首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Total and polysome-bound ribosomes and the uptake and incorporation of3H-uridine and14C-leucine were examined in dividing microspores and in pollen grains isolated from anthers of 6 different developmental stages. Direct evidence was obtained that the formation of cytoplasm of the vegetative cell following microspore division is related to a rapid activation of RNA and protein synthesis and of ribosomes in differentiating pollen. Total ribosomes associated with gametophytic programme rose about 10times and the process of differentiation was accompanied by a rapid increase in uptake capacity of pollen grains for both uridine and leucine. Pollen development after cytoplasm synthesis and starch deposition continued by pollen maturation, which was characterized by a decline in RNA synthesis, dissociation of polysomes and by a further rise of transport activity of pollen grain wall for exogenous substrates, indicating probable pollen adaptation for utilization of metabolites from the degenerating tapetal cytoplasm.  相似文献   

2.
Regulation of the dopa decarboxylase gene of Drosophila has been studied at the genetic and molecular levels. Here we report a direct assay for the tissue and temporal regulation of Ddc. A dopa decarboxylase (DDC) peptide was obtained by bacterial expression of a portion of the DDC gene in a pUC plasmid. Antisera raised against this biologically purified DDC peptide react specifically with Drosophila DDC in histological preparations and protein blots. The levels of DDC cross-reacting material closely parallel the levels of enzyme activity observed during development, indicating that DDC is degraded during periods of declining activity. We find that DDC is expressed in only two tissues, namely, the epidermis and the nervous system of the larva and adult. Epidermal DDC was found within the epidermal cells and was not detected in the overlying cuticle. DDC-containing neurons were observed in the central as well as in the visceral nervous system. Paired and unpaired midline neurons in the ventral ganglia are arranged in a segmental pattern. A subset of the DDC-positive neurons appears to correlate with the serotonin-positive neurons suggesting that the others are producing only dopamine. We find that the DDC activity associated with the proventriculus and ovary is due to the presence of DDC in the stomatogastric and caudal system neurons specifically associated with those structures.  相似文献   

3.
Following the astonishing molecular diversity of voltage-gated ion channels that was revealed in the past few decades, the ion channel repertoire expressed by neurons has been implicated as the major factor governing their functional heterogeneity. Although the molecular structure of ion channels is a key determinant of their biophysical properties, their subcellular distribution and densities on the surface of nerve cells are just as important for fulfilling functional requirements. Recent results obtained with high resolution quantitative localization techniques revealed complex, subcellular compartment-specific distribution patterns of distinct ion channels. Here I suggest that within a given neuron type every ion channel has a unique cell surface distribution pattern, with the functional consequence that this dramatically increases the computational power of nerve cells.  相似文献   

4.
Mutations in the human X-linked cyclin-dependent kinase-like 5 (CDKL5) gene have been identified in patients with Rett syndrome (RTT), West syndrome, and X-linked infantile spasms, sharing the common feature of mental retardation and early seizures. CDKL5 is a rather uncharacterized kinase, but its involvement in RTT seems to be explained by the fact that it works upstream of MeCP2, the main cause of Rett syndrome. To understand the role of this kinase for nervous system functions and to address if molecular mechanisms are involved in regulating its distribution and activity, we studied the ontogeny of CDKL5 expression in developing mouse brains by immunostaining and Western blotting. The expression profile of CDKL5 was compared with that of MeCP2. The two proteins share a general expression profile in the adult mouse brain, but CDKL5 levels appear to be highly modulated at the regional level. Its expression is strongly induced in early postnatal stages, and in the adult brain CDKL5 is present in mature neurons, but not in astroglia. Interestingly, the presence of CDKL5 in the cell nucleus varies at the regional level of the adult brain and is developmentally regulated. CDKL5 shuttles between the cytoplasm and the nucleus and the C-terminal tail is involved in localizing the protein to the cytoplasm in a mechanism depending on active nuclear export. Accordingly, Rett derivatives containing disease-causing truncations of the C terminus are constitutively nuclear, suggesting that they might act as gain of function mutations in this cellular compartment.  相似文献   

