首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Coprisin is a 43-mer defensin-like peptide from the dung beetle, Copris tripartitus. In this study, we tested its minimum inhibitory concentration and performed combination assays to confirm the antibacterial susceptibility of coprisin and synergistic effects with antibiotics. The synergistic effects were evaluated by testing the effects of coprisin in combination with ampicillin, vancomycin, and chloramphenicol. The results showed that coprisin possessed antibacterial properties and had synergistic activities with the antibiotics. To understand the synergistic mechanism(s), we conducted hydroxyl radical assays. Coprisin alone and in combination with antibiotics generated hydroxyl radicals, which are highly reactive oxygen forms and the major property of bactericidal agents. Furthermore, the antibiofilm effect of coprisin alone and in combination with antibiotics was investigated. Biofilm formation is the source of many relentless and chronic bacterial infections. The results indicated that coprisin alone and in combination with antibiotics also had antibiofilm activity. Therefore, we conclude that coprisin has the potential to be used as a combinatorial therapeutic agent for the treatment of infectious diseases caused by bacteria.  相似文献   

2.
Hwang IS  Lee J  Hwang JH  Kim KJ  Lee DG 《The FEBS journal》2012,279(7):1327-1338
Silver nanoparticles have been shown to be detrimental to fungal cells although the mechanism(s) of action have not been clearly established. In this study, we used Candida albicans cells to show that silver nanoparticles exert their antifungal effect through apoptosis. Many studies have shown that the accumulation of reactive oxygen species induces and regulates the induction of apoptosis. Furthermore, hydroxyl radicals are considered an important component of cell death. Therefore, we assumed that hydroxyl radicals were related to apoptosis and the effect of thiourea as a hydroxyl radical scavenger was investigated. We measured the production of reactive oxygen species and investigated whether silver nanoparticles induced the accumulation of hydroxyl radicals. A reduction in the mitochondrial membrane potential shown by flow cytometry analysis and the release of cytochrome c from mitochondria were also verified. In addition, the apoptotic effects of silver nanoparticles were detected by fluorescence microscopy using other confirmed diagnostic markers of yeast apoptosis including phosphatidylserine externalization, DNA and nuclear fragmentation, and the activation of metacaspases. Cells exposed to silver nanoparticles showed increased reactive oxygen species and hydroxyl radical production. All other phenomena of mitochondrial dysfunction and apoptotic features also appeared. The results indicate that silver nanoparticles possess antifungal effects with apoptotic features and we suggest that the hydroxyl radicals generated by silver nanoparticles have a significant role in mitochondrial dysfunctional apoptosis.  相似文献   

3.
Hwang IS  Lee J  Jin HG  Woo ER  Lee DG 《Mycopathologia》2012,173(4):207-218
Amentoflavone was isolated from an ethyl acetate extract of the whole plant of Selaginella tamariscina. It is a traditional herb for the therapy of chronic trachitis and exhibits some anti-tumor activity. Previously, we confirmed the antifungal effects of amentoflavone. The objective of this study was to investigate the antifungal mechanism(s) of amentoflavone, such as mitochondria-mediated apoptotic cell death. The cells that were treated with amentoflavone exhibited a series of cellular changes that were consistent with apoptosis: externalization of phosphatidylserine, DNA and nuclear fragmentation, accumulation of intracellular reactive oxygen species (ROS) and hydroxyl radicals, and activation of metacaspase. In addition, diagnostic markers of apoptosis, including the reduction of mitochondrial inner-membrane potential and the release of cytochrome c from mitochondria, were observed. These phenomena are important changes in mitochondria-mediated apoptosis. Furthermore, the effect of thiourea as hydroxyl radical scavenger on amentoflavone-induced apoptosis was evaluated. A hydroxyl radical is a more active ROS species. Mitochondrial dysfunction was inhibited, which was indicated by decreased levels of intracellular hydroxyl radicals. Taken together, our results present the first evidence that amentoflavone induces apoptosis in C. albicans cells and is associated with the mitochondrial dysfunction. Besides, amentoflavone-induced hydroxyl radicals may play a significant role in mitochondria-mediated apoptosis.  相似文献   

