首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Artemin (ARTN) is a member of the glial cell line‐derived neurotrophic factor (GDNF) family ligands (GFLs), which encompasses family members, GDNF, neurturin (NRTN) and persephin (PSPN). ARTN is also referred to as Enovin or Neublastin, and bears structural characteristics of the TGF‐β superfamily. ARTN contains a dibasic cleavage site (RXXR) that is predicted to be cleaved by furin to yield a carboxy‐terminal 113 amino acid mature form. ARTN binds preferentially to receptor GFRα3, coupled to a receptor tyrosine kinase RET, forming a signalling complex for the regulation of intracellular pathways that affect diverse outcomes of nervous system development and homoeostasis. Standard signalling cascades activated by GFLs via RET include the phosphorylation of mitogen‐activated protein kinase or MAPK (p‐ERK, p‐p38 and p‐JNK), PI3K‐AKT and Src. Neural cell adhesion molecule (NCAM) is an alternative signalling receptor for ARTN in the presence of GFRα1, leading to activation of Fyn and FAK. Further, ARTN also interacts with heparan sulphate proteoglycan syndecan‐3 and mediates non‐RET signalling via activation of Src kinases. This review discusses the role of ARTN in spinal cord injury, neuropathic pain and other neurological disorders. Additionally, ARTN plays a role in non‐neuron tissues, such as the formation of Peyer's patch‐like structures in the lymphoid tissue of the gut. The emerging role of ARTN in cancers and therapeutic resistance to cancers is also explored. Further research is necessary to determine the function of ARTN in a tissue‐specific manner, including its signalling mechanisms, in order to improve the therapeutic potential of ARTN in human diseases.  相似文献   

2.
RET is the receptor for glial cell line-derived neurotrophic factor family of ligands (GFLs). It is different from most other members in the receptor tyrosine kinase (RTK) family with the requirement of a co-receptor, GFRα, for ligand recognition and activation. Through the common signal transducer RET, GFLs are crucial for the development and maintenance of distinct sets of central and peripheral neurons, which has led to a series of studies towards understanding the structure, function and signaling mechanisms of GFLs with GFRα and RET receptors. Here I summarize our current understanding of the molecular basis underlying ligand recognition and activation of RET, focusing on the interactions of GFLs with their respective GFRα receptors, the recently determined crystal structure of RET extracellular region and a proposed GFL–GFRα–RET ternary complex model based on extensive structural, biochemical and functional data. This article is part of a Special Issue entitled: Emerging recognition and activation mechanisms of receptor tyrosine kinases.  相似文献   

3.
4.
5.
The RET receptor tyrosine kinase (RTK) contributes to kidney and nervous system development, and is implicated in a number of human cancers. RET is expressed as two protein isoforms, RET9 and RET51, with distinct interactions and signaling properties that contribute to these processes. RET isoforms are internalized from the cell surface into endosomal compartments in response to glial cell line‐derived neurotropic factor (GDNF) ligand stimulation but the specific mechanisms of RET trafficking remain to be elucidated. Here, we used total internal reflection fluorescence (TIRF) microscopy to demonstrate that RET internalization occurs primarily through clathrin coated pits (CCPs). Activated RET receptors colocalize with clathrin, but not caveolin. The RET51 isoform is rapidly and robustly recruited to CCPs upon GDNF stimulation, while RET9 recruitment occurs more slowly and is less pronounced. We showed that the clathrin‐associated adaptor protein complex 2 (AP2) interacts directly with each RET isoform through its AP2 μ subunit, and is important for RET internalization. Our data establish that interactions with the AP2 complex promote RET receptor internalization via clathrin‐mediated endocytosis but that RET9 and RET51 have distinct internalization kinetics that may contribute to differences in their biological functions.   相似文献   

