首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The ankle joint has typically been treated as a universal joint with moments calculated about orthogonal axes and the frontal plane moment generally used to represent the net muscle action about the subtalar joint. However, this joint acts about an oblique axis. The purpose of this study was to examine the differences between joint moments calculated about the orthogonal frontal plane axis and an estimated subtalar joint axis. Three-dimensional data were collected on 10 participants running at 3.6 m/s. Joint moments, power, and work were calculated about the orthogonal frontal plane axis of the foot and about an oblique axis representing the subtalar joint. Selected parameters were compared with a paired t-test (alpha = 0.05). The results indicated that the joint moments calculated about the two axes were characteristically different. A moment calculated about an orthogonal frontal plane axis of the foot resulted in a joint moment that was invertor in nature during the first half of stance, but evertor during the second half of stance. The subtalar joint axis moment, however, was invertor during most of the stance. These two patterns may result in qualitatively different interpretations of the muscular contributions at the ankle during the stance phase of running.  相似文献   

2.
The direction of rotation (DOR) of individual elbow muscles, defined as the direction in which a muscle rotates the forearm relative to the upper arm in three-dimensional space, was studied in vivo as a function of elbow flexion and forearm rotation. Electrical stimulation was used to activate an individual muscle selectively, and the resultant flexion-extension, supination-pronation, and varus-valgus moments were used to determine the DOR. Furthermore, multi-axis moment-angle relationships of individual muscles were determined by stimulating the muscle at a constant submaximal level across different joint positions, which was assumed to result in a constant level of muscle activation. The muscles generate significant moments about axes other than flexion-extension, which is potentially important for actively controlling joint movement and maintaining stability about all axes. Both the muscle DOR and the multi axis moments vary with the joint position systematically. Variations of the DOR and moment-angle relationship across muscle twitches of different amplitudes in a subject were small, while there were considerable variations between subjects.  相似文献   

3.
Recent studies about sensorimotor control of the human hand have focused on how dexterous manipulation is learned and generalized. Here we address this question by testing the extent to which learned manipulation can be transferred when the contralateral hand is used and/or object orientation is reversed. We asked subjects to use a precision grip to lift a grip device with an asymmetrical mass distribution while minimizing object roll during lifting by generating a compensatory torque. Subjects were allowed to grasp anywhere on the object’s vertical surfaces, and were therefore able to modulate both digit positions and forces. After every block of eight trials performed in one manipulation context (i.e., using the right hand and at a given object orientation), subjects had to lift the same object in the second context for one trial (transfer trial). Context changes were made by asking subjects to switch the hand used to lift the object and/or rotate the object 180° about a vertical axis. Therefore, three transfer conditions, hand switch (HS), object rotation (OR), and both hand switch and object rotation (HS+OR), were tested and compared with hand matched control groups who did not experience context changes. We found that subjects in all transfer conditions adapted digit positions across multiple transfer trials similar to the learning of control groups, regardless of different changes of contexts. Moreover, subjects in both HS and HS+OR group also adapted digit forces similar to the control group, suggesting independent learning of the left hand. In contrast, the OR group showed significant negative transfer of the compensatory torque due to an inability to adapt digit forces. Our results indicate that internal representations of dexterous manipulation tasks may be primarily built through the hand used for learning and cannot be transferred across hands.  相似文献   

4.
The question of using the nonorthogonal joint coordinate system (JCS) to report joint moments has risen in the literature. However, the expression of joint moments in a nonorthogonal system is still confusing. The purpose of this paper is to present a method to express any 3D vector in a nonorthogonal coordinate system. The interpretation of these expressions in the JCS is clarified and an example for the 3D joint moment vector at the shoulder and the knee is given. A nonorthogonal projection method is proposed based on the mixed product. These nonorthogonal projections represent, for a 3D joint moment vector, the net mechanical action on the JCS axes. Considering the net mechanical action on each axis seems important in order to assess joint resistance in the JCS. The orthogonal projections of the same 3D joint moment vector on the JCS axes can be characterized as "motor torque." However, this interpretation is dependent on the chosen kinematic model. The nonorthogonal and orthogonal projections of shoulder joint moment during wheelchair propulsion and knee joint moment during walking were compared using root mean squares (rmss). rmss showed differences ranging from 6 N?m to 22.3 N?m between both projections at the shoulder, while differences ranged from 0.8 N?m to 3.0 N?m at the knee. Generally, orthogonal projections were of lower amplitudes than nonorthogonal projections at both joints. The orthogonal projection on the proximal or distal coordinates systems represents the net mechanical actions on each axis, which is not the case for the orthogonal projection (i.e., motor torque) on JCS axes. In order to represent the net action at the joint in a JCS, the nonorthogonal projection should be used.  相似文献   

