首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A sensitive colorimetric detection for biomolecules based on aptamer was described. Poly(dimethylsiloxane) (PDMS)-gold nanoparticles (AuNPs) composite film was used as a platform for immobilizing anti-target aptamer. PDMS-AuNPs composite film only covered with aptamer showed high inhibiting ability towards silver reduction, after target molecules were conjugated on the modified surface, the catalytic efficiency of AuNPs for silver reduction was increased. In this system, the darkness density of silver enhancement was applied for target quantitative measurement. Lysozyme and adenosine 5'-triphosphate (ATP) were tested as the models, quantitative measurements with imaging software or semiquantitative measurements with naked eyes were carried out in the range of 1×10(-2)-1 μg/mL and 1×10(-4)-1×10(3) μg/mL, the volume of reagent using in each assay is 15 μL or less. We speculated that aptamer-target conjugates' inhibition ability for AuNPs' catalytic efficiency toward silver reduction might come from charge and spatial effects. This study can offer a completely novel and relatively general approach for colorimetrical aptamer sensors with good analytical properties and potential applications. The sensor could be coupled with digital transmission of images for remote monitoring system in diagnosis, food control, and environmental analysis.  相似文献   

2.
In this study, a colorimetric method was exploited to detect bisphenol A (BPA) based on BPA-specific aptamer and cationic polymer-induced aggregation of gold nanoparticles (AuNPs). The principle of this assay is very classical. The aggregation of AuNPs was induced by the concentration of cationic polymer, which is controlled by specific recognition of aptamer with BPA and the reaction of aptamer and cationic polymer forming “duplex” structure. This method enables colorimetric detection of BPA with selectivity and a detection limit of 1.50 nM. In addition, this colorimetric method was successfully used to determine spiked BPA in tap water and river water samples.  相似文献   

3.
HAuCl4 was reduced by sodium citrate to prepare 10 nm gold nanoparticles (AuNPs) that were modified by the bisphenol A aptamer (Apt) to obtain an aptamer–nanogold probe (Apt‐AuNP) for bisphenol A (BPA). The probes were aggregated nonspecifically to form large clusters, which showed a strong resonance light scattering (RLS) peak at 520 nm, under preparation conditions (pH 7.6 Na2HPO4‐NaH2PO4 buffer and ultrasonication). Upon addition of BPA, the probe reacted specifically to form dispersed BPA‐Apt‐AuNP conjugates that exhibited strong catalysis of the two particle reactions of glucose‐Cu(II) and hydrazine hydrochloride‐Cu(II) with a strong RLS peak at 360 nm and 510 nm respectively. When the BPA concentration increased, the RLS intensity at 360 nm and 510 nm increased respectively. Accordingly, two new and highly‐sensitive RLS methods were established for the detection of BPA, using the Apt‐AuNP catalytic amplification. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

4.
A simple and selective aptamer (ssDNA)‐modified nanogold probe (AussDNA) was prepared for the determination of trace As(III) in HEPES buffer solution (pH 8.2) containing 0.05 mol/L NaCl. The method coupled the aptamer reaction of AussDNA–As(III) and the resonance Rayleigh scattering (RRS) of nanogold aggregations at 278 nm. When the As(III) concentration increased, the RRS intensity at 278 nm increased to form more nanogold aggregation and a stable As(III)–ssDNA complex. Under selected conditions, the increased RRS intensity (ΔI) was linear to the concentration of As(III) in the range 3.8–230.4 ng/mL, with a detection limit of 1.9 ng/mL. This RRS method was applied to detect As(III) in water samples, with simplicity, sensitivity and selectivity. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

