首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Aquaporins (AQPs) were originally identified as channels facilitating water transport across the plasma membrane. They have a pair of highly conserved signature sequences, asparagine-proline-alanine (NPA) boxes, to form a pore. However, some have little conserved amino acid sequences around the NPA boxes unclassifiable to two previous AQP subfamilies, classical AQPs and aquaglyceroporins. These will be called unorthodox AQPs in this review. Interestingly, these unorthodox AQPs have a highly conserved cysteine residue downstream of the second NPA box. AQPs also have a diversity of functions: some related to water transport such as fluid secretion, fluid absorption, and cell volume regulation, and the others not directly related to water transport such as cell adhesion, cell migration, cell proliferation, and cell differentiation. Some AQPs even permeate nonionic small molecules, ions, metals, and possibly gasses. AQP gene disruption studies have revealed their physiological roles: water transport in the kidney and exocrine glands, glycerol transport in fat metabolism and in skin moisture, and nutrient uptakes in plants. Furthermore, AQPs are also present at intracellular organelles, including tonoplasts, mitochondria, and the endoplasmic reticulum. This review focuses on the evolutionary aspects of AQPs from bacteria to humans in view of the structural and functional diversities of AQPs.  相似文献   

2.
Soto G  Alleva K  Amodeo G  Muschietti J  Ayub ND 《Gene》2012,503(1):165-176
Aquaporins (AQPs) represent a family of channel proteins that transport water and/or small solutes across cell membranes in the three domains of life. In all previous phylogenetic analysis of aquaporin, trees constructed using proteins with very low amino acid identity (<15%) were incongruent with rRNA data. In this work, restricting the evolutionary study of aquaporins to proteins with high amino acid identity (>25%), we showed congruence between AQPs and organismal trees. On the basis of this analysis, we defined 19 orthologous gene clusters in flowering plant species (3 PIP-like, 7 TIP-like, 6 NIP-like and 3 SIP-like). We described specific conserved motifs for each subfamily and each cluster, which were used to develop a method for automatic classification. Analysis of amino acid identity between orthologous monocotyledon and dicotyledon AQPs from each cluster, suggested that PIPs are under high evolutionary constraint. The phylogenetic analysis allowed us the assignment of orthologous aquaporins for very distant animal lineages (tetrapods-fishes). We also demonstrated that the location of all vertebrate AQPs in the ortholog clusters could be predicted by comparing their amino acid identity with human AQPs. We defined four AQP subfamilies in animals: AQP1-like, AQP8-like, AQP3-like and AQP11-like. Phylogenetic analysis showed that the four animal AQPs subfamilies are related with PIP-like, TIP-like, NIP-like and SIP-like subfamilies, respectively. Thus, this analysis would allow the prediction of individual AQPs function on the basis of orthologous genes from Arabidopsis thaliana and Homo sapiens.  相似文献   

3.
Recently, two novel mammalian aquaporins (AQPs), AQPs 11 and 12, have been identified and classified as members of a new AQP subfamily, the "subcellular AQPs". In members of this subfamily one of the two asparagine-proline-alanine (NPA) motifs, which play a crucial role in selective water conduction, are not completely conserved. Mouse AQP11 (mAQP11) was expressed in Sf9 cells and purified using the detergent Fos-choline 10. The protein was reconstituted into liposomes, which were used for water conduction studies with a stopped-flow device. Single water permeability (pf) of AQP11 was measured to be 1.72+/-0.03x10(-13) cm(3)/s, suggesting that other members of the subfamily with incompletely conserved NPA motifs may also function as water channels.  相似文献   

