首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Assembly of clathrin-coated pits and their maturation into coated vesicles requires coordinated interactions between specific lipids and several structural and regulatory proteins. In the presence of primary alcohols, phospholipase D generates phosphatidylalcohols instead of PA, reducing stimulation of phosphatidyl inositol 5-kinase (PI5K) and hence decreasing formation of phosphoinositide-4,5-biphosphate (PIP(2)). Using live-cell imaging, we have shown that acute treatment of cells with 1-butanol or other small primary alcohols induces rapid disassembly of coated pits at the plasma membrane and blocks appearance of new ones. Addition of exogenous PIP(2) reverses this effect. Coated pits and vesicles reappear synchronously upon removal of 1-butanol; we have used this synchrony to assess the role of actin in coated vesicle assembly. Prolonged inhibition of actin polymerization by latrunculin A or cytochalasin D reduced by approximately 50% the frequency of coated pit formation without affecting maturation into coated vesicles. As in control cells, removal of 1-butanol in the continued presence of an actin depolymerizer led to synchronous appearance of new pits, which matured normally. Thus, remodeling of the actin cytoskeleton is not essential for clathrin-coated vesicle assembly but may indirectly affect the nucleation of clathrin-coated pits.  相似文献   

2.
The actin cytoskeleton has been implicated in the maintenance of discrete sites for clathrin-coated pit formation during receptor-mediated endocytosis in mammalian cells, and its function is intimately linked to the endocytic pathway in yeast. Here we demonstrate that staining for mammalian endocytic clathrin-coated pits using a monoclonal antibody against the AP2 adaptor complex revealed a linear pattern that correlates with the organization of the actin cytoskeleton. This vesicle organization was disrupted by treatment of cells with cytochalasin D, which disassembles actin, or with 2,3-butanedione monoxime, which prevents myosin association with actin. The linear AP2 staining pattern was also disrupted in HeLa cells that were induced to express the Hub fragment of the clathrin heavy chain, which acts as a dominant-negative inhibitor of receptor-mediated endocytosis by direct interference with clathrin function. Additionally, Hub expression caused the actin-binding protein Hip1R to dissociate from coated pits. These findings indicate that proper function of clathrin is required for coated pit alignment with the actin cytoskeleton and suggest that the clathrin–Hip1R interaction is involved in the cytoskeletal organization of coated pits.  相似文献   

3.
《The Journal of cell biology》1993,120(6):1449-1459
To learn more about the possible role of the coated pits endocytic pathway in cell adhesion, we studied attachment and spreading of fibroblasts whose coated pits were disrupted by depletion of intercellular potassium. Fibroblasts incubated in suspension in potassium-free medium lost 80% of their intracellular potassium within 10 min and showed disrupted coated pits based on fluorescence staining of clathrin. Potassium-depleted cells attached and spread on fibronectin-coated substrata over the same time course (15 min-2 h) as control cells. Unlike controls, however, potassium-depleted fibroblasts attained a radial morphology with circumferentially organized actin filament bundles and were unable to make the transition to a polarized morphology with stress fibers. In the radially spread fibroblasts, fibronectin receptors and vinculin colocalized in focal adhesion sites and appeared to be membrane insertion points for circumferentially arranged actin filament bundles, but these sites were much smaller than the focal adhesion plaques in polarized cells. The effects of potassium depletion on cell adhesion were reversible. Within 1 h after switching K(+)-depleted fibroblasts to medium containing KCl, cells developed a polarized morphology with actin stress fibers inserting into focal adhesion plaques. Coated pits also reformed on the cell surface during this time. Because formation of focal adhesion plaques preceded reappearance of clathrin-coated pits at the cell margins, it seems unlikely that coated pits play a direct role in adhesion plaque assembly. Polarization of fibroblasts upon addition of KCl was inhibited by ouabain showing that intracellular potassium was required for activity. Polarization also was inhibited when potassium-depleted cells were switched to potassium-containing medium under hypertonic or acidified conditions, both of which have been shown to inhibit receptor- mediated endocytosis. Our results suggest that the coated pit endocytic pathway is not required for initial attachment, spreading, and formation of focal adhesions by fibroblasts, but may play a role in cell polarization.  相似文献   