5.
Mammalian cells employ a network of DNA repair pathways. DNA repair is required during development to ensure accuracy of DNA replication in the rapidly dividing embryonic cells and to maintain genomic integrity in the mature organism. An enzyme involved in repair of replication errors generated on either normal or oxidatively damaged DNA templates, is the mammalian ortholog of the Escherichia coli MutY DNA glycosylase (MYH). We show that levels of MYH isoform, detected at the E14 embryonic stage, decrease during embryonic and neonatal rat development, while new isoforms appear and gradually increase in the neonate and adult brain. The temporally declining expression of embryonic MYH resembles the pattern of proliferating cell nuclear antigen (PCNA) decline during this period. Immunohistochemical analyses of the embryonic brain show that cells staining for MYH initially coincide with cells staining for PCNA. At later stages PCNA declines, while MYH is detected primarily outside the nucleus. MutY-like glycosylase activity for adenines misincorporated opposite oxidized guanines is detected in both, embryonic and adult brain extracts. Together, these findings suggest that in proliferating embryonic cells, MYH might be primarily involved in post replicative repair of nuclear DNA, whereas in post mitotic neurons, in the repair of mitochondrial DNA.  相似文献   

6.
M-FABP from flight muscle of the locust,Schistocerca gregaria, is similar to mammalian H-FABP in its physical characteristics and amino acid sequence. We have studied developmental changes using ELISA, Northern Blotting, and EM/immuno-gold techniques. M-FABP is found in cytoplasm and nuclei, but not in mitochondria. It is the most abundant soluble muscle protein in fully developed adult locusts, comprising 18% of the total cytosolic protein. However, no FABP is detectable at the beginning of the adult stage. Its concentration rises dramatically during the next 10 days, after which it reaches its maximal value. Expression apparently is turned on after adult ecdysis and continues for 10 days; thereafter, FABP mRNA diminishes and reaches a constant, but low level, probably needed to maintain the current FABP level. From a series of experiments employing metamorphosis-controlling hormones and antihormones it is evident that the induction of FABP expression is directly linked to metamorphosis.Abbreviations ELISA Enzyme Linked Immuno Sorbent Assay - FABP Fatty Acid-Binding Protein - H-FABP mammalian Heart Fatty Acid-Binding Protein - M-FABP locust flight Muscle Fatty Acid-Binding Protein  相似文献   

7.
One of the proposed roles of sarcoglycan is to stabilize dystrophin glycoprotein complexes in muscle sarcolemma. Involvement in signal transduction has also been proposed and abnormalities in some sarcoglycan genes are known to be responsible for muscular dystrophy. While characterization of sarcoglycans in muscle has been performed, little is known about its functions in the non-muscle tissues in which mammalian sarcoglycans are expressed. Here, we investigated temporal and spatial expression patterns of Drosophila beta-sarcoglycan (dScgbeta) during development by immunohistochemistry. In addition to almost ubiquitous expression in various tissues and organs, as seen for its mammalian counterpart, anti-dScgbeta staining data of embryos, eye imaginal discs, and salivary glands demonstrated cytoplasmic localization during S phase in addition to plasma membrane staining. Furthermore we found that subcellular localization of dScgbeta dramatically changes during mitosis through possible association with tubulin. These observations point to a complex role of sarcoglycans in non-muscle tissues.  相似文献   

