首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
TRAIL signalling: decisions between life and death   总被引:6,自引:0,他引:6  
The TNF-related apoptosis-inducing ligand, TRAIL, has been shown to selectively kill tumour cells. This property has made TRAIL and agonistic antibodies against its death inducing receptors (TRAIL-R1 and TRAIL-R2) to some of the most promising novel biotherapeutic agents for cancer therapy. Here we review the signalling pathways initiated by the apoptosis- as well as the non-apoptosis-inducing receptors, TRAIL-R3 and TRAIL-R4. The TRAIL "death-inducing signalling complex" (DISC) transmits the apoptotic signal. DISC formation leads to activation of a protease cascade, finally resulting in cell death. The TRAIL death receptor-mediated "extrinsic" pathway and the "intrinsic" pathway, which is controlled by the interaction of members of the Bcl-2 family, interact with each other in the decision about life or death of a cell. Apoptotic and non-apoptotic signalling is influenced by the NF-kappaB, PKB/Akt and the MAPK signalling pathways. In this review we intend to summarise the most important findings on the TRAIL signalling network and the interplay in the decisions between life and death of a tumor cell.  相似文献   

2.
This review focuses on the principles in cell-cell communication and cellular ability to respond to external chemical changes which have been so crucial for the development of life on planet Earth. We now know that the capacity of free-living organisms which evolved more than a billion years ago to respond to intercellular signal molecules, originating either from themselves or from other sources in their vicinity, is so similar possibly even more sophisticated - to that of the cells in our own body, and these findings have had a major impact on our struggle to understand how life has evolved and how it can be maintained. Attention is drawn to the very important topic of mechanisms in cell death, being seen as an aggressive and very powerful instrument in the continuance of life and ability of life to proliferate into a plethora of new species, and use insulin-related material as our paradigm. Such signal molecules (hormones) may have played a major role in cellular maintenance throughout evolution.  相似文献   

3.
4.
The apoptosome: signalling platform of cell death   总被引:1,自引:0,他引:1  
Recent work on the initial switches that trigger cell death has revealed surprising inventions of nature that ensure the ordered suicide of a cell that has been selected for demise. Particularly intriguing is how a signal--the release of cytochrome c from the mitochondria--is translated into the activation of the death cascade, which leads to a point of no return. Now there is new understanding of how this crucial process is delicately handled by a cytosolic signalling platform known as the apoptosome. The formation of the apoptosome and the activation of its effector, caspase-9, reveals a sophisticated mechanism that might be more common than was initially thought.  相似文献   

5.
Erucylphosphocholine (ErPC) is a promising anti-neoplastic drug for the treatment of malignant brain tumours. It exerts strong anti-cancer activity in vivo and in vitro and induces apoptosis even in chemoresistant glioma cell lines. The purpose of this study was to expand on our previous observations on the potential mechanisms of ErPC-mediated apoptosis with a focus on death receptor activation and the caspase network. A172 and T98G glioma cells were treated with ErPC for up to 48 h. ErPC effects on the expression of the tumour necrosis factor (TNF) and TNF-related apoptosis-inducing ligand (TRAIL) receptor system, and on caspase activation were determined. ErPC had no effect on the expression of TNFalpha or TRAIL. Inhibition of the TNF or TRAIL signalling pathway with antagonistic antibodies or fusion proteins did not affect apoptosis induced by ErPC, and a dominant-negative FADD construct did not abolish ErPC-induced effects. Western blot analysis indicated that ErPC-triggered apoptosis resulted in a time-dependent processing of caspases-3, -7, -8 and -9 into their respective active subunits. Co-treatment of A172 cells with different caspase inhibitors prevented apoptosis but did not abrogate cell death. These data suggest that A172 cells might have an additional caspase-independent pathway that insures cell death and guarantees killing of those tumour cells whose caspase pathway is incomplete.  相似文献   