6.
Dominant-activating mutations in the RET (rearranged during transfection) proto-oncogene, a receptor tyrosine kinase, are causally associated with the development of multiple endocrine neoplasia type 2A (MEN2A) syndrome. Such oncogenic RET mutations induce its ligand-independent constitutive activation, but whether it spreads identical signaling to ligand-induced signaling is uncertain. To address this question, we designed a cellular model in which RET can be activated either by its natural ligand, or alternatively, by controlled dimerization of the protein that mimics MEN2A dimerization. We have shown that controlled dimerization leaves proximal RET signaling intact but impacts substantially on the tuning of the distal AKT kinase activation (delayed and sustained). In marked contrast, distal activation of ERK remained unaffected. We further demonstrated that specific temporal adjustment of ligand-induced AKT activation is dependent upon a lipid-based cholesterol-sensitive environment, and this control step is bypassed by MEN2A RET mutants. Therefore, these studies revealed that MEN2A mutations propagate previously unappreciated subtle differences in signaling pathways and unravel a role for lipid rafts in the temporal regulation of AKT activation.  相似文献   

7.
The RET receptor tyrosine kinase is important for several different biological functions during development. The recruitment at the phosphorylated Tyr(1062) site in RET of a number of different phosphotyrosine binding (PTB) domain-containing adaptor proteins, including Shc and Frs2, plays a dominant role for the multiple different biological functions of the RET receptor during development, including stimulation of cell survival. Here, we demonstrate that a competitive recruitment of Shc as opposed to Frs2 mediates the survival signaling arising from RET activation. Based on results from a peptide array, we have genetically engineered the PTB domain binding site of RET to rewire its recruitment of the PTB proteins Shc and Frs2. An engineered RET that has a competitive interaction with Shc at the expense of Frs2, but not a RET receptor that only recruits Frs2, activates cell survival signaling pathways and is protective from cell death in neuronal SK-N-MC cells. Thus, cell type-specific functions involve a competitive recruitment of different PTB adaptor molecules by RET that activate selective signaling pathways.  相似文献   

8.
The GDNF family ligands signal through a receptor complex composed of a ligand binding subunit, GFRalpha, and a signaling subunit, the RET tyrosine kinase. GFRalphas are expressed not only in RET-expressing cells, but also in cells lacking RET. A body of evidence suggests that RET-independent GFRalphas are important for (1) modulation of RET signaling in a non-cell-autonomous fashion (trans-signaling) and (2) regulation of NCAM function. To address the physiological significance of these roles, we generated mice specifically lacking RET-independent GFRalpha1. These mice exhibited no deficits in regions where trans-signaling has been implicated in vitro, including enteric neurons, motor neurons, kidney, and regenerating nerves. Furthermore, no abnormalities were found in the olfactory bulb, which requires proper NCAM function for its formation and is putatively a site of GDNF-GFRalpha-NCAM signaling. Thus RET-independent GFRalpha1 is dispensable for organogenesis and nerve regeneration in vivo, indicating that trans-signaling and GFRalpha-dependent NCAM signaling play a minor role physiologically.  相似文献   

9.
Artemin (ARTN) is a member of the GDNF family of ligands and signals through the Ret/GFRalpha3 receptor complex. Characterization of ARTN- and GFRalpha3-deficient mice revealed similar abnormalities in the migration and axonal projection pattern of the entire sympathetic nervous system. This resulted in abnormal innervation of target tissues and consequent cell death due to deficiencies of target-derived neurotrophic support. ARTN is expressed along blood vessels and in cells nearby to sympathetic axonal projections. In the developing vasculature, ARTN is expressed in smooth muscle cells of the vessels, and it acts as a guidance factor that encourages sympathetic fibers to follow blood vessels as they project toward their final target tissues. The chemoattractive properties of ARTN were confirmed by the demonstration that sympathetic neuroblasts migrate and project axons toward ARTN-soaked beads implanted into mouse embryos.  相似文献   