4.
A comprehensive evolutionary analysis of aquaporins, a family of intrinsic membrane proteins that function as water channels, was conducted to establish groups of homology (i.e., to identify orthologues and paralogues) within the family and to gain insights into the functional constraints acting on the structure of the aquaporin molecule structure. Aquaporins are present in all living organisms, and therefore, they provide an excellent opportunity to further our understanding of the broader biological significance of molecular evolution by gene duplication followed by functional and structural specialization. Based on the resulting phylogeny, the 153 channel proteins analyzed were classified into six major paralogous groups: (1) GLPs, or glycerol-transporting channel proteins, which include mammalian AQP3, AQP7, and AQP9, several nematode paralogues, a yeast paralogue, and Escherichia coli GLP; (2) AQPs, or aquaporins, which include metazoan AQP0, AQP1, AQP2, AQP4, AQP5, and AQP6; (3) PIPs, or plasma membrane intrinsic proteins of plants, which include PIP1 and PIP2; (4) TIPs, or tonoplast intrinsic proteins of plants, which include alphaTIP, gammaTIP, and deltaTIP; (5) NODs, or nodulins of plants; and (6) AQP8s, or metazoan aquaporin 8 proteins. Of these groups, AQPs, PIPs, and TIPs cluster together. According to the results, the capacity to transport glycerol shown by several members of the family was acquired only early in the history of the family. The new phylogeny reveals that several water channel proteins are misclassified and require reassignment, whereas several previously undetermined ones can now be classified with confidence. The deduced phylogenetic framework was used to characterize the molecular features of water channel proteins. Three motifs are common to all family members: AEF (Ala-Glu-Phe), which is located in the N-terminal domain; and two NPA (Asp-Pro-Ala) boxes, which are located in the center and C-terminal domains, respectively. Other residues are found to be conserved within the major groups but not among them. Overall, the PIP subfamily showed the least variation. In general, no radical amino acid replacements affecting tertiary structure were identified, with the exception of Ala-->Ser in the TIP subfamily. Constancy of rates of evolution was demonstrated within the different paralogues but rejected among several of them (GLP and NOD).  相似文献   

5.
The aquaporins (AQPs) are a family of transmembrane proteins forming water channels. In mammals, water transport through AQPs is important in kidney and other tissues involved in water transport. Some AQPs (aquaglyceroporins) also exhibit glycerol and urea permeability. Skin is the limiting tissue of the body and within skin, the stratum corneum (SC) of the epidermis is the limiting barrier to water loss by evaporation. The aquaglyceroporin AQP3 is abundantly expressed in keratinocytes of mammalian skin epidermis. Mice lacking AQP3 have dry skin and reduced SC hydration. Interestingly, however, results suggested that impaired glycerol, rather than water transport was responsible for this phenotype. In the present work, we examined the overall expression of AQPs in cells from human skin and we reviewed data on the functional role of AQPs in skin, particularly in the epidermis. By RT-PCR on primary cell cultures, we found that up to 6 different AQPs (AQP1, 3, 5, 7, 9 and 10) may be selectively expressed in various cells from human skin. AQP1, 5 are strictly water channels. But in keratinocytes, the major cell type of the epidermis, only the aquaglyceroporins AQP3, 10 were found. To understand the role of aquaglyceroporins in skin, we examined the relevance to human skin of the conclusion, from studies on mice, that skin AQP3 is only important for glycerol transport. In particular, we find a correlation between the absence of AQP3 and intercellular edema in the epidermis in two different experimental models: eczema and hyperplastic epidermis. In conclusion, we suggest that in addition to glycerol, AQP3 may be important for water transport and hydration in human skin epidermis.  相似文献   

6.
The discovery of aquaporin (AQP) has made a great impact on life sciences. AQPs are a family of homologous water channels widely distributed in plants, unicellular organisms, invertebrates, and vertebrates. So far, 13 AQPs have been identified in human. AQP3, 7, 9, and 10 are subcategorized as aquaglyceroporins which permeabilize glycerol as well as water. Many investigators have demonstrated that AQPs play a crucial role in maintaining water homeostasis, but the physiological significance of some AQPs as a glycerol channel is not fully understood. Adipose tissue is a major source of glycerol and glycerol is one of substrates for gluconeogenesis. This review focuses on recent studies of glycerol metabolism through aquaglyceroporins, and briefly discusses the importance of glycerol channel in adipose tissues and liver.  相似文献   

7.
Aquaporins and glycerol metabolism   总被引:6,自引:0,他引:6  
The discovery of aquaporin (AQP) has made a great impact on life sciences. AQPs are a family of homologous water channels widely distributed in plants, unicellular organisms, invertebrates, and vertebrates. So far, 13 AQPs have been identified in human. AQP3, 7, 9, and 10 are subcategorized as aquaglyceroporins which permeabilize glycerol as well as water. Many investigators have demonstrated that AQPs play a crucial role in maintaining water homeostasis, but the physiological significance of some AQPs as a glycerol channel is not fully understood. Adipose tissue is a major source of glycerol and glycerol is one of substrates for gluconeogenesis. This review focuses on recent studies of glycerol metabolism through aquaglyceroporins, and briefly discusses the importance of glycerol channel in adipose tissues and liver.  相似文献   

