首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Acrodysostosis is a rare autosomal-dominant condition characterized by facial dysostosis, severe brachydactyly with cone-shaped epiphyses, and short stature. Moderate intellectual disability and resistance to multiple hormones might also be present. Recently, a recurrent mutation (c.1102C>T [p.Arg368]) in PRKAR1A has been identified in three individuals with acrodysostosis and resistance to multiple hormones. After studying ten unrelated acrodysostosis cases, we report here de novo PRKAR1A mutations in five out of the ten individuals (we found c.1102C>T [p.Arg368] in four of the ten and c.1117T>C [p.Tyr373His] in one of the ten). We performed exome sequencing in two of the five remaining individuals and selected phosphodiesterase 4D (PDE4D) as a candidate gene. PDE4D encodes a class IV cyclic AMP (cAMP)-specific phosphodiesterase that regulates cAMP concentration. Exome analysis detected heterozygous PDE4D mutations (c.673C>A [p.Pro225Thr] and c.677T>C [p.Phe226Ser]) in these two individuals. Screening of PDE4D identified heterozygous mutations (c.568T>G [p.Ser190Ala] and c.1759A>C [p.Thr587Pro]) in two additional acrodysostosis cases. These mutations occurred de novo in all four cases. The four individuals with PDE4D mutations shared common clinical features, namely characteristic midface and nasal hypoplasia and moderate intellectual disability. Metabolic screening was normal in three of these four individuals. However, resistance to parathyroid hormone and thyrotropin was consistently observed in the five cases with PRKAR1A mutations. Finally, our study further supports the key role of the cAMP signaling pathway in skeletogenesis.  相似文献   

3.
Phosphatidylinositol glycan class A (PIGA) is involved in the first step of glycosylphosphatidylinositol (GPI) biosynthesis. Many proteins, including CD55 and CD59, are anchored to the cell by GPI. Loss of CD55 and CD59 on erythrocytes causes complement-mediated lysis in paroxysmal nocturnal hemoglobinuria (PNH), a disease that manifests after clonal expansion of hematopoietic cells with somatic PIGA mutations. Although somatic PIGA mutations have been identified in many PNH patients, it has been proposed that germline mutations are lethal. We report a family with an X-linked lethal disorder involving cleft palate, neonatal seizures, contractures, central nervous system (CNS) structural malformations, and other anomalies. An X chromosome exome next-generation sequencing screen identified a single nonsense PIGA mutation, c.1234C>T, which predicts p.Arg412. This variant segregated with disease and carrier status in the family, is similar to mutations known to cause PNH as a result of PIGA dysfunction, and was absent in 409 controls. PIGA-null mutations are thought to be embryonic lethal, suggesting that p.Arg412 PIGA has residual function. Transfection of a mutant p.Arg412 PIGA construct into PIGA-null cells showed partial restoration of GPI-anchored proteins. The genetic data show that the c.1234C>T (p.Arg412) mutation is present in an affected child, is linked to the affected chromosome in this family, is rare in the population, and results in reduced, but not absent, biosynthesis of GPI anchors. We conclude that c.1234C>T in PIGA results in the lethal X-linked phenotype recognized in the reported family.  相似文献   

4.
To identify further Mendelian causes of intellectual disability (ID), we screened a cohort of 996 individuals with ID for variants in 565 known or candidate genes by using a targeted next-generation sequencing approach. Seven loss-of-function (LoF) mutations—four nonsense (c.1195A>T [p.Lys399], c.1333C>T [p.Arg445], c.1866C>G [p.Tyr622], and c.3001C>T [p.Arg1001]) and three frameshift (c.2177_2178del [p.Thr726Asnfs39], c.3771dup [p.Ser1258Glufs65], and c.3856del [p.Ser1286Leufs84])—were identified in SETD5, a gene predicted to encode a methyltransferase. All mutations were compatible with de novo dominant inheritance. The affected individuals had moderate to severe ID with additional variable features of brachycephaly; a prominent high forehead with synophrys or striking full and broad eyebrows; a long, thin, and tubular nose; long, narrow upslanting palpebral fissures; and large, fleshy low-set ears. Skeletal anomalies, including significant leg-length discrepancy, were a frequent finding in two individuals. Congenital heart defects, inguinal hernia, or hypospadias were also reported. Behavioral problems, including obsessive-compulsive disorder, hand flapping with ritualized behavior, and autism, were prominent features. SETD5 lies within the critical interval for 3p25 microdeletion syndrome. The individuals with SETD5 mutations showed phenotypic similarity to those previously reported with a deletion in 3p25, and thus loss of SETD5 might be sufficient to account for many of the clinical features observed in this condition. Our findings add to the growing evidence that mutations in genes encoding methyltransferases regulating histone modification are important causes of ID. This analysis provides sufficient evidence that rare de novo LoF mutations in SETD5 are a relatively frequent (0.7%) cause of ID.  相似文献   