10.
During kidney development, factors from the metanephric mesenchyme induce the growth and repeated branching of the ureteric bud, which gives rise to the collecting duct system and also induces nephrogenesis. One signaling pathway known to be required for this process includes the receptor tyrosine kinase RET and co-receptor GFR(&agr;)-1, which are expressed in the ureteric bud, and the secreted ligand GDNF produced in the mesenchyme. To examine the role of RET signaling in ureteric bud morphogenesis, we produced transgenic mice in which the pattern of RET expression was altered, or in which a ligand-independent form of RET kinase was expressed. The Hoxb7 promoter was used to express RET throughout the ureteric bud branches, in contrast to its normal expression only at the bud tips. This caused a variable inhibition of ureteric bud growth and branching reminiscent of, but less severe than, the RET knockout phenotype. Manipulation of the level of GDNF, in vitro or in vivo, suggested that this defect was due to insufficient rather than excessive RET signaling. We propose that RET receptors expressed ectopically on ureteric bud trunk cells sequester GDNF, reducing its availability to the normal target cells at the bud tips. When crossed to RET knockout mice, the Hoxb7/RET transgene, which encoded the RET9 isoform, supported normal kidney development in some RET-/- animals, indicating that the other major isoform, RET51, is not required in this organ. Expression of a Hoxb7/RET-PTC2 transgene, encoding a ligand-independent form of RET kinase, caused the development of abnormal nodules, outside the kidney or at its periphery, containing branched epithelial tubules apparently formed by deregulated growth of the ureteric bud. This suggests that RET signaling is not only necessary but is sufficient to induce ureteric bud growth, and that the orderly, centripetal growth of the bud tips is controlled by the spatially and temporally regulated expression of GDNF and RET.  相似文献   

11.
The RET tyrosine kinase receptor plays an important role in the development and maintenance of the nervous system. Although the ligand-induced RET signaling pathway has been well described, little is known about the regulation of RET surface expression, which is integral to the cell ability to control the response to ligand stimuli. We found that in dorsal root ganglion (DRG) neurons, which co-express RET and TrkB, the receptor surface levels of RET are significantly higher than that of TrkB. Using a sequence substitution strategy, we identified a key motif (Box1), which is necessary and sufficient for the differential RET and TrkB surface levels. Furthermore, pharmacological and mutagenesis assays revealed that protein kinase C (PKC) and high K(+) depolarization increase RET surface levels through phosphorylation of the Thr(675) residue in the Box1 motif. Finally, we found that the phosphorylation status of the Thr(675) residue influences RET mediated response to GDNF stimulation. In all, these findings provide a novel mechanism for the modulation of RET surface expression.  相似文献   

12.
Glial cell line-derived neurotrophic factor (GDNF), a neuronal survival factor, binds its co-receptor GDNF family receptor alpha1 (GFR alpha 1) in a 2:2 ratio and signals through the receptor tyrosine kinase RET. We have solved the GDNF(2).GFR alpha 1(2) complex structure at 2.35 A resolution in the presence of a heparin mimic, sucrose octasulfate. The structure of our GDNF(2).GFR alpha 1(2) complex and the previously published artemin(2).GFR alpha 3(2) complex are unlike in three ways. First, we have experimentally identified residues that differ in the ligand-GFR alpha interface between the two structures, in particular ones that buttress the key conserved Arg(GFR alpha)-Glu(ligand)-Arg(GFR alpha) interaction. Second, the flexible GDNF ligand "finger" loops fit differently into the GFR alphas, which are rigid. Third, and we believe most importantly, the quaternary structure of the two tetramers is dissimilar, because the angle between the two GDNF monomers is different. This suggests that the RET-RET interaction differs in different ligand(2)-co-receptor(2)-RET(2) heterohexamer complexes. Consistent with this, we showed that GDNF(2).GFR alpha1(2) and artemin(2).GFR alpha 3(2) signal differently in a mitogen-activated protein kinase assay. Furthermore, we have shown by mutagenesis and enzyme-linked immunosorbent assays of RET phosphorylation that RET probably interacts with GFR alpha 1 residues Arg-190, Lys-194, Arg-197, Gln-198, Lys-202, Arg-257, Arg-259, Glu-323, and Asp-324 upon both domains 2 and 3. Interestingly, in our structure, sucrose octasulfate also binds to the Arg(190)-Lys(202) region in GFR alpha 1 domain 2. This may explain how GDNF.GFR alpha 1 can mediate cell adhesion and how heparin might inhibit GDNF signaling through RET.  相似文献   