4.
A synthetic coprisin analog peptide, 9-mer dimer CopA3 (CopA3) was designed based on a defensin-like peptide, Coprisin, isolated from the bacteria-immunized dung beetle Copris tripartitus. Here, CopA3 was investigated for its antimicrobial activity and cancer cell growth inhibition. CopA3 showed antimicrobial activities against various pathogenic bacteria and yeast fungus with MIC values in 2~32 μM ranges, and inhibited the cell viabilities of pancreatic and hepatocellular cancer cells, except MIAPaca2, Hep3B, and HepG2 cells, in a dose-dependent manner. The average IC(50) values of CopA3 against pancreatic and hepatocellular cancer cells were 61.7 μM and 67.8 μM, respectively. The results indicate that CopA3 has potential in the treatments of pancreatic and hepatocellular cancers as well as microorganism infection disease.  相似文献   

5.
Defensins, which are small cationic molecules produced by organisms as part of their innate immune response, share a common structural scaffold that is stabilized by three disulfide bridges. Coprisin is a 43-amino acid defensin-like peptide from Copris tripartitus. Here, we report the intramolecular disulfide connectivity of cysteine-rich coprisin, and show that it is the same as in other insect defensins. The disulfide bond pairings of coprisin were determined by combining the enzymatic cleavage and mass analysis. We found that the loss of any single disulfide bond in coprisin eliminated all antibacterial, but not antifungal, activity. Circular dichroism (CD) analysis showed that two disulfide bonds, Cys20-Cys39 and Cys24-Cys41, stabilize coprisin’s α-helical region. Moreover, a BLAST search against UniProtKB database revealed that coprisin’s α-helical region is highly homologous to those of other insect defensins. [BMB Reports 2014; 47(11): 625-630]  相似文献   

6.
Induction of massive apoptosis of hair follicle cells by chemotherapy has been implicated in the pathogenesis of chemotherapy-induced alopecia (CIA), but the underlying mechanisms of regulation are not well understood. The present study investigated the apoptotic effect of cisplatin in human hair follicle dermal papilla cells and HaCaT keratinocytes, and determined the identity and role of specific reactive oxygen species (ROS) involved in the process. Treatment of the cells with cisplatin induced ROS generation and a parallel increase in caspase activation and apoptotic cell death. Inhibition of ROS generation by antioxidants inhibited the apoptotic effect of cisplatin, indicating the role of ROS in the process. Studies using specific ROS scavengers further showed that hydroxyl radical, but not hydrogen peroxide or superoxide anion, is the primary oxidative species responsible for the apoptotic effect of cisplatin. Electron spin resonance studies confirmed the formation of hydroxyl radicals induced by cisplatin. The mechanism by which hydroxyl radical mediates the apoptotic effect of cisplatin was shown to involve down-regulation of the anti-apoptotic protein Bcl-2 through ubiquitin-proteasomal degradation. Bcl-2 was also shown to have a negative regulatory role on hydroxyl radical. Together, our results indicate an essential role of hydroxyl radical in cisplatin-induced cell death of hair follicle cells through Bcl-2 regulation. Since CIA is a major side effect of cisplatin and many other chemotherapeutic agents with no known effective treatments, the knowledge gained from this study could be useful in the design of preventive treatment strategies for CIA through localized therapy without compromising the chemotherapy efficacy.  相似文献   

7.
The present study was conducted to evaluate the different effects of the constituents of EGb761 (Ginkgo biloba Extract) on apoptosis in cerebellar granule cells induced by hydroxyl radicals. The total flavonoid component of EGb761, two pure EGb761 components (rutin and quercetin), and a mixture of flavonoids and terpenes protected cerebellar granule cells from oxidative damage and apoptosis induced by hydroxyl radicals. ESR(electron spin resonance) results showed that the IC50 of the flavonoids for scavenging hydroxyl radicals was almost the same as that of EGb761, even though flavonoids make up only 24% of EGb761, implying that other constituents of EGb761 besides flavonoids can scavenge hydroxyl radicals. Total terpenes of EGb761 did not protect against apoptosis. Flavonoids and terpenes did not show a synergistic effect in this regard. Terpenes did not scavenge hydroxyl radicals directly, which might be related to their "cage-like" structures.  相似文献   

