首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 1 毫秒
1.
Alcoholism is a devastating brain disorder that affects millions of people worldwide. The development of alcoholism is caused by alcohol-induced maladaptive changes in neural circuits involved in emotions, motivation, and decision-making. Because of its involvement in these processes, the amygdala is thought to be a key neural structure involved in alcohol addiction. However, the molecular mechanisms that govern the development of alcoholism are incompletely understood. We have previously shown that in a limited access choice paradigm, C57BL/6J mice progressively escalate their alcohol intake and display important behavioral characteristic of alcohol addiction, in that they become insensitive to quinine-induced adulteration of alcohol. This study used the limited access choice paradigm to study gene expression changes in the amygdala during the escalation to high alcohol consumption in C57BL/6J mice. Microarray analysis revealed that changes in gene expression occurred predominantly after one week, i.e. during the initial escalation of alcohol intake. One gene that stood out from our analysis was the adapter protein 14-3-3ζ, which was up-regulated during the transition from low to high alcohol intake. Independent qPCR analysis confirmed the up-regulation of amygdala 14-3-3ζ during the escalation of alcohol intake. Subsequently, we found that local knockdown of 14-3-3ζ in the amygdala, using RNA interference, dramatically augmented alcohol intake. In addition, knockdown of amygdala 14-3-3ζ promoted the development of inflexible alcohol drinking, as apparent from insensitivity to quinine adulteration of alcohol. This study identifies amygdala 14-3-3ζ as a novel key modulator that is engaged during escalation of alcohol use.  相似文献   

2.
The 14-3-3 protein family is a highly conserved and widely distributed group of proteins consisting of multiple isoforms in eukaryotes. Ubiquitously expressed, 14-3-3 proteins play key roles in DNA replication, cell cycle regulation, and apoptosis. The function of 14-3-3 proteins is mediated by interaction with a large number of other proteins and with DNA. It has been demonstrated that 14-3-3γ protein binds strongly to cruciform structures and is crucial for initiating replication. In this study, we analyzed DNA binding properties of the 14-3-3γ isoform to linear and supercoiled DNA. We demonstrate that 14-3-3γ protein binds strongly to long DNA targets, as evidenced by electrophoretic mobility shift assay on agarose gels. Binding of 14-3-3γ to DNA target results in the appearance of blurry, retarded DNA bands. Competition experiments with linear and supercoiled DNA on magnetic beads show very strong preference for supercoiled DNA. We also show by confocal microscopy that 14-3-3 protein in the HCT-116 cell line is co-localized with DNA cruciforms. This implies a role for the 14-3-3γ protein in its binding to local DNA structures which are stabilized by DNA supercoiling.  相似文献   

3.
The 14-3-3 protein family is a highly conserved and widely distributed group of proteins consisting of multiple isoforms in eukaryotes. Ubiquitously expressed, 14-3-3 proteins play key roles in DNA replication, cell cycle regulation, and apoptosis. The function of 14-3-3 proteins is mediated by interaction with a large number of other proteins and with DNA. It has been demonstrated that 14-3-3γ protein binds strongly to cruciform structures and is crucial for initiating replication. In this study, we analyzed DNA binding properties of the 14-3-3γ isoform to linear and supercoiled DNA. We demonstrate that 14-3-3γ protein binds strongly to long DNA targets, as evidenced by electrophoretic mobility shift assay on agarose gels. Binding of 14-3-3γ to DNA target results in the appearance of blurry, retarded DNA bands. Competition experiments with linear and supercoiled DNA on magnetic beads show very strong preference for supercoiled DNA. We also show by confocal microscopy that 14-3-3 protein in the HCT-116 cell line is co-localized with DNA cruciforms. This implies a role for the 14-3-3γ protein in its binding to local DNA structures which are stabilized by DNA supercoiling.  相似文献   

4.
As the prevalence of obesity has increased explosively over the last several decades, associated metabolic disorders, including type 2 diabetes, dyslipidemia, hypertension, and cardiovascular diseases, have been also increased. Thus, new strategies for preventing and treating them are needed. The nuclear peroxisome proliferator-activated receptors (PPARs) are involved fundamentally in regulating energy homeostasis; thus, they have been considered attractive drug targets for addressing metabolic disorders. Among the PPARs, PPARγ is a master regulator of gene expression for metabolism, inflammation, and other pathways in many cell types, especially adipocytes. It is a physiological receptor of the potent anti-diabetic drugs of the thiazolidinediones (TZDs) class, including rosiglitazone (Avandia). However, TZDs have undesirable and severe side effects, such as weight gain, fluid retention, and cardiovascular dysfunction. Recently, many reports have suggested that PPARγ could be modulated by post-translational modifications (PTMs), and modulation of PTM has been considered as novel approaches for treating metabolic disorders with fewer side effects than the TZDs. In this review, we discuss how PTM of PPARγ may be regulated and issues to be considered in making novel anti-diabetic drugs that can modulate the PTM of PPARγ. [BMB Reports 2014; 47(11): 599-608]  相似文献   