4.
Here we visualize new aspects of the dynamics of endocytotic clathrin-coated pits and vesicles in mammalian cells by using a fusion protein consisting of green fluorescent protein and clathrin light chain a. Clathrin-coated pits invaginating from the plasma membrane show definite, but highly limited, mobility within the membrane that is relaxed upon treatment with latrunculin B, an inhibitor of actin assembly, indicating that an actin-based framework may be involved in the mobility of these pits. Transient, motile coated vesicles that originate from coated pits can be detected, with multiple vesicles occasionally appearing to emanate from a single pit. Despite their seemingly random distribution, coated pits tend to form repeatedly at defined sites while excluding other regions. This spatial regulation of coated-pit assembly and function is attributable to the attachment of the coated pits to the membrane skeleton.  相似文献   

5.
As a final step in endocytosis, clathrin-coated pits must separate from the plasma membrane and move into the cytosol as a coated vesicle. Because these events involve minute movements that conventional light microscopy cannot resolve, they have not been observed directly and their dynamics remain unexplored. Here, we used evanescent field (EF) microscopy to observe single clathrin-coated pits or vesicles as they draw inwards from the plasma membrane and finally lose their coats. This inward movement occurred immediately after a brief burst of dynamin recruitment and was accompanied by transient actin assembly. Therefore, dynamin may provide the trigger and actin may provide the force for movement into the cytosol.  相似文献   

6.
Rat Leydig cells were permeabilized and the cytoplasm partially extracted to visualize, describe, and characterize filamentous elements of the cytoskeleton. It was demonstrated by immunofluorescence microscopy that vimentin is abundant within Leydig cells. Ultrastructurally, intermediate filaments in Leydig cells were concentrated at perinuclear sites and comprised bundles that coursed through the cytoplasm. Actin was identified in Leydig cells with the F actin probe, NBD-phallacidin. Fluorescence was strongest at the cortex of the cell. With myosin S-1 subfragments, sparse actin was found positioned almost exclusively in cortical regions of the cell associated with coated pits and in Leydig cell processes.  相似文献   

7.
Bacterial pathogens recruit clathrin upon interaction with host surface receptors during infection. Here, using three different infection models, we observed that host-pathogen interactions induce tyrosine phosphorylation of clathrin heavy chain. This modification was critical for recruitment of actin at bacteria-host adhesion sites during bacterial internalization or pedestal formation. At the bacterial interface, clathrin assembled to form coated pits of conventional size. Because such structures cannot internalize large particles such as bacteria, we propose that during infection, clathrin-coated pits serve as platforms to initiate actin rearrangements at bacteria-host adhesion sites. We then showed that the clathrin-actin interdependency is initiated by Dab2 and depends on the presence of clathrin light chain and its actin-binding partner Hip1R, and that the fully assembled machinery can recruit Myosin VI. Together, our study highlights a physiological role for clathrin heavy chain phosphorylation and reinforces the increasingly recognized function of clathrin in actin cytoskeletal organization in mammalian cells.  相似文献   

8.
Clathrin-mediated endocytosis is independent of actin dynamics in many circumstances but requires actin polymerization in others. We show that membrane tension determines the actin dependence of clathrin-coat assembly. As found previously, clathrin assembly supports formation of mature coated pits in the absence of actin polymerization on both dorsal and ventral surfaces of non-polarized mammalian cells, and also on basolateral surfaces of polarized cells. Actin engagement is necessary, however, to complete membrane deformation into a coated pit on apical surfaces of polarized cells and, more generally, on the surface of any cell in which the plasma membrane is under tension from osmotic swelling or mechanical stretching. We use these observations to alter actin dependence experimentally and show that resistance of the membrane to propagation of the clathrin lattice determines the distinction between 'actin dependent and 'actin independent'. We also find that light-chain-bound Hip1R mediates actin engagement. These data thus provide a unifying explanation for the role of actin dynamics in coated-pit budding.  相似文献   

9.
Summary The mechanism of the luminal colloid reabsorption and the fate of reabsorbed colloid droplets were studied ultracytochemically in epithelial cells of thyroid cells of TSH-treated mice. The luminal colloid is reabsorbed by micropinocytosis as well as phagocytosis into the follicle epithelial cell. Almost all the pinocytotic pits and vesicles are coated and often closely associated with actin filaments demonstrated by use of heavy meromyosin (HMM). This suggests the involvement of the actin filament system in making and transporting coated vesicles for micropinocytosis of the luminal colloid. Freeze-fracture images show aggregates of intramembrane particles on the P-face of the small depressions corresponding to the initial site for coated pits.The reabsorbed colloid droplets fuse with one another and with lysosomes. At the initial stage of this fusion, the limiting membranes of adjoining droplets fuse in a limited area to become pentalaminar, and then become trilaminar. Eventually, the membranes at the fusion point disappear, and the contents of both droplets become continuous. Freeze-fracture images reveal the disappearance of the intramembrane particles at the initial site where the fusion occurs.Examination of thin-sectioned tissue treated by rapid-freeze substitution fixation, shows clearly delineated cell organelles, and the rounded mitochondria have a characteristically high electron-dense matrix. Just beneath the limiting membrane of each colloid droplet, there always exists a low electron-dense layer about 10 nm thickness. The lysosomes are sometimes seen wrapped around the colloid droplet.This study was supported by grants (No. 56370002, No. 00544016) from the Japan Ministry of Education  相似文献   