8.
The purpose of the present study was to evaluate the mechanism of microbial resistance to oxidative stress induced by photolysis of hydrogen peroxide (H(2)O(2)) in relation to microbial catalase activity. In microbicidal tests, Staphylococcus aureus and Candida albicans were killed and this was accompanied by production of hydroxyl radicals. C. albicans was more resistant to hydroxyl radicals generated by photolysis of H(2)O(2) than was S. aureus. A catalase activity assay demonstrated that C. albicans had stronger catalase activity; accordingly, catalase activity could be one of the reasons for the resistance of the fungus to photolysis of H(2)O(2). Indeed, it was demonstrated that C. albicans with strong catalase activity was more resistant to photolysis of H(2)O(2) than that with weak catalase activity. Kinetic analysis using a modified Lineweaver-Burk plot also demonstrated that the microorganisms reacted directly with hydroxyl radicals and that this was accompanied by decomposition of H(2)O(2). The results of the present study suggest that the microbicidal effects of hydroxyl radicals generated by photolysis of H(2)O(2) can be alleviated by decomposition of H(2)O(2) by catalase in microorganisms.  相似文献   

9.
Induction of yeast apoptosis by an antimicrobial peptide, Papiliocin   总被引:1,自引:0,他引:1  
Papiliocin is a 37-residue peptide isolated from the swallowtail butterfly Papilio xuthus. In this study, we found that Papiliocin induced the accumulation of reactive oxygen species (ROS) and hydroxyl radicals known to be important regulators of apoptosis in Candida albicans. To examine the relationship between the accumulation of ROS and the induction of apoptosis, we investigated the apoptotic effects of Papiliocin using apoptotic markers. Cells treated with Papiliocin showed a series of cellular changes normally seen in cells undergoing apoptosis: plasma membrane translocation of phosphatidylserine from the inner to the outer membrane leaflet, measured by Annexin V staining, dissipation of the mitochondrial membrane potential, observed by DiOC6(3) staining; and the presence of active metacaspases, measured using the CaspACE FITC-VAD-FMK, as early apoptotic events. In addition, DNA condensation and fragmentation, which is important marker of late stage apoptosis, was seen by DAPI and TUNEL assay. Therefore, these results suggest that Papiliocin leads to apoptosis in C. albicans via ROS accumulation.  相似文献   

10.
11.
Kang BR  Kim H  Nam SH  Yun EY  Kim SR  Ahn MY  Chang JS  Hwang JS 《BMB reports》2012,45(2):85-90
Our previous study demonstrated that CopA3, a disulfide dimer of the coprisin peptide analogue (LLCIALRKK), has antibacterial activity. In this study, we assessed whether CopA3 caused cellular toxicity in various mammalian cell lines. CopA3 selectively caused a marked decrease in cell viability in Jurkat T, U937, and AML-2 cells (human leukemia cells), but was not cytotoxic to Caki or Hela cells. Fragmentation of DNA, a marker of apoptosis, was also confirmed in the leukemia cell lines, but not in the other cells. CopA3-induced apoptosis in leukemia cells was mediated by apoptosis inducing factor (AIF), indicating induction of a caspase-independent signaling pathway.  相似文献   

12.
In the present study, we have investigated if reactive oxygen species are involved in the oxygen-dependent regulation of potassium-chloride cotransport activity in trout erythrocyte membrane. An increase in the oxygen level caused an increase in chloride-sensitive potassium transport (K(+)-Cl(-) cotransport). 5 mM hydrogen peroxide caused an increase in K(+)-Cl(-) cotransport at 5% oxygen. The increase in flux could be inhibited by adding extracellular catalase in the incubation. Pretreatment of the cells with mercaptopropionyl glycine (MPG), a scavenger of reactive oxygen species showing preference for hydroxyl radicals, abolished the activation of the K(+)-Cl(-) cotransporter by increased oxygen levels. The inhibition by MPG was reversible, and MPG could not inhibit the activation of transporter by the sulfhydryl reagent, N-ethylmaleimide, indicating that the effect of MPG was due to the scavenging of reactive oxygen species and not to the reaction of MPG with the cotransporter. Copper ions, which catalyze the production of hydroxyl radicals in the Fenton reaction, activated K(+)-Cl(-) cotransport significantly at hypoxic conditions (1% O(2)). These data suggest that hydroxyl radicals, formed from O(2) in close vicinity to the cell membrane, play an important role in the oxygen-dependent activation of the K(+)-Cl(-) cotransporter.  相似文献   