8.
The aquaporins (AQPs) are a family of transmembrane proteins forming water channels. In mammals, water transport through AQPs is important in kidney and other tissues involved in water transport. Some AQPs (aquaglyceroporins) also exhibit glycerol and urea permeability. Skin is the limiting tissue of the body and within skin, the stratum corneum (SC) of the epidermis is the limiting barrier to water loss by evaporation. The aquaglyceroporin AQP3 is abundantly expressed in keratinocytes of mammalian skin epidermis. Mice lacking AQP3 have dry skin and reduced SC hydration. Interestingly, however, results suggested that impaired glycerol, rather than water transport was responsible for this phenotype. In the present work, we examined the overall expression of AQPs in cells from human skin and we reviewed data on the functional role of AQPs in skin, particularly in the epidermis. By RT-PCR on primary cell cultures, we found that up to 6 different AQPs (AQP1, 3, 5, 7, 9 and 10) may be selectively expressed in various cells from human skin. AQP1, 5 are strictly water channels. But in keratinocytes, the major cell type of the epidermis, only the aquaglyceroporins AQP3, 10 were found. To understand the role of aquaglyceroporins in skin, we examined the relevance to human skin of the conclusion, from studies on mice, that skin AQP3 is only important for glycerol transport. In particular, we find a correlation between the absence of AQP3 and intercellular edema in the epidermis in two different experimental models: eczema and hyperplastic epidermis. In conclusion, we suggest that in addition to glycerol, AQP3 may be important for water transport and hydration in human skin epidermis.  相似文献   

9.
The discovery of water channel protein (aquaporin [AQP]) has made a great impact on life sciences. So far, 13 AQPs have been identified in human. AQP3, 7, 9, and 10 are subcategorized as aquaglyceroporins which permeabilize glycerol as well as water. Many investigators have demonstrated that AQPs play a crucial role in the maintenance of water homeostasis, but the physiological significance of some AQPs as glycerol channels remains elusive. Adipocyte is a major source of glycerol, which is one of the substrates for hepatic gluconeogenesis. This review focuses on recent studies on glycerol metabolism through AQP7 and AQP9, and briefly discusses the importance of glycerol channel in adipocytes, liver, and heart.  相似文献   

10.
Recently, two novel mammalian aquaporins (AQPs), AQPs 11 and 12, have been identified and classified as members of a new AQP subfamily, the “subcellular AQPs”. In members of this subfamily one of the two asparagine-proline-alanine (NPA) motifs, which play a crucial role in selective water conduction, are not completely conserved. Mouse AQP11 (mAQP11) was expressed in Sf9 cells and purified using the detergent Fos-choline 10. The protein was reconstituted into liposomes, which were used for water conduction studies with a stopped-flow device. Single water permeability (pf) of AQP11 was measured to be 1.72 ± 0.03 × 10− 13 cm3/s, suggesting that other members of the subfamily with incompletely conserved NPA motifs may also function as water channels.  相似文献   

11.
A new subfamily of major intrinsic proteins in plants   总被引:10,自引:0,他引:10  
The major intrinsic proteins (MIPs) form a large protein family of ancient origin and are found in bacteria, fungi, animals, and plants. MIPs act as channels in membranes to facilitate passive transport across the membrane. Some MIPs allow small polar molecules like glycerol or urea to pass through the membrane. However, the majority of MIPs are thought to be aquaporins (AQPs), i.e., they are specific for water transport. Plant MIPs can be subdivided into the plasma membrane intrinsic protein, tonoplast intrinsic protein, and NOD26-like intrinsic protein subfamilies. By database mining and phylogenetic analyses, we have identified a new subfamily in plants, the Small basic Intrinsic Proteins (SIPs). Comparisons of sequences from the new subfamily with conserved amino acid residues in other MIPs reveal characteristic features of SIPs. Possible functional consequences of these features are discussed in relation to the recently solved structures of AQP1 and GlpF. We suggest that substitutions at conserved and structurally important positions imply a different substrate specificity for the new subfamily.  相似文献   