5.
Klebsiella spp are one of the best natural producers of 1,3-propanediol (1,3-PD). However, their usage in the biotechnological production of the diol is limited, since the species belong to the second hazard group. Nevertheless, multiple advantageous traits of Klebsiella spp justify the international effort devoted to develop a biotechnological process of 1,3-PD production with these microorganisms. Apart from the process engineering approach aiming at improvement of 1,3-PD production by Klebsiella spp, plethora of metabolic engineering approaches have been reported. Different strategies have been undertaken to genetically improve Klebsiella strains and provide them with the ability to synthesize 1,3-PD more efficiently. These include over-expression of both homologous and heterologous genes of the 1,3-PD synthesis pathway, protein and cofactor engineering, deletion of the genes involved in by-products formation. This review provides an overview of the initial and most recent reports on the metabolic engineering of Klebsiella spp with the aim of improvement of 1,3-PD biosynthesis.  相似文献   

6.
14-3-3ζ promotes cell survival via dynamic interactions with a vast network of binding partners, many of which are involved in stress regulation. We show here that hypoxia (low glucose and oxygen) triggers a rearrangement of the 14-3-3ζ interactome to favor an interaction with the core autophagy regulator Atg9A. Our data suggest that the localization of mammalian Atg9A to autophagosomes requires phosphorylation on the C terminus of Atg9A at S761, which creates a 14-3-3ζ docking site. Under basal conditions, this phosphorylation is maintained at a low level and is dependent on both ULK1 and AMPK. However, upon induction of hypoxic stress, activated AMPK bypasses the requirement for ULK1 and mediates S761 phosphorylation directly, resulting in an increase in 14-3-3ζ interactions, recruitment of Atg9A to LC3-positive autophagosomes, and enhanced autophagosome production. These data suggest a novel mechanism whereby the level of autophagy induction can be modulated by AMPK/ULK1-mediated phosphorylation of mammalian Atg9A.  相似文献   

7.
Mutations of cysteine are often introduced to e.g. avoid formation of non-physiological inter-molecular disulfide bridges in in-vitro experiments, or to maintain specificity in labeling experiments. Alanine or serine is typically preferred, which usually do not alter the overall protein stability, when the original cysteine was surface exposed. However, selecting the optimal mutation for cysteines in the hydrophobic core of the protein is more challenging. In this work, the stability of selected Cys mutants of 14-3-3ζ was predicted by free-energy calculations and the obtained data were compared with experimentally determined stabilities. Both the computational predictions as well as the experimental validation point at a significant destabilization of mutants C94A and C94S. This destabilization could be attributed to the formation of hydrophobic cavities and a polar solvation of a hydrophilic side chain. A L12E, M78K double mutant was further studied in terms of its reduced dimerization propensity. In contrast to naïve expectations, this double mutant did not lead to the formation of strong salt bridges, which was rationalized in terms of a preferred solvation of the ionic species. Again, experiments agreed with the calculations by confirming the monomerization of the double mutants. Overall, the simulation data is in good agreement with experiments and offers additional insight into the stability and dimerization of this important family of regulatory proteins.  相似文献   

8.
An in-frame deletion mutation in Epidermal Growth Receptor (EGFR), ΔEGFR is a common and potent oncogene in glioblastoma (GBM), promoting growth and survival of cancer cells. This mutated receptor is ligand independent and constitutively active. Its activity is low in intensity and thought to be qualitatively different from acutely ligand stimulated wild-type receptor implying that the preferred downstream targets of ΔEGFR play a significant role in malignancy. To understand the ΔEGFR signal, we compared it to that of a kinase-inactivated mutant of ΔEGFR and wild-type EGFR with shotgun phosphoproteomics using an electron-transfer dissociation (ETD) enabled ion trap mass spectrometer. We identified and quantified 354 phosphopeptides corresponding to 249 proteins. Among the ΔEGFR-associated phosphorylations were the previously described Gab1, c-Met and Mig-6, and also novel phosphorylations including that of STAT5 on Y694/9. We have confirmed the most prominent phosphorylation events in cultured cells and in murine xenograft models of glioblastoma. Pathway analysis of these proteins suggests a preference for an alternative signal transduction pathway by ΔEGFR compared to wild-type EGFR. This understanding will potentially benefit the search for new therapeutic targets for ΔEGFR expressing tumors.  相似文献   