5.
Kohlschütter-Tönz syndrome (KTS) is an autosomal-recessive disease characterized by the combination of epilepsy, psychomotor regression, and amelogenesis imperfecta. The molecular basis has not yet been elucidated. Here, we report that KTS is caused by mutations in ROGDI. Using a combination of autozygosity mapping and exome sequencing, we identified a homozygous frameshift deletion, c.229_230del (p.Leu77Alafs64), in ROGDI in two affected individuals from a consanguineous family. Molecular studies in two additional KTS-affected individuals from two unrelated Austrian and Swiss families revealed homozygosity for nonsense mutation c.286C>T (p.Gln96) and compound heterozygosity for the splice-site mutations c.531+5G>C and c.532-2A>T in ROGDI, respectively. The latter mutation was also found to be heterozygous in the mother of the Swiss affected individual in whom KTS was reported for the first time in 1974. ROGDI is highly expressed throughout the brain and other organs, but its function is largely unknown. Possible interactions with DISC1, a protein involved in diverse cytoskeletal functions, have been suggested. Our finding that ROGDI mutations cause KTS indicates that the protein product of this gene plays an important role in neuronal development as well as amelogenesis.  相似文献   

6.
Cone-rod dystrophy (CRD) and retinitis pigmentosa (RP) are clinically and genetically overlapping heterogeneous retinal dystrophies. By using homozygosity mapping in an individual with autosomal-recessive (ar) RP from a consanguineous family, we identified three sizeable homozygous regions, together encompassing 46 Mb. Next-generation sequencing of all exons, flanking intron sequences, microRNAs, and other highly conserved genomic elements in these three regions revealed a homozygous nonsense mutation (c.497T>A [p.Leu166]) in C8orf37, located on chromosome 8q22.1. This mutation was not present in 150 ethnically matched control individuals, single-nucleotide polymorphism databases, or the 1000 Genomes database. Immunohistochemical studies revealed C8orf37 localization at the base of the primary cilium of human retinal pigment epithelium cells and at the base of connecting cilia of mouse photoreceptors. C8orf37 sequence analysis of individuals who had retinal dystrophy and carried conspicuously large homozygous regions encompassing C8orf37 revealed a homozygous splice-site mutation (c.156−2A>G) in two siblings of a consanguineous family and homozygous missense mutations (c.529C>T [p.Arg177Trp]; c.545A>G [p.Gln182Arg]) in siblings of two other consanguineous families. The missense mutations affect highly conserved amino acids, and in silico analyses predicted that both variants are probably pathogenic. Clinical assessment revealed CRD in four individuals and RP with early macular involvement in two individuals. The two CRD siblings with the c.156−2A>G mutation also showed unilateral postaxial polydactyly. These results underline the importance of disrupted ciliary processes in the pathogenesis of retinal dystrophies.  相似文献   

7.
Acephalic spermatozoa syndrome is a rare and severe form of teratozoospermia characterized by a predominance of headless spermatozoa in the ejaculate. Family clustering and consanguinity suggest a genetic origin; however, causative mutations have yet to be identified. We performed whole-exome sequencing in two unrelated infertile men and subsequent variant filtering identified one homozygous (c.824C>T [p.Thr275Met]) and one compound heterozygous (c.1006C>T [p.Arg356Cys] and c.485T>A [p.Met162Lys]) SUN5 (also named TSARG4) variants. Sanger sequencing of SUN5 in 15 additional unrelated infertile men revealed four compound heterozygous (c.381delA [p.Val128Serfs7] and c.824C>T [p.Thr275Met]; c.381delA [p.Val128Serfs7] and c.781G>A [p.Val261Met]; c.216G>A [p.Trp72] and c.1043A>T [p.Asn348Ile]; c.425+1G>A/c.1043A>T [p.Asn348Ile]) and two homozygous (c.851C>G [p.Ser284]; c.350G>A [p.Gly114Arg]) variants in six individuals. These 10 SUN5 variants were found in 8 of 17 unrelated men, explaining the genetic defect in 47.06% of the affected individuals in our cohort. These variants were absent in 100 fertile population-matched control individuals. SUN5 variants lead to absent, significantly reduced, or truncated SUN5, and certain variants altered SUN5 distribution in the head-tail junction of the sperm. In summary, these results demonstrate that biallelic SUN5 mutations cause male infertility due to autosomal-recessive acephalic spermatozoa syndrome.  相似文献   