12.
13.
BACKGROUND INFORMATION: MIPs (major intrinsic proteins) form channels across biological membranes that control recruitment of water and small solutes such as glycerol and urea in all living organisms. Because of their widespread occurrence and large number, MIPs are a sound model system to understand evolutionary mechanisms underlying the generation of protein structural and functional diversity. With the recent increase in genomic projects, there is a considerable increase in the quantity and taxonomic range of MIPs in molecular databases. RESULTS: In the present study, I compiled more than 450 non-redundant amino acid sequences of MIPs from NCBI databases. Phylogenetic analyses using Bayesian inference reconstructed a statistically robust tree that allowed the classification of members of the family into two main evolutionary groups, the GLPs (glycerol-uptake facilitators or aquaglyceroporins) and the water transport channels or AQPs (aquaporins). Separate phylogenetic analyses of each of the MIP subfamilies were performed to determine the main groups of orthology. In addition, comparative sequence analyses were conducted to identify conserved signatures in the MIP molecule. CONCLUSIONS: The earliest and major gene duplication event in the history of the MIP family led to its main functional split into GLPs and AQPs. GLPs show typically one single copy in microbes (eubacteria, archaea and fungi), up to four paralogues in vertebrates and they are absent from plants. AQPs are usually single in microbes and show their greatest numbers and diversity in angiosperms and vertebrates. Functional recruitment of NOD26-like intrinsic proteins to glycerol transport due to the absence of GLPs in plants was highly supported. Acquisition of other MIP functions such as permeability to ammonia, arsenite or CO2 is restricted to particular MIP paralogues. Up to eight fairly conserved boxes were inferred in the primary sequence of the MIP molecule. All of them mapped on to one side of the channel except the conserved glycine residues from helices 2 and 5 that were found in the opposite side.  相似文献   

14.
The aim of this article is to describe the roles of water channel proteins (WCPs) in brain functionality. The fluid compartments of the brain, which include the brain parenchyma (with intracellular and extracellular spaces), the intravascular and the cerebrospinal fluid compartments are presented. Then the localization and functional roles of WCPs found in the brain are described: AQP1, AQP2, AQP3, AQP4, AQP5, AQP7, AQP8, AQP9 and AQP11. In subsequent chapters the involvement of brain WCPs in pathologies are discussed: brain edema, brain trauma, brain tumors, stroke, dementia (Alzheimer's disease, human immunodeficiency virus - HIV-dementia), autism, pain signal transduction and migraine, hydrocephalus and other pathologies with neurological implications: eclampsia, uremia. New WCP ligands for brain imaging are also discussed.  相似文献   

15.
Aquaglyceroporins (AQP3, AQP7, AQP9 and AQP10) encompass a subfamily of aquaporins that allow the movement of water and other small solutes, especially glycerol, through cell membranes. Adipose tissue constitutes a major source of glycerol via AQP7. We have recently reported that, in addition to the well-known expression of AQP7 in adipose tissue, AQP3 and AQP9 are also expressed in omental and subcutaneous fat depots. Moreover, insulin and leptin act as regulators of aquaglyceroporins through the PI3K/Akt/mTOR pathway. AQP3 and AQP7 appear to facilitate glycerol efflux from adipose tissue while reducing the glycerol influx into hepatocytes via AQP9 to prevent the excessive lipid accumulation and the subsequent aggravation of hyperglycemia in human obesity. This Extra View focuses on the control of glycerol release by aquaglyceroporins in the adipose tissue and briefly discusses the importance of glycerol as a substrate for hepatic gluconeogenesis, pancreatic insulin secretion and cardiac ATP production.Key words: glycerol, aquaporin, fat accumulation, glucose homeostasis, insulin secretion, ATP production  相似文献   

16.
Aquaporins (AQPs) represent a ubiquitous class of integral membrane proteins that play critical roles in cellular osmoregulations in microbes, plants and mammals. AQPs primarily function as water-conducting channels, whereas members of a sub-class of AQPs, termed aquaglyceroporins, are permeable to small neutral solutes such as glycerol. While AQPs facilitate transmembrane permeation of water and/or small neutral solutes, they preclude the conduction of protons. Consequently, openings of AQP channels allow rapid water diffusion down an osmotic gradient without dissipating electrochemical potentials. Molecular structures of AQPs portray unique features that define the two central functions of AQP channels: effective water permeation and strict proton exclusion. This review describes AQP structures known to date and discusses the mechanisms underlying water permeation, proton exclusion and water permeability regulation.  相似文献   