9.
Intracellular 14-3-3 proteins bind to many proteins, via a specific phosphoserine motif, regulating diverse cellular tasks including cell signalling and disease progression. The 14-3-3ζ isoform is a molecular chaperone, preventing the stress-induced aggregation of target proteins in a manner comparable with that of the unrelated sHsps (small heat-shock proteins). 1H-NMR spectroscopy revealed the presence of a flexible and unstructured C-terminal extension, 12 amino acids in length, which protrudes from the domain core of 14-3-3ζ and is similar in structure and length to the C-terminal extension of mammalian sHsps. The extension stabilizes 14-3-3ζ, but has no direct role in chaperone action. Lys(49) is an important functional residue within the ligand-binding groove of 14-3-3ζ with K49E 14-3-3ζ exhibiting markedly reduced binding to phosphorylated and non-phosphorylated ligands. The R18 peptide binds to the binding groove of 14-3-3ζ with high affinity and also reduces the interaction of 14-3-3ζ ligands. However, neither the K49E mutation nor the presence of the R18 peptide affected the chaperone activity of 14-3-3ζ, implying that the C-terminal extension and binding groove of 14-3-3ζ do not mediate interaction with target proteins during chaperone action. Other region(s) in 14-3-3ζ are most likely to be involved, i.e. the protein's chaperone and phosphoserine-binding activities are functionally and structurally separated.  相似文献   

10.
The phospho-binding protein 14-3-3ζ acts as a signaling hub controlling a network of interacting partners and oncogenic pathways. We show here that lysines within the 14-3-3ζ binding pocket and protein-protein interface can be modified by acetylation. The positive charge on two of these lysines, Lys49 and Lys120, is critical for coordinating 14-3-3ζ-phosphoprotein interactions. Through screening, we identified HDAC6 as the Lys49/Lys120 deacetylase. Inhibition of HDAC6 blocks 14-3-3ζ interactions with two well described interacting partners, Bad and AS160, which triggers their dephosphorylation at Ser112 and Thr642, respectively. Expression of an acetylation-refractory K49R/K120R mutant of 14-3-3ζ rescues both the HDAC6 inhibitor-induced loss of interaction and Ser112/Thr642 phosphorylation. Furthermore, expression of the K49R/K120R mutant of 14-3-3ζ inhibits the cytotoxicity of HDAC6 inhibition. These data demonstrate a novel role for HDAC6 in controlling 14-3-3ζ binding activity.  相似文献   

11.
Background: Butyrate, a potent histone deacetylase inhibitor, belongs to a promising new class of antineoplastic agents with the capacity to induce apoptosis of cancer cells. However, the underlying mechanisms of action have yet not been elucidated. Aim: To further investigate the molecular events involved in butyrate-induced caspase-3 activation in Caco-2 wild-type, empty-vector and dominant-negative PPARγ mutant cells along the signalling pathway. In this context, the involvement and up-regulation of PPARγ was examined. Results: Stimulation of cells with butyrate resulted in increased expression of PPARγ mRNA, protein, and activity as well as phospho-p38 MAPK protein expression and caspase-3 activity. Arsenite, a direct stimulator of p38 MAPK, also led to an increased PPARγ expression, thereby mimicking the effects of butyrate. In contrast, butyrate-mediated up-regulation of PPARγ was counteracted by co-incubation with the p38 MAPK inhibitor SB203580. Treatment of cells with butyrate resulted in both increased caspase-8 and -9 activity and reduced expression of XIAP and survivin. However, butyrate-mediated effects on these apoptosis-regulatory proteins leading to caspase-3 activation were almost completely abolished in Caco-2 dominant-negative PPARγ mutant cells. Conclusions: Our data clearly unveil PPARγ as a key target in the butyrate-induced signalling cascade leading to apoptosis via caspase-3 in Caco-2 cells.  相似文献   