8.
We evaluated the changes of metallothionein induction and cellular zinc distribution in HepG2 cells by interferonbeta treatment. Immunohistochemical staining of metallothionein was observed in the cytoplasm and nuclei of hepatocytes; which was observed predominantly in the cells treated with interferon and zinc compared to those with zinc alone, interferon alone or the no-treated control. The cellular zinc level was higher in order of the interferon- and zinc-treated cells, the zinc-alone-treated cells, and the interferon-alone-treated cells. Flow cytometry showed that S-phase population increased in interferon-alone-treated cells and interferon- and zinc-treated cells, but not in zinc-alone-treated ones. Cellular elemental distribution was analyzed using in-air micro-particle induced X-ray emission. In zinc-alone-treated sample, X-ray spectra showed good consistency between the enhanced cellular zinc distribution and the phosphorous map. Localizations of bromine followed by interferon treatment were found accompanying a spatial correlation with the phosphorous map. The samples treated with interferon and zinc showed the marked accumulation of zinc and bromine. Discrete bromine accumulation sites were clearly visible with a strong spatial correlation followed by zinc accumulation. These findings suggest that interferonbeta in combination with zinc predominantly induces metallothionein expression in HepG2 cells. In addition, interferonbeta may promote the translocation of metallothionein-bound zinc from cytoplasm to S-phase nuclei.  相似文献   

9.
10.
The Notch gene in Drosophila encodes a transmembrane protein with homology to EGF that appears to mediate cell-cell interactions necessary for proper epidermal vs. neural fate decisions. In this study, we examine Notch expression in detail throughout embryonic and imaginal development using confocal laser-scanning microscopy and specific mAb probes. We find that Notch is expressed in a tissue-specific manner as early as the cellular blastoderm stage, when cells of the presumptive mesoderm clearly express less Notch than adjacent ectodermal precursors. Notch is abundantly expressed during the initial determination of neuronal lineages, such as the embryonic neuroblasts and the precursors of sensory neurons in the imaginal disc epithelia, but expression quickly decreases during subsequent differentiation. These changing patterns of Notch expression do not correlate well with cell movements, and thus do not appear to support the notion that the major function of Notch is to maintain epithelial integrity via adhesive mechanisms. Our data suggest instead that Notch may act as a cell-surface receptor, perhaps functioning in the lateral inhibition mechanism that is necessary for proper spacing of neuronal precursors.  相似文献   

11.
The distribution of glucokinase in rat liver under both normal feeding and fasting-refeeding conditions was investigated immunohistochemically. Under normal feeding conditions, glucokinase immunoreactivity was observed in both nuclei and cytoplasm of parenchymal cells. The nuclei were stained intensely and evenly, whereas the cytoplasm showed weak immunoreactivity of different degrees of staining intensity depending on the location of the cells. The cytoplasm of perivenous hepatocytes was stained more intensely, though not so much more, than that of periportal hepatocytes. The cytoplasm of hepatocytes surrounding the terminal hepatic venule (THV), of hepatocytes surrounding the portal triad, and of some other hepatocytes showed a stronger immunoreactivity than that of residual hepatocytes. The nuclear immunoreactivity in hepatocytes surrounding the portal triad and in some other hepatocytes was weak or absent, and positive immunoreactivity was detected at the plasma membrane of some of these cells. After 72 h of fasting, glucokinase immunoreactivity was markedly decreased in all hepatocytes. After the start of refeeding, the cytoplasmic immunoreactivity began to increase first in the parenchymal cells surrounding the THV and extended to those in the intermediate zone followed by those in the periportal zone. In contrast, the increase in nuclear immunoreactivity started in hepatocytes situated in the intermediate zone adjacent to the perivenous zone and then extended to those in the perivenous zone followed by those in the periportal zone. Hepatocytes surrounding either THV or portal triad showed a distinctive change in immunoreactivity during the refeeding period. After 10 h of refeeding, strong immunoreactivity was observed in both the cytoplasm and the nuclei of all hepatocytes, and appreciable glucokinase immunoreactivity was detected at the plasma membrane of some hepatocytes. These findings are discussed from the standpoint of a functional role of glucokinase in hepatic glucose metabolism.  相似文献   