10.
Rabies virus (RABV) causes a fatal zoonotic encephalitis. Disease symptoms require replication and spread of the virus within neuronal cells; however, in infected animals as well as in cell culture the virus replicates in a broad range of cell types. Here we use a single-cycle RABV and a recombinant vesicular stomatitis virus (rVSV) in which the glycoprotein (G) was replaced with that of RABV (rVSV RABV G) to examine RABV uptake into the African green monkey kidney cell line BS-C-1. Combining biochemical studies and real-time spinning-disk confocal fluorescence microscopy, we show that the predominant entry pathway of RABV particles into BS-C-1 cells is clathrin dependent. Viral particles enter cells in pits with elongated structures and incomplete clathrin coats which depend upon actin to complete the internalization process. By measuring the time of internalization and the abundance of the clathrin adaptor protein AP2, we further show that the pits that internalize RABV particles are similar to those that internalize VSV particles. Pharmacological perturbations of dynamin or of actin polymerization inhibit productive infection, linking our observations on particle uptake with viral infectivity. This work extends to RABV particles the finding that clathrin-mediated endocytosis of rhabdoviruses proceeds through incompletely coated pits which depend upon actin.  相似文献   

11.
Cell surface receptor IgM molecules of cultured human lymlphoblastoid cells (WiL2) patch and redistribute into a cap over the Golgi region of the cell after treatment with multivalent anti-IgM antibodies. During and after the redistribution, ligand-receptor clusters are endocytosed into coated pits and coated vesicles. Morphometric analysis of the distribution of ferritin-labeled ligand at EM resolution reveals the following sequence of events in the endocytosis of cell surface IgM: (a) binding of the multivalent ligand in a diffuse cell surface distribution, (b) clustering of the ligand-receptor complexes, (c) recruitment of clathrin coats to the cytoplasmic surface of the cell membrane opposite ligand-receptor clusters, (d) assembly and (e) internalization of coated vesicles, and (f) delivery of label into a large vesicular compartment, presumably partly lysosomal. Most of the labeled ligand enters this pathway. The recruitment of clathrin coats to the membrane opposite ligand-receptor clusters is sensitive to the calmodulin-directed drug Stelazine (trifluoperazine dihydrochloride). In addition, Stelazine inhibits an alternate pathway of endocytosis that does not involve coated vesicle formation. The actin-directed drug dihydrocytochalasin B has no effect on the recruitment of clathrin to the ligand-receptor clusters and the formation of coated pits and little effect on the alternate pathway, but this drug does interfere with subsequent coated vesicle formation and it inhibits capping. Cortical microfilaments that decorate with heavy meromyosin with constant polarity are observed in association with the coated regions of the plasma membrane and with coated vesicles. SDS-polyacrylamide gel electrophoresis analysis of a coated vesicle preparation isolated from WiL2 cells demonstrates that the major polypeptides in the fraction are a 175-kdalton component that comigrates with calf brain clathrin, a 42- kdalton component that comigrates with rabbit muscle actin and a 18.5- kdalton minor component that comigrates with calmodulin as well as 110- , 70-, 55-, 36-, 30-, and 17-kdalton components. These results clarify the pathways of endocytosis in this cell and suggest functional roles for calmodulin, especially in the formation of clathrin-coated pits, and for actin microfilaments in coated vesicle formation and in capping.  相似文献   

12.
In this article, we investigate the contributions of actin filaments and accessory proteins to apical clathrin-mediated endocytosis in primary rabbit lacrimal acini. Confocal fluorescence and electron microscopy revealed that cytochalasin D promoted apical accumulation of clathrin, alpha-adaptin, dynamin, and F-actin and increased the amounts of coated pits and vesicles at the apical plasma membrane. Sorbitol density gradient analysis of membrane compartments showed that cytochalasin D increased [14C]dextran association with apical membranes from stimulated acini, consistent with functional inhibition of apical endocytosis. Recombinant syndapin SH3 domains interacted with lacrimal acinar dynamin, neuronal Wiskott-Aldrich Syndrome protein (N-WASP), and synaptojanin; their introduction by electroporation elicited remarkable accumulation of clathrin, accessory proteins, and coated pits at the apical plasma membrane. These SH3 domains also significantly (p 相似文献   