12.
Surrogate and peripheral (bio)markers of neuronal injury may be of value in assessing effects of seizures on the brain or epilepsy development following trauma. The presence of 14-3-3 isoforms in cerebrospinal fluid (CSF) is a diagnostic indicator of Creutzfeldt–Jakob disease but these proteins may also be present following acute neurological insults. Here, we examined neuronal and 14-3-3 proteins in CSF from rats after seizures. Seizures induced by intra-amygdala microinjection of 0.1 µg kainic acid (KA) caused damage which was mainly restricted to the ipsilateral CA3 subfield of the hippocampus. 14-3-3ζ was detected at significant levels in CSF sampled 4 h after seizures compared with near absence in control CSF. Neuron-specific nuclear protein (NeuN) was also elevated in CSF in seizure rats. CSF 14-3-3ζ levels were significantly lower in rats treated with 0.01 µg KA. These data suggest the presence of 14-3-3ζ within CSF may be a biomarker of acute seizure damage.  相似文献   

13.
14.
15.
In the central nervous system, the inhibitory GABAB receptor is the archetype of heterodimeric G protein-coupled receptors (GPCRs). However, the regulation of GABAB dimerization, and more generally of GPCR oligomerization, remains largely unknown. We propose a novel mechanism for inhibition of GPCR activity through de-dimerization in pathological conditions. We show here that 14-3-3ζ, a GABAB1-binding protein, dissociates the GABAB heterodimer, resulting in the impairment of GABAB signalling in spinal neurons. In the dorsal spinal cord of neuropathic rats, 14-3-3ζ is overexpressed and weakens GABAB inhibition. Using anti-14-3-3ζ siRNA or competing peptides disrupts 14-3-3ζ/GABAB1 interaction and restores functional GABAB heterodimers in the dorsal horn. Importantly, both strategies greatly enhance the anti-nociceptive effect of intrathecal Baclofen in neuropathic rats. Taken together, our data provide the first example of endogenous regulation of a GPCR oligomeric state and demonstrate its functional impact on the pathophysiological process of neuropathic pain sensitization.  相似文献   

