacin D (S6) inhibited LPS-induced NO production in a concentration-dependent manner. Furthermore, these compounds inhibited the expression of LPS-induced iNOS and COX-2 protein and mRNA without an appreciable cytotoxic effect on RAW 264.7 macrophages, and could suppress induction by LPS of pro-inflammatory cytokines such as prostaglandin E2 (PGE2). Treatment with these compounds of RAW 264.7 cells transfected with a reporter construct indicated a reduced level of LPS-induced nuclear factor-kappaB (NF-kappaB) activity and effectively lowered NF-kappaB binding as measured by electrophoretic mobility shift assay (EMSA). The suppression of NF-kappaB activation appears to occur through the prevention of inhibitor kappaB (IkappaB) degradation. In vivo, platycodin saponin mixture (PS) and S3 protected mice from the lethal effects of LPS. The 89% lethality induced by LPS/galactosamine was reduced to 60% and 50% when PS and S3, respectively, were administered simultaneously with LPS. These results suggest that the main inhibitory mechanism of the platycodin saponins may be the reduction of iNOS and COX-2 gene expression through blocking of NF-kappaB activation.  相似文献   

17.
Tristetraprolin (TTP) is a zinc finger protein that can bind to AU-rich elements within certain mRNAs, resulting in deadenylation and destabilization of those mRNAs. Its physiological targets include the mRNAs encoding the cytokines tumor necrosis factor alpha (TNF) and granulocyte-macrophage colony-stimulating factor. TTP was originally identified on the basis of its massive but transient increase in mRNA levels following mitogen stimulation of fibroblasts. It has been difficult to reconcile this transient mRNA profile with the presumed continuing "need" for TTP protein, for example, to reverse the effects of lipopolysaccharide (LPS)-stimulated TNF secretion. To investigate this and other questions concerning endogenous TTP protein in cells and tissues, we raised a high titer rabbit antiserum against full-length mouse TTP. TTP could be detected on immunoblots of mouse cytosolic tissue extracts; it was most highly expressed in spleen, but its concentration in that tissue was only about 1.5 nm. TTP could be detected readily in splenic macrophages and stromal cells from LPS-injected rats. In both LPS-treated RAW 264.7 macrophages and fetal calf serum-treated mouse embryonic fibroblasts, TTP protein was stable after induction, with minimal degradation occurring for several hours after treatment of the cells with cycloheximide. The biosynthesis of TTP was accompanied by large changes in electrophoretic mobility consistent with progressive phosphorylation. Confocal microscopy revealed that TTP accumulated in a vesicular pattern in the cytosol of the LPS-stimulated RAW 264.7 cells, and was occasionally seen in the cytosol of unstimulated dividing cells. Gel filtration of the endogenous protein suggested that its predominant structure was monomeric. TTP appears to be a low abundance, cytosolic protein in unstimulated cells and tissues, but once induced is relatively stable, in contrast to its very labile mRNA.  相似文献   

18.
19.
Macrophages are integrated into adipose tissues and interact with adipocytes in obese subjects, thereby exacerbating adipose insulin resistance. This study aimed to elucidate the molecular mechanism underlying the insulin-sensitizing effect of the angiotensin II receptor blocker (ARB) valsartan, as demonstrated in clinical studies. Insulin signaling, i.e., insulin receptor substrate-1 and Akt phosphorylations, in 3T3-L1 adipocytes was impaired markedly by treatment with tumor necrosis factor-α (TNFα) or in the culture medium of lipopolysaccharide (LPS)-stimulated RAW 264.7 murine macrophages, and valsartan had no effects on these impairments. However, in contrast, when cocultured with RAW 264.7 cells using a transwell system, the LPS-induced insulin signaling impairment in 3T3-L1 adipocytes showed almost complete normalization with coaddition of valsartan. Furthermore, valsartan strongly suppressed LPS-induced productions of cytokines such as interleukin (IL)-1β, IL-6, and TNFα with nuclear factor-κB activation and c-Jun NH(2)-terminal kinase phosphorylation in RAW 264.7 and primary murine macrophages. Very interestingly, this effect of valsartan was also observed in THP-1 cells treated with angiotensin II type 1 (AT1) siRNA or a peroxisome proliferator-activated receptor-γ (PPARγ) antagonist as well as macrophages from AT1a receptor-knockout mice. We conclude that valsartan suppresses the inflammatory response of macrophages, albeit not via PPARγ or the AT1a receptor. This suppression appears to secondarily improve adipose insulin resistance.  相似文献   

20.
The mechanism of interleukin (IL)-10-mediated inhibition of tumor necrosis factor (TNF)-alpha production was studied by lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophage cells. IL-10 inhibited TNF-alpha production transiently at an early stage after LPS stimulation. IL-10 inhibited the activation of nuclear factor (NF)-kappaB, p38 and stress-activated protein kinase (SAPK) in LPS-stimulated RAW 264.7 cells. Although the level of MyD88 protein increased in response to LPS, IL-10 prevented the LPS-induced MyD88 augmentation. There was no significant difference in the MyD88 mRNA expression between the cells pretreated with or without IL-10 in response to LPS. Therefore, IL-10 was suggested to inhibit LPS-induced TNF-alpha production via reduced MyD88 expression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号