13.
Coated pits trap cell surface receptors and mediate their internalization. Once internalized, many receptors recycle back to the cell surface. When recycled receptors are inserted into the plasma membrane, they move until they are again trapped in coated pits. The mechanisms for moving receptors from their insertion sites to coated pits are unknown. Unaided diffusion as the transport mechanism is consistent with the observed kinetics of receptor recycling. Another candidate for the transport mechanism is convection. For receptors that recycle to random positions on the cell surface, or to restricted regions about coated pits, we assess the importance of convective flow in the transport of receptors to coated pits. First we consider local flows set up by the formation of coated pits and their transformation into coated vesicles. As coated pits form and round into coated vesicles, surrounding membrane is drawn inward, creating flows directed toward the coated pit centers. We show that unless the lifetime of a coated pit is very short, 10 s or less, such local flows have a negligible effect on the time it takes receptors to reach coated pits. We also show that they are unlikely to be the mechanism that keeps receptors that have reached coated pits trapped within coated pits until they are internalized. Finally we calculate the mean time tau for a diffusing receptor to reach a coated pit in the presence of membrane flow that is constant in magnitude and direction, as may occur on moving cells. We show that for typical membrane flow velocities, tau can be reduced significantly from its value in the absence of flow. For example, a velocity v = 2.8 micron/min cuts the mean transport time in half.  相似文献   

14.
Quantitative ultrastructural and biochemical methods have allowed us to obtain a coherent set of data on the internalization efficiency of the transferrin receptor (TfR). In confluent cell cultures we find that (1) the initial internalization rate of transferrin is approximately 10% per minute, and (2) around 10% of cell-surface TfRs are present in coated pits. From these data a lifetime of coated pits of ca. 1 min is derived. Furthermore, we show that coated pits constitute 1.1-1.4% of the plasma membrane area in confluent cell cultures. Thus, the TfR is concentrated six- to ninefold in coated pits compared to resident plasma membrane proteins. Moreover, we show that the concentration of TfRs in coated pits is cell density dependent, since only around 5% of the receptors are present in coated pits in low-density cultures. Correspondingly, the internalization of TfRs in high-density cell cultures is roughly twice as efficient as that in low-density cell cultures. The reduced TfR internalization efficiency at low cell density is accounted for by a concomitant decrease to 0.55% in the relative surface area occupied by coated pits.  相似文献   

15.
Under normal conditions, the Arp2/3 complex activator SCAR/WAVE controls actin polymerization in pseudopods, whereas Wiskott-Aldrich syndrome protein (WASP) assembles actin at clathrin-coated pits. We show that, unexpectedly, Dictyostelium discoideum SCAR knockouts could still spread, migrate, and chemotax using pseudopods driven by the Arp2/3 complex. In the absence of SCAR, some WASP relocated from the coated pits to the leading edge, where it behaved with similar dynamics to normal SCAR, forming split pseudopods and traveling waves. Pseudopods colocalized with active Rac, whether driven by WASP or SCAR, though Rac was activated to a higher level in SCAR mutants. Members of the SCAR regulatory complex, in particular PIR121, were not required for WASP regulation. We thus show that WASP is able to respond to all core upstream signals and that regulators coupled through the other members of SCAR's regulatory complex are not essential for pseudopod formation. We conclude that WASP and SCAR can regulate pseudopod actin using similar mechanisms.  相似文献   

16.
Clathrin is the scaffold of a conserved molecular machinery that has evolved to capture membrane patches, which then pinch off to become traffic carriers. These carriers are the principal vehicles of receptor-mediated endocytosis and are the major route of traffic from plasma membrane to endosomes. We report here the use of in vivo imaging data, obtained from spinning disk confocal and total internal reflection fluorescence microscopy, to distinguish between two modes of endocytic clathrin coat formation, which we designate as “coated pits” and “coated plaques.” Coated pits are small, rapidly forming structures that deform the underlying membrane by progressive recruitment of clathrin, adaptors, and other regulatory proteins. They ultimately close off and bud inward to form coated vesicles. Coated plaques are longer-lived structures with larger and less sharply curved coats; their clathrin lattices do not close off, but instead move inward from the cell surface shortly before membrane fission. Local remodeling of actin filaments is essential for the formation, inward movement, and dissolution of plaques, but it is not required for normal formation and budding of coated pits in the cells we have studied. We conclude that there are at least two distinct modes of clathrin coat formation at the plasma membrane—classical coated pits and coated plaques—and that these two assemblies interact quite differently with other intracellular structures.  相似文献   