8.
9.
Retinal dystrophies are an overlapping group of genetically heterogeneous conditions resulting from mutations in more than 250 genes. Here we describe five families affected by an adult-onset retinal dystrophy with early macular involvement and associated central visual loss in the third or fourth decade of life. Affected individuals were found to harbor disease-causing variants in DRAM2 (DNA-damage regulated autophagy modulator protein 2). Homozygosity mapping and exome sequencing in a large, consanguineous British family of Pakistani origin revealed a homozygous frameshift variant (c.140delG [p.Gly47Valfs3]) in nine affected family members. Sanger sequencing of DRAM2 in 322 unrelated probands with retinal dystrophy revealed one European subject with compound heterozygous DRAM2 changes (c.494G>A [p.Trp165] and c.131G>A [p.Ser44Asn]). Inspection of previously generated exome sequencing data in unsolved retinal dystrophy cases identified a homozygous variant in an individual of Indian origin (c.64_66del [p.Ala22del]). Independently, a gene-based case-control association study was conducted via an exome sequencing dataset of 18 phenotypically similar case subjects and 1,917 control subjects. Using a recessive model and a binomial test for rare, presumed biallelic, variants, we found DRAM2 to be the most statistically enriched gene; one subject was a homozygote (c.362A>T [p.His121Leu]) and another a compound heterozygote (c.79T>C [p.Tyr27His] and c.217_225del [p.Val73_Tyr75del]). DRAM2 encodes a transmembrane lysosomal protein thought to play a role in the initiation of autophagy. Immunohistochemical analysis showed DRAM2 localization to photoreceptor inner segments and to the apical surface of retinal pigment epithelial cells where it might be involved in the process of photoreceptor renewal and recycling to preserve visual function.  相似文献   

10.
Epileptic encephalopathies are increasingly thought to be of genetic origin, although the exact etiology remains uncertain in many cases. We describe here three girls from two nonconsanguineous families affected by a clinical entity characterized by dysmorphic features, early-onset intractable epilepsy, intellectual disability, and cortical blindness. In individuals from each family, brain imaging also showed specific changes, including an abnormally marked pontobulbar sulcus and abnormal signals (T2 hyperintensities) and atrophy in the occipital lobe. Exome sequencing performed in the first family did not reveal any gene with rare homozygous variants shared by both affected siblings. It did, however, show one gene, DOCK7, with two rare heterozygous variants (c.2510delA [p.Asp837Alafs48] and c.3709C>T [p.Arg1237]) found in both affected sisters. Exome sequencing performed in the proband of the second family also showed the presence of two rare heterozygous variants (c.983C>G [p.Ser328] and c.6232G>T [p.Glu2078]) in DOCK7. Sanger sequencing confirmed that all three individuals are compound heterozygotes for these truncating mutations in DOCK7. These mutations have not been observed in public SNP databases and are predicted to abolish domains critical for DOCK7 function. DOCK7 codes for a Rac guanine nucleotide exchange factor that has been implicated in the genesis and polarization of newborn pyramidal neurons and in the morphological differentiation of GABAergic interneurons in the developing cortex. All together, these observations suggest that loss of DOCK7 function causes a syndromic form of epileptic encephalopathy by affecting multiple neuronal processes.  相似文献   