13.
Previously, the antimicrobial effects and membrane-active action of psacotheasin in Candida albicans were investigated. In this study, we have further found that a series of characteristic cellular changes of apoptosis in C. albicans can be induced by the accumulation of intracellular reactive oxygen species, specifically hydroxyl radicals, the well-known important regulators of apoptosis. Cells treated with psacotheasin showed diagnostic markers in yeast apoptosis at early stages: phosphatidylserine externalization from the inner to the outer membrane surface, visualized by Annexin V-staining; mitochondrial membrane depolarization, observed by DiOC6(3) staining; and increase of metacaspase activity, measured using the CaspACE FITC-VAD-FMK. Moreover, DNA fragmentation and condensation also revealed apoptotic phenomena at late stages through the TUNEL assay staining and DAPI staining, respectively. Taken together, our findings suggest that psacotheasin possess an antifungal property in C. albicans via apoptosis as another mode of action.  相似文献   

14.
The photocatalytic activity of titanium dioxide is widely utilized in science and technology. In the biological field, titanium dioxide is believed to be a disinfectant because it produces reactive oxygen species (ROS). However, there are multiple types of ROS such as hydroxyl radicals, superoxide anions, singlet oxygen, and hydrogen peroxide. In this study, we attempted to characterize the various mechanisms and roles of ROS in disinfection. Surprisingly, we found that titanium dioxide protected yeast cells from ultraviolet irradiation. We characterized the ROS produced under these conditions. The production of hydroxyl radicals and superoxide anions was confirmed; however, glucose in the yeast medium scavenged hydroxyl radicals. The photocatalytic activity of titanium dioxide produced oxidative products and reductive products, as oxidation and reduction occurred simultaneously. Once hydroxyl radicals are scavenged, the photocatalytic activity of titanium dioxide produces a reductive environment for fermenting yeast cells and protects them from oxidative stress by ultraviolet irradiation.  相似文献   

15.
Wei T  Sun H  Zhao X  Hou J  Hou A  Zhao Q  Xin W 《Life sciences》2002,70(16):1889-1899
Pistafolia A is a novel gallotannin isolated from the leaf extract of Pistacia weinmannifolia. In the present investigation, the ability of Pistafolia A to scavenge reactive oxygen species including hydroxyl radicals and superoxide anion was measured by ESR spin trapping technique. The inhibition effect on iron-induced lipid peroxidaiton in liposomes was studied. The protective effects of Pistafolia A against oxidative neuronal cell damage and apoptosis induced by peroxynitrite were also assessed. The results showed that Pistafolia A could scavenge both hydroxyl radicals and superoxide anion dose-dependently and inhibit lipid peroxidation effectively. In cerebellar granule cells pretreated with Pistafolia A, peroxynitrite-induced oxidative neuronal damage and apoptosis were prevented markedly. The antioxidant capacity of Pistafolia A was much more potent then that of the water-soluble analog of vitamin E, Trolox. The results suggested that Pistafolia A might be used as an effective natural antioxidant for the prevention and cure of neuronal diseases associated with the production of peroxynitrite and related reactive oxygen species.  相似文献   

16.
Reactive oxygen species (ROS), especially hydroxyl radicals are postulated to mediate apoptosis of the cell. Here we demonstrate that hydroxyl radicals generated selectively by photolysis of a photo-Fenton reagent, N,N'-bis(2-hydroperoxy-2-methoxyethyl)-1,4,5,8-naphthaldiimide (NP-III), induce apoptosis in HL-60 (human promyelocytic leukemia) cells involving the activation of caspase-3.  相似文献   

17.
Coprisin is a 43-mer defensin-like peptide from the dung beetle, Copris tripartitus. CopA3 (LLCIALRKK-NH2), a 9-mer peptide containing a single free cysteine residue at position 3 of its sequence, was derived from the α-helical region of coprisin and exhibits potent antibacterial and anti-inflammatory activities. The single cysteine implies a tendency for dimerization; however, it remains unknown whether this cysteine residue is indispensible for CopA3’s antimicrobial activity. To address this issue, in the present study we synthesized eight cysteine-substituted monomeric CopA3 analogs and two dimeric analogs, CopA3 (Dimer) and CopIK (Dimer), and evaluated their antimicrobial effects against bacteria and fungi, as well as their hemolytic activity toward human erythrocytes. Under physiological conditions, CopA3 (Mono) exhibits a 6/4 (monomer/dimer) molar ratio in HPLC area percent, indicating that its effects on bacterial strains likely reflect a CopA3 (Mono)/CopA3 (Dimer) mixture. We also report the identification of CopW, a new cysteine-free nonapeptide derived from CopA3 that has potent antimicrobial activity with virtually no hemolytic activity. Apparently, the cysteine residue in CopA3 is not essential for its antimicrobial function. Notably, CopW also exhibited significant synergistic activity with ampicillin and showed more potent antifungal activity than either wild-type coprisin or melittin.  相似文献   