5.
A sensitive and simple signal-on electrochemical assay for detection of Dam methyltransferase (MTase) activity based on DNA-functionalized gold nanoparticles (AuNPs) amplification coupled with enzyme-linkage reactions is presented. This new assay takes advantage of the steric hindrance of AuNPs and the electrostatic repulsion between the negative-charge phosphate backbones of DNA modified on the AuNPs and redox probe [Fe(CN)(6)](3-/4-). In this method, the self-assembled ssDNA on the electrode is hybridized with its complement ssDNA modified on AuNPs to form dsDNA AuNPs bioconjugates containing specific recognition sequence of Dam MTase and methylation-sensitive restriction endonuclease Dpn I. Then, the AuNPs approach to the electrode and result in blockage of electronic transmission. It is eT OFF state. In the presence of Dam MTase and Dpn I, the specific sequence is methylated and cleavaged, which in turn release the DNA modified AuNPs from the electrode surface allowing free exchange of electrons. It generates a measurable electrochemical signal (eT ON). Differential pulse voltammetry (DPV) is employed to detect the recover current, which is related to the concentration of the Dam MTase. This method is simple, sensitive, nonradioactive and without use of gel-electrophoresis, PCR or chromatographic separation. Under optimized conditions, a linear response to concentration of Dam MTase range from 0.2U/mL to 10 U/mL and a detection limit of 0.12 U/mL are obtained. Furthermore, our new assay is a promising method to detect Dam MTase in the Luria-Bertani (LB) medium, as well as to screen inhibitors or drugs for Dam MTase.  相似文献   

6.
In the work, a label-free electrochemiluminescence (ECL) aptasensor for the sensitive and selective detection of thrombin was constructed based on target-induced direct ECL signal change by virtue of a novel assembly strategy of oligonucleotide and luminol functionalized gold nanoparticles (luminol-AuNPs). It is the first label-free ECL biosensor based on luminol and its analogs functionalized AuNPs. Streptavidin AuNPs coated with biotinylated DNA capture probe 1 (AuNPs-probe 1) were firstly assembled onto an gold electrode through 1,3-propanedithiol. Then luminol-AuNPs co-loaded with thiolated DNA capture probe 2 and thiolated thrombin binding aptamer (TBA) (luminol-AuNPs-probe 2/TBA) were assembled onto AuNPs-probe 1 modified electrode through the hybridization between capture probes 1 and 2. The luminol-AuNPs-probe 2/TBA acted as both molecule recognition probe and sensing interface. An Au/AuNPs/ds-DNA/luminol-AuNPs/TBA multilayer architecture was obtained. In the presence of target thrombin, TBA on the luminol-AuNPs could capture the thrombin onto the electrode surface, which produced a barrier for electro-transfer and influenced the electro-oxidation reaction of luminol, leading to a decrease in ECL intensity. The change of ECL intensity indirectly reflected the concentration of thrombin. Thus, the approach showed a high sensitivity and a wider linearity for the detection of thrombin in the range of 0.005-50nM with a detection limit of 1.7pM. This work reveals that luminol-AuNPs are ideal platform for label-free ECL bioassays.  相似文献   

7.
Wei Q  Zhao Y  Xu C  Wu D  Cai Y  He J  Li H  Du B  Yang M 《Biosensors & bioelectronics》2011,26(8):3714-3718
Nanoporous gold (NPG) film modified electrode for the construction of novel label-free electrochemical immunosensor for ultrasensitive detection of cancer biomarker prostate specific antigen (PSA) is described. Due to its high conductivity, large surface area, and good biocompatibility, NPG film modified electrode was used for the adsorption of anti-PSA antibody (Ab). The sensing signal is based on the monitoring of the electrode's current response towards K(3)Fe(CN)(6), which is extremely sensitive to the formation of immunocomplex within the nanoporous film. Under optimum conditions, the amperometric signal decreases linearly with PSA concentration (0.05-26 ng/mL), resulting in a low limit of detection (3 pg/mL). We demonstrated the application of the novel immunosensor for the detection of PSA in real sample with satisfactory results.  相似文献   

8.
A simple and feasible electrochemical sensing protocol was developed for the detection of bisphenol A (BPA) by employing the gold nanoparticles (AuNPs), prussian blue (PB) and functionalized carbon nanotubes (AuNPs/PB/CNTs-COOH). An aminated complementary DNA as a capture probe and specific aptamer against BPA as a detection probe was immobilized on the surface of a modified glassy carbon (GC) electrode via the formation of covalent amide bond and hybridization, respectively. The proposed nanoaptasensor combined the advantages of the in situ formation of PB as a label, the deposition of neatly arranged AuNPs, and the covalent attachment of the capture probe to the surface of the modified electrode. Upon addition of target BPA, the analyte reacted with the aptamer and caused the steric/conformational restrictions on the sensing interface. The formation of BPA–aptamer complex at the electrode surface retarded the interfacial electron transfer reaction of the PB as a probe. Sensitive quantitative detection of BPA was carried out based on the variation of electron transfer resistance which relevant to the formation of BPA– aptamer complex at the modified electrode surface. Under the optimized conditions, the proposed aptasensor exhibited a high sensitivity, wide linearity to BPA and low detection limit. This aptasensor also displayed a satisfying electrochemical performance with good stability, selectivity and reproducibility.  相似文献   