11.
Achromatopsia (ACHM) is an autosomal-recessive retinal dystrophy characterized by color blindness, photophobia, nystagmus, and severely reduced visual acuity. Its prevalence has been estimated to about 1 in 30,000 individuals. Four genes, GNAT2, PDE6C, CNGA3, and CNGB3, have been implicated in ACHM, and all encode functional components of the phototransduction cascade in cone photoreceptors. Applying a functional-candidate-gene approach that focused on screening additional genes involved in this process in a cohort of 611 index cases with ACHM or other cone photoreceptor disorders, we detected a homozygous single base change (c.35C>G) resulting in a nonsense mutation (p.Ser12) in PDE6H, encoding the inhibitory γ subunit of the cone photoreceptor cyclic guanosine monophosphate phosphodiesterase. The c.35C>G mutation was present in three individuals from two independent families with a clinical diagnosis of incomplete ACHM and preserved short-wavelength-sensitive cone function. Moreover, we show through immunohistochemical colocalization studies in mouse retina that Pde6h is evenly present in all retinal cone photoreceptors, a fact that had been under debate in the past. These findings add PDE6H to the set of genes involved in autosomal-recessive cone disorders and demonstrate the importance of the inhibitory γ subunit in cone phototransduction.  相似文献   

12.
Congenital stationary night blindness (CSNB) is a heterogeneous retinal disorder characterized by visual impairment under low light conditions. This disorder is due to a signal transmission defect from rod photoreceptors to adjacent bipolar cells in the retina. Two forms can be distinguished clinically, complete CSNB (cCSNB) or incomplete CSNB; the two forms are distinguished on the basis of the affected signaling pathway. Mutations in NYX, GRM6, and TRPM1, expressed in the outer plexiform layer (OPL) lead to disruption of the ON-bipolar cell response and have been seen in patients with cCSNB. Whole-exome sequencing in cCSNB patients lacking mutations in the known genes led to the identification of a homozygous missense mutation (c.1807C>T [p.His603Tyr]) in one consanguineous autosomal-recessive cCSNB family and a homozygous frameshift mutation in GPR179 (c.278delC [p.Pro93Glnfs57]) in a simplex male cCSNB patient. Additional screening with Sanger sequencing of 40 patients identified three other cCSNB patients harboring additional allelic mutations in GPR179. Although, immunhistological studies revealed Gpr179 in the OPL in wild-type mouse retina, Gpr179 did not colocalize with specific ON-bipolar markers. Interestingly, Gpr179 was highly concentrated in horizontal cells and Müller cell endfeet. The involvement of these cells in cCSNB and the specific function of GPR179 remain to be elucidated.  相似文献   

13.
In a subset of inherited retinal degenerations (including cone, cone-rod, and macular dystrophies), cone photoreceptors are more severely affected than rods; ABCA4 mutations are the most common cause of this heterogeneous class of disorders. To identify retinal-disease-associated genes, we performed exome sequencing in 28 individuals with “cone-first” retinal disease and clinical features atypical for ABCA4 retinopathy. We then conducted a gene-based case-control association study with an internal exome data set as the control group. TTLL5, encoding a tubulin glutamylase, was highlighted as the most likely disease-associated gene; 2 of 28 affected subjects harbored presumed loss-of-function variants: c.[1586_1589delAGAG];[1586_1589delAGAG], p.[Glu529Valfs2];[Glu529Valfs2], and c.[401delT(;)3354G>A], p.[Leu134Argfs45(;)Trp1118]. We then inspected previously collected exome sequence data from individuals with related phenotypes and found two siblings with homozygous nonsense variant c.1627G>T (p.Glu543) in TTLL5. Subsequently, we tested a panel of 55 probands with retinal dystrophy for TTLL5 mutations; one proband had a homozygous missense change (c.1627G>A [p.Glu543Lys]). The retinal phenotype was highly similar in three of four families; the sibling pair had a more severe, early-onset disease. In human and murine retinae, TTLL5 localized to the centrioles at the base of the connecting cilium. TTLL5 has been previously reported to be essential for the correct function of sperm flagella in mice and play a role in polyglutamylation of primary cilia in vitro. Notably, genes involved in the polyglutamylation and deglutamylation of tubulin have been associated with photoreceptor degeneration in mice. The electrophysiological and fundus autofluorescence imaging presented here should facilitate the molecular diagnosis in further families.  相似文献   