13.
The glial cell line-derived neurotrophic factor (GDNF) family ligands (GFLs) (GDNF, neurturin, artemin, and persephin) are critical regulators of neurodevelopment and support the survival of midbrain dopaminergic and spinal motor neurons in vitro and in animal disease models making them attractive therapeutic candidates for treatment of neurodegenerative diseases. The GFLs signal through a multicomponent receptor complex comprised of a high affinity binding component (GDNF-family receptor alpha-component (GFRalpha1-GFRalpha4)) and the receptor tyrosine kinase RET. To begin characterization of GFL receptor specificity at the molecular level, we performed comprehensive homologue-scanning mutagenesis of GDNF, the prototypical member of the GFLs. Replacing short segments of GDNF with the homologous segments from persephin (PSPN) (which cannot bind or activate GFRalpha1.RET or GFRalpha2.RET) identified sites along the second finger of GDNF critical for activating the GFRalpha1.RET and GFRalpha2.RET receptor complexes. Furthermore, introduction of these regions from GDNF, neurturin, or artemin into PSPN demonstrated that they are sufficient for activating GFRalpha1. RET, but additional determinants are required for interaction with the other GFRalphas. This difference in the molecular basis of GFL-GFRalpha specificity allowed the production of GFRalpha1. RET-specific agonists and provides a foundation for understanding of GFL-GFRalpha.RET signaling at the molecular level.  相似文献   

14.
The signaling mechanisms by which neurotrophic receptors regulate neuronal survival and axonal growth are still incompletely understood. In the receptor tyrosine kinase RET, a receptor for GDNF (glial cell line-derived neurotrophic factor), the functions of the majority of tyrosine residues that become phosphorylated are still unknown. Here we have identified the protein-tyrosine phosphatase SHP2 as a novel direct interactor of RET and the first effector known to bind to phosphorylated Tyr687 in the juxtamembrane region of the receptor. We show that SHP2 is recruited to RET upon ligand binding in a cooperative fashion, such that both interaction with Tyr687 and association with components of the Tyr1062 signaling complex are required for stable recruitment of SHP2 to the receptor. SHP2 recruitment contributes to the ability of RET to activate the PI3K/AKT pathway and promote survival and neurite outgrowth in primary neurons. Furthermore, we find that activation of protein kinase A (PKA) by forskolin reduces the recruitment of SHP2 to RET and negatively affects ligand-mediated neurite outgrowth. In agreement with this, mutation of Ser696, a known PKA phosphorylation site in RET, enhances SHP2 binding to the receptor and eliminates the effect of forskolin on ligand-induced outgrowth. Together, these findings establish SHP2 as a novel positive regulator of the neurotrophic activities of RET and reveal Tyr687 as a critical platform for integration of RET and PKA signals. We anticipate that several other phosphotyrosines of unknown function in neuronal receptor tyrosine kinases will also support similar regulatory functions.  相似文献   

15.
Artemin (ARTN) is a neurotrophic growth factor of the GDNF ligand family that signals through the specific GFRα-3 coreceptor/cRet tyrosine kinase-mediated signaling cascade. Its expression and signaling action in adults are restricted to nociceptive sensory neurons in the dorsal root ganglia. Consequently, Artemin supports survival and growth of sensory neurons and has been studied as a possible treatment for neuropathic pain paradigms. In this paper, we describe the development of an efficient method for the recombinant bacterial production of large quantities of highly pure, biologically active ARTN for in vitro and in vivo studies. Using Escherichia coli expression of an NH(2)-terminal SUMO-Artemin fusion protein and subsequent refolding from inclusion bodies followed by cleavage of the SUMO fusion part, mature Artemin with a native NH(2)-terminal amino acid sequence was obtained at high purity (>99%). Experiments using the reducing agent dithiothreitol (DTT) demonstrated that the intermolecular disulphide bridge in the cysteine knot is dispensable for dimerization of stable ARTN monomers. Our production method could facilitate in vitro and in vivo experimentation for the possible development of Artemin as a therapeutic agent for neuropathic pain.  相似文献   

16.
Different mutations of the RET gene cause different human tumoral diseases.   总被引:1,自引:0,他引:1  
The RET gene encodes a tyrosine kinase receptor for neurotrophic molecules. RET is a conceptually valuable example of how different mutations of a single gene may cause different diseases. Gene rearrangements activate the oncogenic potential of RET in human thyroid papillary carcinomas. On the other side, different point mutations activate RET in familial multiple endocrine neoplasia syndromes. Finally, inactivating mutations of RET can be present in Hirschsprung's disease patients. The detailed knowledge of the specific RET mutations responsible for human tumors provides relevant tools for the clinical management of these diseases. Moreover, the recent discovery of the growth factors which in vivo stimulate its signaling may shed new light on the role played by RET in the development and differentiation of the central and peripheral nervous system.  相似文献   