12.
There is little information on the molecular events that control the subcellular distribution of protein kinase C during cardiac cell differentiation. We examined protein kinase C activity and the subcellular distribution of representatives of the "classical," "novel," and "atypical" protein kinase C's in P19 murine teratoma cells induced to undergo differentiation into cardiac myocytes by the addition of dimethylsulfoxide to the medium (Grepin et al., Development 124, 2387-2395, 1997). Differentiation was assessed by the presence of striated myosin, a morphological marker for cardiac cells. Addition of dimethyl sulfoxide to the medium resulted in the appearance of striated myosin by 10 days postincubation. Immunolocalization and Western blot studies revealed that a significant proportion of protein kinase Calpha, -epsilon, and -zeta were associated with the particulate fraction in P19 cells prior to differentiation. Differentiation into cardiac cells resulted in a translocation of protein kinase C activity from the particulate fraction to cytosol and localization of most of protein kinase Calpha, -epsilon, and -zeta to the cytoplasmic compartment. The total cellular protein kinase C activity was unaltered during differentiation. The translocation of protein kinase C activity during differentiation of P19 cells into cardiac myocytes was associated with a decrease in the levels of cellular 1, 2-diacyl-sn-glycerol. The cellular levels of phosphatidylserine and phosphatidylinositol did not change during differentiation. Addition of 1,2-dioctanoyl-sn-glycerol, a cell-permeant 1, 2-diacyl-sn-glycerol analog, reversed the differentiation-induced switch in the relative distribution of protein kinase C activity and dramatically increased the association of protein kinase Calpha with the particulate fraction. Addition of 1,2-dioctanoyl-sn-glycerol did not reverse the pattern of distribution for protein kinase Cepsilon or -zeta. The results indicate that protein kinase C activity and protein kinase Calpha, -epsilon and -zeta isoforms are redistributed from the particulate to the cytosolic fraction during differentiation of P19 cells into cardiomyocytes. The mechanism for the redistribution of protein kinase Calpha may be related to the reduction in the cellular 1,2-diacyl-sn-glycerol levels that accompany differentiation.  相似文献   

13.
Strontium ranelate, a new agent for the treatment of osteoporosis, has been shown stimulate bone formation in various experimental models. This study examines the effect of strontium ranelate on gene expression in osteoblasts, as well as the formation of mineralized (von Kossa-positive) colony-forming unit-osteoblasts (CFU-obs). Bone marrow-derived stromal cells cultured for 21 days under differentiating conditions, when exposed to strontium ranelate, displayed a significant time- and concentration-dependent increase in the expression of the master gene, Runx2, as well as bone sialoprotein (BSP), but interestingly without effects on osteocalcin. This was associated with a significant increase in the formation of CFU-obs at day 21 of culture. In U-33 pre-osteoblastic cells, strontium ranelate significantly enhanced the expression of Runx2 and osteocalcin, but not BSP. Late, more mature osteoblastic OB-6 cells showed significant elevations in BSP and osteocalcin, but with only minimal effects on Runx2. In conclusion, strontium ranelate stimulates osteoblast differentiation, but the induction of the program of gene expression appears to be cell type-specific. The increased osteoblastic differentiation is the likely basis underlying the therapeutic bone-forming actions of strontium ranelate.  相似文献   

14.
Aquaporins (AQPs) accelerate the movement of water and other solutes across biological membranes, yet the molecular mechanisms of each AQP's transport function and the diverse physiological roles played by AQP family members are still being defined. We therefore have characterized an AQP in a model organism, Drosophila melanogaster, which is amenable to genetic manipulation and developmental analysis. To study the mechanism of Drosophila Malpighian tubule (MT)-facilitated water transport, we identified seven putative AQPs in the Drosophila genome and found that one of these, previously named DRIP, has the greatest sequence similarity to those vertebrate AQPs that exhibit the highest rates of water transport. In situ mRNA analyses showed that DRIP is expressed in both embryonic and adult MTs, as well as in other tissues in which fluid transport is essential. In addition, the pattern of DRIP expression was dynamic. To define DRIP-mediated water transport, the protein was expressed in Xenopus oocytes and in yeast secretory vesicles, and we found that significantly elevated rates of water transport correlated with DRIP expression. Moreover, the activation energy required for water transport in DRIP-expressing secretory vesicles was 4.9 kcal/mol. This low value is characteristic of AQP-mediated water transport, whereas the value in control vesicles was 16.4 kcal/mol. In contrast, glycerol, urea, ammonia, and proton transport were unaffected by DRIP expression, suggesting that DRIP is a highly selective water-specific channel. This result is consistent with the homology between DRIP and mammalian water-specific AQPs. Together, these data establish Drosophila as a new model system with which to investigate AQP function. fluid homeostasis; osmosis; channel; membrane  相似文献   