14.
Dowling-Degos disease (DDD) is an autosomal-dominant genodermatosis characterized by progressive and disfiguring reticulate hyperpigmentation. We previously identified loss-of-function mutations in KRT5 but were only able to detect pathogenic mutations in fewer than half of our subjects. To identify additional causes of DDD, we performed exome sequencing in five unrelated affected individuals without mutations in KRT5. Data analysis identified three heterozygous mutations from these individuals, all within the same gene. These mutations, namely c.11G>A (p.Trp4), c.652C>T (p.Arg218), and c.798-2A>C, are within POGLUT1, which encodes protein O-glucosyltransferase 1. Further screening of unexplained cases for POGLUT1 identified six additional mutations, as well as two of the above described mutations. Immunohistochemistry of skin biopsies of affected individuals with POGLUT1 mutations showed significantly weaker POGLUT1 staining in comparison to healthy controls with strong localization of POGLUT1 in the upper parts of the epidermis. Immunoblot analysis revealed that translation of either wild-type (WT) POGLUT1 or of the protein carrying the p.Arg279Trp substitution led to the expected size of about 50 kDa, whereas the c.652C>T (p.Arg218) mutation led to translation of a truncated protein of about 30 kDa. Immunofluorescence analysis identified a colocalization of the WT protein with the endoplasmic reticulum and a notable aggregating pattern for the truncated protein. Recently, mutations in POFUT1, which encodes protein O-fucosyltransferase 1, were also reported to be responsible for DDD. Interestingly, both POGLUT1 and POFUT1 are essential regulators of Notch activity. Our results furthermore emphasize the important role of the Notch pathway in pigmentation and keratinocyte morphology.  相似文献   

15.
Dysfunction of mitochondrial respiration is an increasingly recognized cause of isolated hypertrophic cardiomyopathy. To gain insight into the genetic origin of this condition, we used next-generation exome sequencing to identify mutations in MTO1, which encodes mitochondrial translation optimization 1. Two affected siblings carried a maternal c.1858dup (p.Arg620Lysfs8) frameshift and a paternal c.1282G>A (p.Ala428Thr) missense mutation. A third unrelated individual was homozygous for the latter change. In both humans and yeast, MTO1 increases the accuracy and efficiency of mtDNA translation by catalyzing the 5-carboxymethylaminomethylation of the wobble uridine base in three mitochondrial tRNAs (mt-tRNAs). Accordingly, mutant muscle and fibroblasts showed variably combined reduction in mtDNA-dependent respiratory chain activities. Reduced respiration in mutant cells was corrected by expressing a wild-type MTO1 cDNA. Conversely, defective respiration of a yeast mto1Δ strain failed to be corrected by an Mto1Pro622∗ variant, equivalent to human MTO1Arg620Lysfs∗8, whereas incomplete correction was achieved by an Mto1Ala431Thr variant, corresponding to human MTO1Ala428Thr. The respiratory yeast phenotype was dramatically worsened in stress conditions and in the presence of a paromomycin-resistant (PR) mitochondrial rRNA mutation. Lastly, in vivo mtDNA translation was impaired in the mutant yeast strains.  相似文献   

16.
Tooth agenesis is one of the most common developmental anomalies in man. Oligodontia, a severe form of tooth agenesis, occurs both as an isolated anomaly and as a syndromal feature. We performed exome sequencing on 20 unrelated individuals with apparent non-syndromic oligodontia and failed to detect mutations in genes previously associated with oligodontia. In three of the probands, we detected heterozygous variants in LRP6, and sequencing of additional oligodontia-affected individuals yielded one additional mutation in LRP6. Three mutations (c.1144_1145dupAG [p.Ala383Glyfs8], c.1779dupT [p.Glu594], and c.2224_2225dupTT [p.Leu742Phefs7]) are predicted to truncate the protein, whereas the fourth (c.56C>T [p.Ala19Val]) is a missense variant of a conserved residue located at the cleavage site of the protein’s signal peptide. All four affected individuals harboring a LRP6 mutation had a family history of tooth agenesis. LRP6 encodes a transmembrane cell-surface protein that functions as a co-receptor with members from the Frizzled protein family in the canonical Wnt/β-catenin signaling cascade. In this same pathway, WNT10A was recently identified as a major contributor in the etiology of non-syndromic oligodontia. We show that the LRP6 missense variant (c.56C>T) results in altered glycosylation and improper subcellular localization of the protein, resulting in abrogated activation of the Wnt pathway. Our results identify LRP6 variants as contributing to the etiology of non-syndromic autosomal-dominant oligodontia and suggest that this gene is a candidate for screening in DNA diagnostics.  相似文献   