17.
We previously demonstrated the capacity of GAS1 (Growth Arrest Specific 1) to inhibit the growth of gliomas by blocking the GDNF–RET signaling pathway. Here, we show that a soluble form of GAS1 (tGAS1), decreases the number of viable MDA MB 231 human breast cancer cells, acting in both autocrine and paracrine manners when secreted from producing cells. Moreover, tGAS1 inhibits the growth of tumors implanted in female nu/nu mice through a RET-independent mechanism which involves interfering with the Artemin (ARTN)-GFRα3-(GDNF Family Receptor alpha 3) mediated intracellular signaling and the activation of ERK. In addition, we observed that the presence of tGAS1 reduces the vascularization of implanted tumors, by preventing the migration of endothelial cells. The present results support a potential adjuvant role for tGAS1 in the treatment of breast cancer, by detaining tumor growth and inhibiting angiogenesis.  相似文献   

18.
Dok1 is a common substrate of activated protein-tyrosine kinases. It is rapidly tyrosine-phosphorylated in response to receptor tyrosine activation and interacts with ras GTPase-activating protein and Nck, leading to inhibition of ras signaling pathway activation and the c-Jun N-terminal kinase (JNK) and c-Jun activation, respectively. In chronic myelogenous leukemia cells, it has shown constitutive phosphorylation. The N-terminal phosphotyrosine binding (PTB) domain of Dok1 can recognize and bind specifically to phosphotyrosine-containing motifs of receptors. Here we report the crystal structure of the Dok1 PTB domain alone and in complex with a phosphopeptide derived from RET receptor tyrosine kinase. The structure consists of a beta-sandwich composed of two nearly orthogonal, 7-stranded, antiparallel beta-sheets, and it is capped at one side by a C-terminal alpha-helix. The RET phosphopeptide binds to Dok1 via a surface groove formed between strand beta5 and the C-terminal alpha-helix of the PTB domain. The structures reveal the molecular basis for the specific recognition of RET by the Dok1 PTB domain. We also show that Dok1 does not recognize peptide sequences from TrkA and IL-4, which are recognized by Shc and IRS1, respectively.  相似文献   

19.
Recent studies demonstrate that the receptor tyrosine kinase RET is overexpressed in a subset of ER-positive breast cancers and that crosstalk between RET and ER is important in responses to endocrine therapy. The development of small molecular inhibitors that target RET allows the opportunity to consider combination therapies as a strategy to improve response to treatment and to prevent and combat endocrine resistance. This review discusses: (i) the current knowledge about RET, its co-receptors and ligands in breast cancer; (ii) the breast cancer clinical trials involving agents that target RET; and (iii) the challenges that remain in terms of specificity of available inhibitors and in understanding the complex molecular mechanisms that underlie the resistance to endocrine therapy.  相似文献   

20.
The glial cell line-derived neurotrophic factor (GDNF)/RET tyrosine kinase signaling pathway plays crucial roles in the development of the enteric nervous system (ENS) and the kidney. Tyrosine 1062 (Y1062) in RET is an autophosphorylation residue that is responsible for the activation of the PI3K/AKT and RAS/MAPK signaling pathways. Mice lacking signaling via Ret Y1062 show renal hypoplasia and hypoganglionosis of the ENS although the phenotype is milder than the Gdnf- or Ret-deficient mice. Sprouty2 (Spry2) was found to be an antagonist for fibroblast growth factor receptor (FGFR) and acts as an inhibitory regulator of ERK activation. Spry2-deficient mice exhibit hearing loss and enteric nerve hyperplasia. In the present study, we generated Spry2-deficient and Ret Y1062F knock-in (tyrosine 1062 is replaced with phenylalanine) double mutant mice to see if abnormalities of the ENS and kidney, caused by loss of signaling via Ret Y1062, are rescued by a deficiency of Spry2. Double mutant mice showed significant recovery of ureteric bud branching and ENS development in the stomach. These results indicate that Spry2 regulates downstream signaling mediated by GDNF/RET signaling complex in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号