17.
The surface of the syncytial trophoblast of the human placenta is covered by a microvillous (brush) border that is in direct contact with maternal blood. Because of this location, it is the site of a variety of transport, enzymatic and receptor activities vital to many placental functions. The organization of the brush border as well as other features of placental villus organization may well be influenced by the distribution of cytoplasmic actin filaments. In order to determine the distribution of actin filaments in human placenta, small pieces of villi were briefly fixed in glutaraldehyde, permeabilized with saponin, and incubated in solutions containing subfragment 1 of myosin (S1). After S1 decoration of actin filaments, tissue was fixed in glutaraldehyde containing tannic acid in order to better visualize the polarity of the filaments, and prepared for electron microscopic examination. The microvilli each contained a core of actin filaments running from the tip of the microvillus to the apical cytoplasm. Most of the actin filaments displayed a distinct polarity, with the S1 arrowheads pointing away from the microvillar tips. These filaments extended only a short distance into the apical cytoplasm. There appeared to be another group of actin filaments in a matlike arrangement in the apical cytoplasm. Coated pits and vesicles were often observed between the microvilli. There appeared to be no clear association between the coated pits and decorated actin filaments, but this was difficult to establish with certainty because of the close proximity of the microvilli. Bundles of actin filaments were sometimes observed near the basal cell surface of the syncytial trophoblast, and in pericytes and capillary endothelial cells in the cores of the villi.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
Potassium depletion after a brief exposure of the cells to hypotonic medium was used to inhibit endocytosis from coated pits in Hep 2 cells. After such treatment the endocytic uptake of transferrin was arrested, and electron microscopy revealed that virtually no coated pits were present at the cell surface, while smooth (uncoated) pits were abundant. Under the same conditions the cells were strongly protected against poliovirus, while the cytopathogenic effect of human rhinovirus type 2, HRV 2, was increased. The cytopathogenic effect of encephalomyocarditis (EMC) virus was only slightly affected. Potassium depletion without hypotonic shock reduced the endocytic uptake of transferrin 2-3-fold and the number of coated pits at the cell surface about 3-fold. Furthermore, the cells were not protected against poliovirus after such treatment. The data indicate that the productive uptake of poliovirus occurs by receptor-mediated endocytosis from coated pits, while the productive uptake of the other two picornaviruses may occur by another endocytic pathway. In order to efficiently arrest endocytosis from coated pits in these cells, hypotonic shock seems to be a critical component of the potassium depletion protocol.  相似文献   

19.
In contrast to the epidermal growth factor (EGF) receptor, ErbB2 is known to remain at the plasma membrane after ligand binding and dimerization. However, why ErbB2 is not efficiently down-regulated has remained elusive. Basically, two possibilities exist: ErbB2 is internalization resistant or it is efficiently recycled after internalization. By a combination of confocal microscopy, immunogold labeling electron microscopy, and biochemical techniques we show that ErbB2 is preferentially associated with membrane protrusions. Moreover, it is efficiently excluded from clathrin-coated pits and is not seen in transferrin receptor-containing endosomes. This pattern is not changed after binding of EGF, heregulin, or herceptin. The exclusion from coated pits is so pronounced that it cannot just be explained by lack of an internalization signal. Although ErbB2 is a raft-associated protein, the localization of ErbB2 to protrusions is not a result of raft binding. Also, an intact actin cytoskeleton is not required for keeping ErbB2 away from coated pits. However, after efficient cross-linking, ErbB2 is removed from protrusions to occur on the bulk membrane, in coated pits, and in endosomes. These data show that ErbB2 is a remarkably internalization-resistant receptor and suggest that the mechanism underlying the firm association of ErbB2 with protrusions also is the reason for this resistance.  相似文献   

20.
The integrity of the actin cytoskeleton and associated motor proteins are essential for the efficient functioning of clathrin mediated endocytosis at least in polarised cells. Myosin VI, the only motor protein so far identified that moves towards the minus end of actin filaments, is the first motor protein to be shown to associate with clathrin coated pits/vesicles at the plasma membrane and to modulate clathrin mediated endocytosis. Recent kinetic studies suggest that myosin VI may move processively along actin filaments providing clues about its functions in the cell. The possible role(s) of myosin VI in the sequential steps involved in receptor mediated endocytosis are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号