6.
7.
New DC  Wong YH 《Neuro-Signals》2002,11(4):197-212
The cloning of the opioid-receptor-like 1 (ORL(1)) receptor and the identification of nociceptin as its endogenous agonist have revealed a new G-protein-coupled receptor signalling system. The structural and functional homology of ORL(1) to the opioid receptor systems has posed a number of challenges in understanding the often competing physiological responses elicited by these G-protein-coupled receptors. Thus, this review will attempt to summarize recent research by many groups that has revealed numerous subtleties of the ORL(1) receptor and its signalling pathways, as well as document the efforts to produce high-affinity selective ligands for the ORL(1) receptor that may be of value as research and therapeutic tools.  相似文献   

8.
Adenosine-induced cell death: evidence for receptor-mediated signalling   总被引:4,自引:0,他引:4  
Adenosine modulates the proliferation, survival and apoptosis of many different cell types, ranging from epithelial, endothelial and smooth muscle cells, to cells of the immune and neural lineages. In this review, we critically discuss the available in vitro and in vivo data which support a role for adenosine in both development-associated apoptosis, and in diseases characterized by either pathologically increased cell death (e.g., ischemia, trauma and aging-associated neurodegeneration) or abnormally reduced spontaneous apoptosis (e.g., cancer). Particular emphasis is given to the possible role of extracellular adenosine receptors, since these may represent novel and attractive molecular targets for the pharmacological modulation of apoptosis. In some instances, adenosine-induced cell death has been demonstrated to require entry of the nucleoside inside cells; however, in many other cases, activation of specific adenosine extracellular receptors has been demonstrated. Of the four G protein-coupled adenosine receptors so far identified, the A2A and the A3 receptors have been specifically implicated in modulation of cell death. For the A3 receptor, results obtained by exposing both cardiomyocytes and brain astrocytes to graded concentrations of selective agonists suggest induction of both cell protection and cell death. Such opposite effects, which likely depend on the degree of receptor activation, may have important therapeutic implications in the pharmacological modulation of cardiac and brain ischemia. For the A2A receptor, recent intriguing data suggest a specific role in immune cell death and immunosuppression, which may be relevant to both adenosine-deaminase-immunodeficiency syndrome (a pathology characterized by accumulation of adenosine to toxic levels) and in tumors where induction of apoptosis via activation of specific extracellular receptors may be desirable. Finally, preliminary data suggest that, in a similar way to the adenosine-deaminase-immunodeficiency syndrome, the abnormal accumulation of adenosine in degenerative muscular diseases may contribute to muscle cell death. Although the role of adenosine receptors in this effect still remains to be determined, these data suggest that adenosine-induced apoptosis may also represent a novel pathogenic pathway in muscular dystrophies.  相似文献   

9.
This brief review focuses on current issues regarding the biochemical understanding of key reactions in the mitochondrial membrane damage induced by apoptosis signalling, especially in the pathway followed by death receptors in primary tissues. An overview of the emerging role of cardiolipin in apoptosis is also presented, discussing controversial issues and future directions of research. In addition, it is suggested that pro-apoptotic Bid may modulate key processes linking lipid constituents of mitochondrial membranes to lipid re-modelling that are altered early by death receptor signalling.  相似文献   

10.
11.
12.
13.
The smallpox story: life and death of an old disease   总被引:6,自引:0,他引:6       下载免费PDF全文
  相似文献   

14.
15.
Opiate drugs produce their effects by acting upon G protein coupled receptors (GPCRs) and although they are among the most effective analgesics available, their clinical use is restricted by unwanted side effects such as tolerance, physical dependence, respiratory depression, nausea and constipation. As a class, opiates share a common profile of unwanted effects but there are also significant differences in ligand liability for producing these actions. A growing number of studies show that GPCRs may exist in multiple active states that differ in their signalling and regulatory properties and which may distinctively bind different agonists. In this review we summarize evidence supporting the existence of multiple active conformations for MORs and DORs, analyze information favouring the existence of ligand-specific receptor states and assess how ligand-selective efficacy may contribute to the production of longer lasting, better tolerated opiate analgesics.  相似文献   