9.
This work presents an aptasensor for Ochratoxin A (OTA) using unmodified gold nanoparticles (AuNPs) indicator. The assay method is based on the conformation change of OTA's aptamer in phosphate buffered saline (PBS) containing Mg(2+) and OTA, and the phenomenon of salt-induced AuNPs aggregation. A single measurement took only five minutes. Circular dichroism spectroscopic experiments revealed for the first time that upon the addition of OTA, the conformation of OTA's aptamer in PBS buffer changed from random coil structure to compact rigid antiparallel G-quadruplex structure. This compact rigid G-quadruplex structure could not protect AuNPs against salt-induced aggregation, and thus the color change from red to blue could be observed by the naked eye. The linear range of the colorimetric aptasensor covered a large variation of OTA concentration from 20 to 625 nM and the detection limit of 20 nM (3σ) was obtained.  相似文献   

10.
A highly sensitive method for the detection of 6‐mercaptopurine (MP) by resonance Rayleigh light scattering (RLS) method was developed. Gold nanoparticles (AuNPs) were synthesized by a modified seed method and characterized using transmission electron microscopy (TEM). AuNPs were bound to MP via covalent bonding to form the MP–AuNPs complex, which increased the RLS intensity of MP at 347 nm (increased by 65.7%). Under optimum conditions, the magnitude of the enhanced RLS intensity for MP–AuNPs was proportional to MP concentration in the range 0.0681–1.702 μg mL?1. The linear regression equation was represented as follows: ΔI RLS = 9.31 + 82.42c (r  = 0.9948). The limit of detection (LOD, 3σ) was 3.32 ng mL?1. The system was applied successfully to detect MP in pharmaceuticals. MP recoveries were 99.9–101.7% with a relative standard deviation (RSD) (n  = 5) of 0.59–0.77% for three synthetic samples, and 97.5–110.0% with an RSD of 0.98–2.10% (n =  5) for tablet samples.  相似文献   

11.
A simple colorimetric biosensing technique based on the interaction of gold nanoparticles (AuNPs) with the aptamer was developed for detection of p53, a tumor suppressor protein, in the current study. Aggregation of AuNPs was induced by desorption of the p53 binding RNA aptamer from the surface of AuNPs as a result of the aptamer target interaction leading to the color change of AuNPs from red to purple. The detection limit of p53 protein by the colorimetric approach was 0.1 ng/ml after successful optimization of the amount of aptamer, AuNPs, salts, and incubation time. Furthermore, the catalytic activity of the aggregated AuNPs was greatly enhanced by chemiluminescence (CL) reaction, where the detection limit was enhanced to 10 pg/ml with a regression coefficient of R2 = 0.9907. Here the sensitivity was increased by 10-fold compared with the AuNP-based colorimetric method. Hence, the sensitivity of detection was increased by employing CL, by using the catalytic activity of aggregated AuNPs, on the luminol–hydrogen peroxide reaction. Thus, the combination of colorimetric and CL-based aptasensor can be of great advantage in increasing the sensitivity of detection for any target analyte.  相似文献   

12.
A novel probe based on colloidal gold nanoparticles (AuNPs) modified with goat anti-mouse IgG and horseradish peroxidase (HRP) was synthesized and an enhanced enzyme-linked immunosorbent assay (ELISA) based on the probe was developed. In the assay, the synthesized probe is bound with a monoclonal antibody (McAb) which is competitively bound by coated BSA-ITCBE-Pb(II) on plate and Pb(II) in samples. The HRP, used here for signal amplification catalytically oxidize the substrate and generate optical signals that is related to the concentration of Pb(II) and can be measured spectrophotometrically. For the monodisperse AuNPs having high surface areas, it can be conjugated with more amount of HRP than that of IgG. Therefore, compared with traditional ELISA, the signal amplification of catalytically oxidized substrate was enhanced. The detection limit for this novel modified AuNPs probe-based assay was 9 pg mL(-1). The recoveries obtained by standard Pb(II) addition to real samples, including a commercial mineral water, tap water, and lake water were all from 94.9% to 102.9%. And the coefficient of variation (CV) value of all samples was less than 10%. The results indicated that the enhanced assay gave higher sensitivity and reliable reproducibility. It could provide a general detection format for low-molecular weight contaminants.  相似文献   