16.
Oxidant stress is a ubiquitous stressor with negative impacts on multiple cell types. ASK1 is a central mediator of oxidant injury, but while mechanisms of its inhibition, such as sequestration by 14-3-3 proteins and thioredoxin, have been identified, mechanisms of activation have remained obscure and the signaling pathways regulating this are not clear. Here, we report that phosphorylation of 14-3-3ζ at serine 58 (S58) is dynamically regulated in the cell and that the phosphorylation status of S58 is a critical factor regulating oxidant stress-induced cell death. Phosphorylation of S58 releases ASK1 from 14-3-3ζ, and ASK1 then activates stress-activated protein kinases, leading to cell death. While several members of the mammalian sterile 20 (Mst) family of kinases can phosphorylate S58 when overexpressed, we identify Ste20/oxidant stress response kinase 1 (SOK-1), an Mst family member known to be activated by oxidant stress, as a central endogenous regulator of S58 phosphorylation and thereby of ASK1-mediated cell death. Our findings identify a novel pathway that regulates ASK1 activation and oxidant stress-induced cell death.Oxidant stress plays a central role in a wide variety of pathologies, and a critical mediator of oxidant injury is the protein kinase ASK1 (30). Indeed, ASK1 is required for several types of oxidant stress-induced cell death (32). Its activity is restrained by a large number of complementary mechanisms, a fact that attests to the importance of ASK1 being maintained in an inactive state in the cell. For example, reduced thioredoxin binds to the N-terminal region of ASK1, thereby inhibiting its activity (27). Following oxidant stress and oxidation of thioredoxin, ASK1 is released, allowing its activation. Multiple phosphorylation events, including phosphorylation of ASK1 at S83 by Akt and at S1033 by an unknown mechanism, also negatively regulate ASK1 (6, 41; reviewed in reference 30). Critical to the negative regulation of ASK1 is phosphorylation of S966, which drives the association of ASK1 with 14-3-3 proteins, thereby inhibiting ASK1-mediated activation of downstream signaling and cell death (8, 43). The kinases responsible for S966 phosphorylation are not known, but the protein phosphatase calcineurin has been shown to dephosphorylate S966, leading to dissociation of ASK1 from 14-3-3 (13). Thus, other than calcineurin-mediated dephosphorylation of ASK1, signaling mechanisms positively regulating the release of ASK1 from 14-3-3 proteins are not known, despite intense interest in this kinase as a potential target in cardiovascular and neurologic diseases (30). Therefore, we undertook studies to attempt to identify such a mechanism.14-3-3 proteins play protective roles in the cell by sequestering proapoptotic factors in a phosphorylation-dependent manner (1, 15, 23). These proapoptotic proteins that are sequestered by 14-3-3 proteins are typically phosphorylated on one or more 14-3-3 binding motifs (18, 39). For example, in addition to ASK1 phosphorylation at S966, (8, 30), Bad is phosphorylated by Akt and ribosomal S6 kinases at several residues, inhibiting its proapoptotic functions (4, 14, 42, 45). Acting in opposition to this is the well-characterized c-Jun N-terminal kinase (JNK)-mediated phosphorylation of serine 184 of 14-3-3 proteins, leading to release of the proapoptotic factors Bax, Bad, FOXO3a, and Abl (29, 33, 40). In addition to S184, the phosphorylation statuses of other 14-3-3 residues can regulate 14-3-3/client interactions, such as T233, which is phosphorylated by CKI, disrupting the 14-3-3/Raf-1 interaction (5).Although most of the attention to phosphorylation of 14-3-3 has been focused on S184 and T233 (1), S58 has been known to be phosphorylated in situ for some time, and several kinases have been implicated, including protein kinases A and D, Akt, mitogen-activated protein kinase-activated kinase 2 (MK2), and sphingosine-dependent protein kinase 1 (later identified as a cleavage fragment of protein kinase C δ) (9, 16, 17, 24, 25, 44). However, it is not clear which specific kinases mediate phosphorylation under specific circumstances, nor are the biological consequences clear. This is underscored by the fact that both pro- and antiapoptotic kinases have been reported to phosphorylate this residue (23). It does seem clear, however, that S58 phosphorylation disrupts 14-3-3 dimerization and that this reduces the binding of some proteins (e.g., Raf-1) (28, 34), though probably not all, since Woodcock et al. reported that 14-3-3ζ monomers phosphorylated at S58 remained competent to bind phosphopeptides (37).Thorson et al. and Wang et al. created 14-3-3 mutants that were deficient in binding phosphopeptides, and Xing et al. employed one of these, 14-3-3ζ(R56A/R60A), to show that it led to enhanced activation of the stress-activated protein kinases, JNKs and p38, and enhanced cell death in response to UVC irradiation, a model of oxidant stress (31, 36, 38). However, since S58 of 14-3-3ζ is in the center of the R56-R60 region, we hypothesized that phosphorylation of S58 might disrupt binding of 14-3-3ζ to ASK1, which is upstream from the JNKs and p38 in the response to oxidant stress. In addition, Preisinger et al. reported that Ste20/oxidant stress response kinase 1 (SOK-1)/STK25, a mammalian sterile 20 (Mst) family member also known as yeast sterile 20 kinase 1 (YSK1), phosphorylated 14-3-3ζ on S58, leading to reorganization of the Golgi structure and cell motility (26). However, we and others had initially identified SOK-1 as a kinase activated by oxidant stress (20-22), and we have also shown that SOK-1 exits the Golgi apparatus following cellular stress (19), potentially giving SOK-1 greater access to the ASK1/14-3-3 complex (which is primarily cytosolic). Thus, we hypothesized that oxidant stress-induced activation of SOK-1 might lead to S58 phosphorylation, release of ASK1 from 14-3-3ζ, activation of JNKs and p38, and cell death. Here, we confirm these hypotheses and identify S58 as a molecular switch regulating ASK1-mediated oxidant stress-induced cell death.  相似文献   

17.
Phosphorylation at the C-terminal flexible region of the C-Raf protein plays an important role in regulating its biological activity. Auto-phosphorylation at serine 621 (S621) in this region maintains C-Raf stability and activity. This phosphorylation mediates the interaction between C-Raf and scaffold protein 14-3-3ζ to activate the downstream MEK kinase pathway. In this study, we have defined the interaction of C-terminal peptide sequence of C-Raf with 14-3-3ζ protein and determined the possible structural adaptation of this region. Biophysical elucidation of the interaction was carried out using phosphopeptide (residue number 615–630) in the presence of 14-3-3ζ protein. Using isothermal titration calorimetry (ITC), a high binding affinity with micro-molar range was found to exist between the peptide and 14-3-3ζ protein, whereas the non-phosphorylated peptide did not show any appreciable binding affinity. Further interaction details were investigated using several biophysical techniques such as circular dichroism (CD), fluorescence, and nuclear magnetic resonance (NMR) spectroscopy, in addition to molecular modeling. This study provides the molecular basis for C-Raf C-terminal-derived phosphopeptide interaction with 14-3-3ζ protein as well as structural insights responsible for phosphorylated S621-mediated 14-3-3ζ binding at an atomic resolution.  相似文献   

18.