16.
17.
Insulin receptor internalization and signalling   总被引:5,自引:0,他引:5  
The insulin receptor kinase (IRK) is a tyrosine kinase whose activation, subsequent to insulin binding, is essential for insulin-signalling in target tissues. Insulin binding to its cell surface receptor is rapidly followed by internalization of insulin-IRK complexes into the endosomal apparatus (EN) of the cell. Internalization of insulin into target organs, especially liver, is implicated in effecting insulin clearance from the circulation. Internalization mediates IRK downregulation and hence attenuation of insulin sensitivity although most internalized IRKs readily recycle to the plasma membrane at physiological levels of insulin. A role for internalization in insulin signalling is indicated by the accumulation of activated IRKs in ENs. Furthermore, the maximal level of IRK activation has been shown to exceed that attained at the cell surface. Using an in vivo rat liver model in which endosomal IRKs are exclusively activated has revealed that IRKs at this intracellular locus are able by themselves to promote IRS-1 tyrosine phosphorylation and induce hypoglycemia. Furthermore, studies with isolated rat adipocytes reveal the EN to be the principle site of insulin-stimulated IRS-1 tyrosine phosphorylation and associated PI3K activation. Key steps in the termination of the insulin signal are also operative in ENs. Thus, an endosomal acidic insulinase has been identified which limits the extent of IRK activation. Furthermore, IRK dephosphorylation is effected in ENs by an intimately associated phosphotyrosine phosphatase(s) which, in rat liver, appears to regulate IRK activity in both a positive and negative fashion. Thus, insulin-mediated internalization of IRKs into ENs plays a crucial role in effecting and regulating signal transduction in addition to modulating the levels of circulating insulin and the cellular concentration of IRK in target tissues.  相似文献   

18.
Caspase knockouts: matters of life and death   总被引:11,自引:0,他引:11  
Apoptosis, the seemingly counter-intuitive act of physiological cell suicide, is accomplished by an evolutionarily conserved death program that is centered on the activation of a group of intracellular cysteine proteases known as caspases. It is now clear that both extra- and intra-cellular stimuli induce apoptosis by triggering the activation of these otherwise latent proteases in a process that culminates in caspase-mediated disintegration of cellular contents and their subsequent absorption by neighboring cells. While many elegant in vitro studies have demonstrated the requirement of caspase activities for the execution of most, if not all, apoptosis, the precise contribution of individual caspases in vivo and how they functionally relate to each other remain poorly elucidated. Fortunately, the generation of various caspase deficient mice through gene targeting has provided a unique window of opportunity to definitely examine the physiological function of these caspases in vivo. As the list of caspase knockouts grows, we considered it was time to review what we have been learned, from these studies about the exact role of individual caspases in mediating apoptotic events. We will also provide our prediction on the direction of future studies in this ever-growing field of caspases.  相似文献   

19.
The ubiquitin-proteasome pathway: on protein death and cell life.   总被引:42,自引:0,他引:42  
A Ciechanover 《The EMBO journal》1998,17(24):7151-7160
  相似文献   

20.
MicroRNAs: the fine-tuners of Toll-like receptor signalling   总被引:3,自引:0,他引:3  
Toll-like receptor (TLR) signalling must be tightly regulated to avoid excessive inflammation and to allow for tissue repair and the return to homeostasis after infection and tissue injury. MicroRNAs (miRNAs) have emerged as important controllers of TLR signalling. Several miRNAs are induced by TLR activation in innate immune cells and these and other miRNAs target the 3' untranslated regions of mRNAs encoding components of the TLR signalling system. miRNAs are also proving to be an important link between the innate and adaptive immune systems, and their dysregulation might have a role in the pathogenesis of inflammatory diseases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号