13.
A novel sensitive method has been developed for the detection of adenosine (AD) in human urine by using enhanced resonance light scattering (RLS). This method is based on the specific recognition and signal amplification of adenosine aptamer (Apt) coupled with gold nanoparticles (GNPs) via G-quartet-induced nanoparticle assembly, which was fabricated by triggering a structure switching of the 3′ terminus G-rich sequence and aptamer duplex. RLS signal linearly correlated with the concentration of adenosine over the range of 6-115 nM. The limit of detection (LOD) for adenosine is 1.8 nM with relative standard deviations (RSD) of 2.90-4.80% (n = 6). The present method has been successfully applied to determination of adenosine in real human urine, and the obtained results were in good agreement with those obtained by the HPLC method. Our investigation shows that the combination of the excellent selectivity of aptamer with the high sensitivity of the RLS technique could provide a promising potential for aptamer-based small molecule detection, and be beneficial in extending the application of RLS.  相似文献   

14.
This paper proposes an aptasensor for progesterone (P4) detection in human serum and urine based on the aggregating behavior of gold nanoparticles (AuNPs) controlled by the interactions among P4-binding aptamer, target P4 and cationic surfactant hexadecyltrimethylammonium bromide (CTAB). The aptamer can form an aptamer-P4 complex with P4, leaving CTAB free to aggregate AuNPs in this aptasensor. Thus, the sensing solution will turn from red (520 nm) to blue (650 nm) in the presence of P4 because P4 aptamers are used up firstly owing to the formation of an aptamer-P4 complex, leaving CTAB free to aggregate AuNPs. However, in the absence of P4, CTAB combines with aptamers so that AuNPs still remain dispersed. Therefore, this assay makes it possible to detect P4 not only by absorbance measurement but also through naked eyes. By monitoring the variation of absorbance and color, a CTAB-induced colorimetric assay for P4 detection was established with a detection limit of 0.89 nM. Besides, the absorbance ratio A650/A520 has a linear correlation with the P4 concentration of 0.89–500 nM. Due to the excellent recoveries in serum and urine, this biosensor has great potential with respect to the visual and instrumental detection of P4 in biological fluids.  相似文献   

15.
A resonance light scattering (RLS) detection method for protein was developed, using a flow-injection system based on the enhancement of RLS signals from Biebrich scarlet (BS) by protein. The enhanced RLS intensities at 286.0 nm, in acidic aqueous medium, were proportional to the protein concentration over the range 0.005-18 microg/mL and 0.008-16 microg/mL for human serum albumin (HSA) and bovine serum albumin (BSA), respectively, with corresponding limits of detection (3sigma) of 5.00 ng/mL for HSA, and 7.80 ng/mL for BSA. The method was successfully applied to the quantification of total proteins in human serum samples.  相似文献   

16.
In this study, we developed an ultrasensitive label-free aptamer-based electrochemical biosensor, featuring a highly specific anti-human immunoglobulin E (IgE) aptamer as a capture probe, for human IgE detection. Construction of the aptasensor began with the electrodeposition of gold nanoparticles (AuNPs) onto a graphite-based screen-printed electrode (SPE). After immobilizing the thiol-capped anti-human IgE aptamer onto the AuNPs through self-assembly, we treated the electrode with mercaptohexanol (MCH) to ensure that the remaining unoccupied surfaces of the AuNPs would not undergo nonspecific binding. We employed a designed complementary DNA featuring a guanine-rich section in its sequence (cDNA G1) as a detection probe to bind with the unbound anti-human IgE aptamer. We measured the redox current of methylene blue (MB) to determine the concentration of human IgE in the sample. When the aptamer captured human IgE, the binding of cDNA G1 to the aptamer was inhibited. Using cDNA G1 in the assay greatly amplified the redox signal of MB bound to the detection probe. Accordingly, this approach allowed the linear range (coefficient of determination: 0.996) for the analysis of human IgE to extend from 1 to 100,000pM; the limit of detection was 0.16pM. The fabricated aptasensor exhibited good selectivity toward human IgE even when human IgG, thrombin, and human serum albumin were present at 100-fold concentrations. This method should be readily applicable to the detection of other analytes, merely by replacing the anti-human IgE aptamer/cDNA G1 pair with a suitable anti-target molecule aptamer and cDNA.  相似文献   