18.
Using models of serum deprivation and 1-methyl-4-phenylpyridinium (MPP(+)), we investigated the mechanism by which thioredoxin (Trx) exerts its antiapoptotic protection in human neuroblastoma cells (SH-SY5Y) and preconditioning-induced neuroprotection. We showed that SH-SY5Y cells are highly sensitive to oxidative stress and responsive to both extracellularly administered and preconditioning-induced Trx. Serum deprivation and MPP(+) produced an elevation in the hydroxyl radicals, malondialdehyde and 4-hydroxy-2,3-nonenal (HNE), causing the cells to undergo mitochondria-mediated apoptosis. Trx in the submicromolar range blocked the observed apoptosis via a multiphasic protection mechanism that includes the suppression of cytochrome c release (most likely via the induction of Bcl-2), the inhibition of procaspase-9 and procaspase-3 activation, and the elevated level of Mn-SOD. The reduced form of Trx suppresses the serum-free-induced hydroxyl radicals, lipid peroxidation, and apoptosis, indicating that H(2)O(2) is removed by Trx peroxidase. The participation of Trx in preconditioning-induced neuroprotection is supported by the observation that inhibition of Trx synthesis with antisense oligonucleotides or of Trx reductase drastically reduced the hormesis effect. This effect of Trx-mediated hormesis against oxidative stress-induced apoptosis is striking. It induced a 30-fold shift in LD(50) in the MPP(+)-induced neurotoxicity.  相似文献   

19.
Many Genista species (Leguminosae), containing isoflavones as biologically active substances, show interesting biological properties such as hypoglycemic, antiinflammatory, antiulcer, spasmolytic, antioxidant, estrogenic and cytotoxic activity against different human cancer cell lines. In this work, we describe the chemical composition of the methanolic extracts from aerial parts of Genista sessilifolia DC. and Genista tinctoria L., and their biological activity testing the effect on pBR322 DNA cleavage induced by hydroxyl radicals (OH), generated from UV-photolysis of hydrogen peroxide (H2O2) and by nitric oxide (NO). In addition, we investigated the growth inhibitory activity of these natural products against human melanoma cell line (M14). The extracts of G. sessilifolia and G. tinctoria, for their isoflavone components, showed a protective effect on UV light and nitric oxide-mediated plasmid DNA damage, and inhibited the growth of melanoma cells. The data of the present study also suggest that these natural products could trigger apoptotic death in M14 cells. In fact, a high DNA fragmentation (COMET assay) and a significant increase of caspase-3 activity, not correlated to LDH release, a marker of membrane breakdown, occurred in melanoma cells exposed to these extracts. The significant production of reactive oxygen species (ROS) evidenced in these experimental conditions could contribute to trigger the apoptosis cascades.  相似文献   

20.
We investigated whether incubation of cultured human aortic endothelial cells (HAEC) with crystalline silica at the concentration 1 cm2/ml (chosen on the basis of a pilot experiment) leads to alterations typical of apoptosis. The binding of annexin V as early, and DNA fragmentation as late events of apoptosis were measured besides the number of cells with depolarized mitochondria. The generation of reactive oxygen species (ROS) by HAEC in presence of silica was determined as well as silica ability to in vitro generate hydroxyl radicals was investigated. After 18 h of silica incubation, about 30% of viable cells bound annexin V. After 24 h of silica treatment, the percentage of cells with fragmented DNA (Tunel positive) was 27% and it increased up to 50% after 48 h, whereas in untreated cells this percentage was 7% and 11% after 24 and 48 h, respectively. The presence of fragmented DNA in cells treated with silica was confirmed by agarose gel electrophoresis. In agreement with these results showing an induction of HAEC apoptosis by silica incubation, the number of cells with depolarized mitochondria was significantly higher after silica treatment as compared to the control. Apoptosis was also obtained with silica added to aliquots of anti-C5a-absorbed-medium. In the cells exposed to silica there was a significant increasing of ROS generation in comparison to the untreated cells. Apoptosis might be due to peroxidative stress since silica can generate hydroxyl radicals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号