15.
Epidermal growth factor (EGF) is a multifunctional regulator of mammary epithelial cells (MEC) that transduces its signals through the EGF receptor (EGFR). To clarify the role of the EGFR in the mammary gland, EGFR expression, localization and function were examined during different developmental stages in rats. Immunoblot analysis demonstrated high levels of EGFR during puberty, pregnancy and involution as well as at sexual maturity, and low levels throughout lactation. An immunohistochemical assay was used to show that EGFR was distinctly expressed in a variety of cell types throughout mammary glands from virgin rats and rats during pregnancy and involution, and was down-regulated in all cell types throughout lactation. To examine the relationship between EGFR expression and function, primary MEC were cultured under conditions that induced physiologically relevant growth, morphogenesis and lactogenesis. Cultured MEC expressed an in vivo-like profile of EGFR. EGFR was high in immature MEC, down-regulated in functionally differentiated MEC, and then up-regulated in terminally differentiated and apoptotic MEC. An inhibitor of the tyrosine kinase domain of EGFR was used to demonstrate that EGFR signaling was required for growth and differentiation of immature MEC, and for survival of terminally differentiated MEC, but not for maintaining functional differentiation.  相似文献   

16.
Dramatic changes in the localization of conventional non-muscle myosin characterize early embryogenesis in Drosophila melanogaster. During cellularization, myosin is concentrated around the furrow canals that form the leading margin of the plasma membrane as it plunges inward to package each somatic nucleus into a columnar epithelial cell. During gastrulation, there is specific anti-myosin staining at the apical ends of those cells that change shape in regions of invagination. Both of these localizations appear to result from a redistribution of a cortical store of maternal myosin. In the preblastoderm embryo, myosin is localized to the egg cortex, sub-cortical arrays of inclusions, and, diffusely, the yolk-free periplasm. At the syncytial blastoderm stage, myosin is found within cytoskeletal caps associated with the somatic nuclei at the embryonic surface. Following the final syncytial division, these myosin caps give rise to the myosin rings observed during cellularization. These distributions are observed with both whole immune serum and affinity-purified antibodies directed against Drosophila non-muscle myosin heavy chain. They are not detected in embryos stained with anti-Drosophila muscle myosin antiserum or with preimmune serum. Although immunolocalization can only suggest possible function, these myosin localizations and the coincident changes in cell morphology are consistent with a key role for non-muscle myosin in powering cellularization and gastrulation during embryogenesis.  相似文献   

17.
18.
19.
20.
Fatty-acid-binding protein (FABP) from the flight muscle of the locust, Schistocerca gregaria, is similar to mammalian heart FABP in its primary structure and biochemical characteristics. We have studied developmental changes using enzyme-linked immunosorbent assays, RNA hybridization and electron microscopy of immunogold-labeled sections. Locust muscle FABP is the most abundant soluble muscle protein in fully developed adult locusts, comprising 18% of the total cytosolic protein. At the beginning of the adult stage, however, no FABP is detectable. Its concentration rises during the following 10 days, after which it reaches its maximal value. FABP mRNA is present shortly after adult ecdysis; its concentration increases for 10 days, before it diminishes and reaches a constant, low level, probably needed to maintain the established FABP level. The protein is abundant in cytosol and nuclei, but virtually absent in mitochondria.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号