Background

A large number of studies have confirmed that excessive apoptosis is one of the reasons for deficient neuronal function in neural tube defects (NTDs). A previous study from our laboratory used 2-D gel electrophoresis to demonstrate that 14-3-3ζ expression was low in the spinal cords of rat fetuses with spina bifida aperta at embryonic day (E) 17. As a member of the 14-3-3 protein family, 14-3-3ζ plays a crucial role in the determination of cell fate and anti-apoptotic activity. However, neither the expression of 14-3-3ζ in defective spinal cords, nor the correlation between 14-3-3ζ and excessive apoptosis in NTDs has been fully confirmed.

Methodology/Principal Findings

We used immunoblotting and quantitative real-time PCR (qRT-PCR) to quantify the expression of 14-3-3ζ and double immunofluorescence to visualize 14-3-3ζ and apoptosis. We found that, compared with controls, 14-3-3ζ was down-regulated in spina bifida between E12 and E15. Excessive apoptotic cells and low expression of 14-3-3ζ were observed in the dorsal region of spinal cords with spina bifida during the same time period. To initially explore the molecular mechanisms of apoptosis in NTDs, we investigated the expression of microRNA-7 (miR-7), microRNA-375 (miR-375) and microRNA-451 (miR-451), which are known to down-regulate 14-3-3ζ in several different cell types. We also investigated the expression of p53, a molecule that is downstream of 14-3-3ζ and can be down-regulated by it. We discovered that, in contrast to the reduction of 14-3-3ζ expression, the expression of miR-451, miR-375 and p53 increased in spina bifida rat fetuses.

Conclusions/Significance

These data suggest that the reduced expression of 14-3-3ζ plays a role in the excessive apoptosis that occurs in spina bifida and may be partly regulated by the over-expression of miR-451 and miR-375, and the consequent up-regulation of p53 might further promote apoptosis in spina bifida.  相似文献   

19.
The reactive oxygen species (ROS)-sensitive apoptosis signal-regulating kinase 1 (ASK1) signaling complex is a key regulator of p38 MAPK activity, a major modulator of stress-associated with aging disorders. We recently reported that the ratio of free ASK1 to the complex-bound ASK1 is significantly decreased in Klotho-responsive manner and that Klotho-deficient tissues have elevated levels of free ASK1 which coincides with increased oxidative stress. Here, we tested the hypothesis that: 1) covalent interactions exist among three identified proteins constituting the ASK1 signaling complex; 2) in normal unstressed cells the ASK1, 14-3-3ζ and thioredoxin (Trx) proteins simultaneously engage in a tripartite complex formation; 3) Klotho’s stabilizing effect on the complex relied solely on 14-3-3ζ expression and its apparent phosphorylation and dimerization changes. To verify the hypothesis, we performed 14-3-3ζ siRNA knock-down experiments in conjunction with cell-based assays to measure ASK1-client protein interactions in the presence and absence of Klotho, and with or without an oxidant such as rotenone. Our results show that Klotho activity induces posttranslational modifications in the complex targeting 14-3-3ζ monomer/dimer changes to effectively protect against ASK1 oxidation and dissociation. This is the first observation implicating all three proteins constituting the ASK1 signaling complex in close proximity.  相似文献   

20.
The Suquía River middle-lower basin (Córdoba, Argentina) is subjected to a strong anthropogenic impact because it receives pollutants from different sources. The main goal of this study was to evaluate the introduced fish species Gambusia affinis as a bioindicator of environmental pollution in the middle-lower basin of the Suquía River. The assessment was performed by measuring biomarkers at different levels of biological organization, at two sampling sites (before and after Córdoba city), and at dry and wet seasons. Water quality evaluation was made through a water-quality index (based on physico-chemical parameters), heavy-metals and pesticides concentrations in water. The water quality varied between sampling sites, showing the most degraded conditions downstream Córdoba city. The same pattern of variation was detected in the biomarkers studied, mainly in: gill and liver histopathological indexes, copulatory organ (gonopodium) morphology and vitellogenin expression in males and females. The present study characterized the environmental conditions in the middle-lower basin of the Suquía River and revealed the low freshwater quality at the most polluted site. Although G. affinis is an introduced species, it could be considered a good sentinel of water resource quality of invaded Neotropical basins. Our results demonstrated the importance of addressing the environmental quality monitoring through an integrated analysis of water quality parameters together with histological, morphological and molecular parameters. Thus, our study provides a good model for application in other basins of South America.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号