17.
Severe combined deficiency of the 2-oxoacid dehydrogenases, associated with a defect in lipoate synthesis and accompanied by defects in complexes I, II, and III of the mitochondrial respiratory chain, is a rare autosomal recessive syndrome with no obvious causative gene defect. A candidate locus for this syndrome was mapped to chromosomal region 2p14 by microcell-mediated chromosome transfer in two unrelated families. Unexpectedly, analysis of genes in this area identified mutations in two different genes, both of which are involved in [Fe-S] cluster biogenesis. A homozygous missense mutation, c.545G>A, near the splice donor of exon 6 in NFU1 predicting a p.Arg182Gln substitution was found in one of the families. The mutation results in abnormal mRNA splicing of exon 6, and no mature protein could be detected in fibroblast mitochondria. A single base-pair duplication c.123dupA was identified in BOLA3 in the second family, causing a frame shift that produces a premature stop codon (p.Glu42Argfs13). Transduction of fibroblast lines with retroviral vectors expressing the mitochondrial, but not the cytosolic isoform of NFU1 and with isoform 1, but not isoform 2 of BOLA3 restored both respiratory chain function and oxoacid dehydrogenase complexes. NFU1 was previously proposed to be an alternative scaffold to ISCU for the biogenesis of [Fe-S] centers in mitochondria, and the function of BOLA3 was previously unknown. Our results demonstrate that both play essential roles in the production of [Fe-S] centers for the normal maturation of lipoate-containing 2-oxoacid dehydrogenases, and for the assembly of the respiratory chain complexes.  相似文献   

18.
Diabetes mellitus is a highly heterogeneous disorder encompassing several distinct forms with different clinical manifestations including a wide spectrum of age at onset. Despite many advances, the causal genetic defect remains unknown for many subtypes of the disease, including some of those forms with an apparent Mendelian mode of inheritance. Here we report two loss-of-function mutations (c.1655T>A [p.Leu552] and c.280G>A [p.Asp94Asn]) in the gene for the Adaptor Protein, Phosphotyrosine Interaction, PH domain, and leucine zipper containing 1 (APPL1) that were identified by means of whole-exome sequencing in two large families with a high prevalence of diabetes not due to mutations in known genes involved in maturity onset diabetes of the young (MODY). APPL1 binds to AKT2, a key molecule in the insulin signaling pathway, thereby enhancing insulin-induced AKT2 activation and downstream signaling leading to insulin action and secretion. Both mutations cause APPL1 loss of function. The p.Leu552 alteration totally abolishes APPL1 protein expression in HepG2 transfected cells and the p.Asp94Asn alteration causes significant reduction in the enhancement of the insulin-stimulated AKT2 and GSK3β phosphorylation that is observed after wild-type APPL1 transfection. These findings—linking APPL1 mutations to familial forms of diabetes—reaffirm the critical role of APPL1 in glucose homeostasis.  相似文献   

19.
Kohlschutter–Tonz syndrome (KTS) is a rare autosomal-recessive disorder of childhood onset, and it is characterized by global developmental delay, spasticity, epilepsy, and amelogenesis imperfecta. In 12 KTS-affected individuals from a Druze village in northern Israel, homozygosity mapping localized the gene linked to the disease to a 586,513 bp region (with a LOD score of 6.4) in chromosomal region 16p13.3. Sequencing of genes (from genomic DNA of an affected individual) in the linked region revealed chr16: 4,848,632 G>A, which corresponds to ROGDI c.469C>T (p.Arg157). The nonsense mutation was homozygous in all affected individuals, heterozygous in 10 of 100 unaffected individuals from the same Druze community, and absent from Druze controls from elsewhere. Wild-type ROGDI localizes to the nuclear envelope; ROGDI was not detectable in cells of affected individuals. All affected individuals suffered seizures, were unable to speak, and had amelogenesis imperfecta. However, age of onset and the severity of mental and motor handicaps and that of convulsions varied among affected individuals homozygous for the same nonsense allele.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号