17.
Recently, a new member of aquaporins was reported as AQP10 [Biochem. Biophys. Res. Commun. 287 (2001) 814], which is incompletely spliced to lose the sixth transmembrane domain and has poor water and no glycerol/urea permeabilities. Independently, we identified a similar clone in human. Our AQP10 consists of 301 amino acids with a highly conserved sixth transmembrane domain. AQP10 has higher identity with aquaglyceroporins (50% with AQP9, 48% with AQP3, 42% with AQP7) and lower identity with other aquaporins (32% with AQP1 and AQP8). AQP10 is expressed only in the small intestine with (approximately 2 kb). RNase protection assay revealed the absence of the unspliced form, supporting the authenticity of our clone. When expressed in Xenopus oocytes, AQP10 stimulated osmotic water permeability sixfold in a mercury-sensitive manner. Glycerol and urea uptakes were also stimulated, while adenine uptake was not. The genome structure of AQP10 is similar to those of other aquaglyceroporins (AQP3, AQP7, AQP9) with six exons. We conclude that AQP10 represents a new member of aquaglyceroporins functionally as well as structurally.  相似文献   

18.
The structural basis of water permeation and proton exclusion in aquaporins   总被引:2,自引:0,他引:2  
Fu D  Lu M 《Molecular membrane biology》2007,24(5-6):366-374
Aquaporins (AQPs) represent a ubiquitous class of integral membrane proteins that play critical roles in cellular osmoregulations in microbes, plants and mammals. AQPs primarily function as water-conducting channels, whereas members of a sub-class of AQPs, termed aquaglyceroporins, are permeable to small neutral solutes such as glycerol. While AQPs facilitate transmembrane permeation of water and/or small neutral solutes, they preclude the conduction of protons. Consequently, openings of AQP channels allow rapid water diffusion down an osmotic gradient without dissipating electrochemical potentials. Molecular structures of AQPs portray unique features that define the two central functions of AQP channels: effective water permeation and strict proton exclusion. This review describes AQP structures known to date and discusses the mechanisms underlying water permeation, proton exclusion and water permeability regulation.  相似文献   

19.

Background

Aquaporins (AQPs), members of a superfamily of transmembrane channel proteins, are ubiquitous in all domains of life. They fall into a number of branches that can be functionally categorized into two major sub-groups: i) orthodox aquaporins, which are water-specific channels, and ii) aquaglyceroporins, which allow the transport of water, non-polar solutes, such as urea or glycerol, the reactive oxygen species hydrogen peroxide, and gases such as ammonia, carbon dioxide and nitric oxide and, as described in this review, metalloids.

Scope of review

This review summarizes the key findings that AQP channels conduct bidirectional movement of metalloids into and out of cells.

Major conclusions

As(OH)3 and Sb(OH)3 behave as inorganic molecular mimics of glycerol, a property that allows their passage through AQP channels. Plant AQPs also allow the passage of boron and silicon as their hydroxyacids, boric acid (B(OH)3) and orthosilicic acid (Si(OH)4), respectively. Genetic analysis suggests that germanic acid (GeO2) is also a substrate. While As(III), Sb(III) and Ge(IV) are toxic metalloids, borate (B(III)) and silicate (Si(IV)) are essential elements in higher plants.

General significance

The uptake of environmental metalloids by aquaporins provides an understanding of (i) how toxic elements such as arsenic enter the food chain; (ii) the delivery of arsenic and antimony containing drugs in the treatment of certain forms of leukemia and chemotherapy of diseases caused by pathogenic protozoa; and (iii) the possibility that food plants such as rice could be made safer by genetically modifying them to exclude arsenic while still accumulating boron and silicon. This article is part of a Special Issue entitled Aquaporins.  相似文献   

20.
In the light of the recently published structure of GlpF and AQP1, we have analysed the nature of the residues which could be involved in the formation of the selectivity filter of aquaporins, glycerol facilitators and aquaglyceroporins. We demonstrate that the functional specificity for major intrinsic protein (MIP) channels can be explained on one side by analysing the polar environment of the residues that form the selective filter. On the other side, we show that the channel selectivity could be associated with the oligomeric state of the membrane protein. We conclude that a non-polar environment in the vicinity of the top of helix 5 could allow aquaglyceroporins and GlpF to exist as monomers within the hydrophobic environment of the membrane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号