17.
The effect of hexa-amine cobalt cations on the DNA condensation in aqueous solution was investigated by resonance light scattering (RLS). When the relative concentration of hexa-amine cobalt (III) cations to DNA is in the appropriate range, the cations will induce DNA condensation and aggregation, which results in a strong RLS spectrum characterized by a peak at 290.0 nm. The RLS technique is a powerful tool for monitoring DNA condensation and, under optimal conditions, the enhanced RLS intensity at 290.0 nm was proportional to the concentration of DNA in the range 0.01-6.0 microg/mL. Based on this, a sensitive and convenient analysis method for the microdetermination of DNA was established. The detection limit (3 s) of calf thymus DNA by the proposed method is 1.9 ng/mL and few substances interfere in the DNA determination.  相似文献   

18.
The determination of imidacloprid with DNA via a resonance light scattering (RLS) technique was developed. The RLS of DNA was remarkably quenched after adding imidacloprid in aqueous medium of pH 2.10. An RLS peak at 311 nm was found, and the quenched intensity of RLS at this wavelength was proportional to the concentration of imidacloprid. The linear range of the calibration curve was approximately 0.02–2 μg/mL with the detection limit (S/N = 3) of 0.02 ng/mL. The imidacloprid in river water, cucumbers, and apple samples was determined. The recovery rates were in the range of 91.9% to 95.20%, 97.2% to 111.3%, and 94.5% to 114.8%, respectively. The mechanism of the reaction between imidacloprid and DNA is also discussed.  相似文献   

19.
Based on the interaction between nucleic acids and tetraphenyl porphyrinatoiron chloride (FeTPPCl), a novel method for the determination of nucleic acids at the nanogram level has been developed. Under the optimum conditions, the weak resonance light scattering (RLS) intensity of FeTPPCl was greatly enhanced by nucleic acids and the enhanced RLS intensity was proportional to the concentration of nucleic acids in the range 0.02-2.8 microg/mL for calf thymus DNA, 0.05-3.3 microg/mL for fish sperm DNA and 0.07-4.5 microg/mL for yeast RNA. The detection limits (3sigma) were 2.9 ng/mL for calf thymus DNA, 3.9 ng/mL for fish sperm DNA and 5.2 ng/mL for yeast RNA. Almost no interference could be observed from proteins, nucleosides and most of the metal ions. The proposed method showed good reliability, sensitivity, rapidity and reproducibility when applied to the determination of nucleic acids in synthetic and biochemical samples. The time savings make this method suitable for large routine analyses.  相似文献   

20.
Mao K  Wu D  Li Y  Ma H  Ni Z  Yu H  Luo C  Wei Q  Du B 《Analytical biochemistry》2012,422(1):22-27
For the specificity of prostate cancer markers, prostate specific antigen (PSA) has been widely used in prostate cancer screening, diagnosis, and treatment after monitoring. In normal male serum, PSA can only be detected in traces of 0-4 ng mL(-1). In this paper, we constructed an electrochemical immunosensor for PSA detection using a nanocomposite film of graphene sheets-methylene blue-chitosan (GS-MB-CS) as electrode material. The nanocomposite film showed high binding affinity to the electrode and was used to immobilize the antibody of PSA. The modification procedure was monitored by cyclic voltammetry (CV). An amperometric biosensor was easily developed based on the response of peak current to the capture of PSA induced by specific antigen-antibody reactions. Under optimum conditions, the amperometric signal decreased linearly with PSA concentration (0.05-5.00 ng mL(-1)). A low limit of detection (13 pg mL(-1)) and a high selectivity are obtained. Moreover, the prepared immunosensor was applied for the analysis of PSA in serum samples with satisfactory results. The proposed method may have a promising future in biochemical assays for high selectivity, good reproducibility, and stability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号