5.
Vibrational spectroscopy using polarized incident radiation can be used to determine the orientation of X-H bonds with respect to coordinates such as crystallographic axes. The adaptation of this approach to polymer fibers is described here. It requires spectral intensity to be quantified around a 180 degrees range of polarization angles and not just recorded transversely and longitudinally as is normal in fiber spectroscopy. Mercerized cellulose II is used as an example. The unit cell of the cellulose II lattice contains six distinct hydroxyl groups engaged in a complex network of hydrogen bonds that hold the cellulose chains laterally together. A formalism is described to relate the variation in intensity of each O-H stretching mode to the angle between its transition moment and the chain axis as the polarization axis is rotated with respect to the fiber axis. It was necessary to include the effect of dispersion in chain orientation around the mean and the averaging of all rotational positions of the chains round their axis. The two crystallographically distinct O(2)-H groups, which are each hydrogen-bonded to only one acceptor oxygen, show a close match in orientation between the transition moments of their stretching bands and the O-H bond axis. The two O(3)-H groups each have a three-centered hydrogen bond to O-5 and O-6 of the next residue in the same chain. The transition moments of their stretching modes lay between the acceptor oxygens. Hydrogen bonding from the O(6)-H groups is still more complex but again the transition moment of each O-H bond lay within the cone of orientations described by the acceptor oxygens, provided that one additional acceptor oxygen excluded from the published crystal structure was considered. The transition moments for the O-H stretching modes were approximately aligned with the O-H bond axes, but the alignment was not necessarily exact. This approach is not restricted to hydroxyl groups, but it is particularly useful for the elucidation of hydrogen bonding in fibrous polymers for which crystallographic data on proton positions are not available.  相似文献   

6.
We measured the external moments and digit-tip force directions acting on a freely moveable object while it was grasped and manipulated by old (OA) and young (YA) adults. Participants performed a grasp and lift task and a precision orientation (key-slot) task with a precision (thumb-finger) grip. During the grasp-lift task the OA group misaligned their thumb and finger contacts and produced greater grip force, greater external moments on the object around its roll axis, and oriented force vectors differently compared with the YA group. During the key-slot task, the OA group was more variable in digit-tip force directions and performed the key-slot task more slowly. With practice the OA group aligned their digits, reduced their grip force, and minimized external moments on the object, clearly demonstrating that the nervous system monitored and actively manipulated one or more variables related to object tilt. This was true even for the grip-lift task, a task for which no instructions regarding object orientation were given and which could tolerate modest amounts of object tilt without interfering with task goals. Although the OA group performed the key-slot task faster with experience, they remained slower than the YA group. We conclude that with old age comes a reduced ability to control the forces and moments applied to objects during precision grasp and manipulation. This may contribute to the ubiquitous slowing and deteriorating manual dexterity in healthy aging.  相似文献   

7.
The hypothesis which motivated the work reported in this article was that neglecting pure moments developed between the foot and pedal during cycling leads to a substantial error in computing axial and varus/valgus moments at the knee. To test this hypothesis, a mathematical procedure was developed for computing the three-dimensional knee loads using three-dimensional pedal forces and moments. In addition to data from a six-load-component pedal dynamometer, the model used pedal position and orientation and knee position in the frontal plane to determine the knee joint loads. Experimental data were collected from the right leg of 11 male subjects during steady-state cycling at 90 rpm and 225 W. The mean peak varus knee moment calculated was 15.3 N m and the mean peak valgus knee moment was 11.2 N m. Neglecting the pedal moment about the anterior/posterior axis resulted in an average absolute error of 2.6 N m and a maximum absolute error of 4.0 N m in the varus/valgus knee moment. The mean peak internal and external axial knee moments were 2.8 N m and 2.3 N m, respectively. The average and maximum absolute errors in the axial knee moment for not including the moment about an axis normal to the pedal were found to be 2.6 N m and 5.0 N m, respectively. The results strongly support the use of three-dimensional pedal loads in the computation of knee joint moments out of the sagittal plane.  相似文献   

8.
The development of a novel instrumented implant for ulnar head replacement is presented in this study. This implant was instrumented with strain gauges to quantify bending moments about the anatomic axes of the distal ulna, and subsequently the distal radioulnar joint (DRUJ) reaction force magnitude. The implant was surgically inserted in seven cadaveric upper extremities, which were subsequently mounted in a custom joint simulator. Simulated active unresisted pronation and supination motion trials were conducted using computer-controlled pneumatic actuators to simulate forearm musculature. Passive (unloaded) trials were also conducted. The reaction force across the DRUJ ranged from 2 to 10 N in magnitude during this unresisted motion. Increased bending moment magnitudes were measured when the forearm was positioned in supination compared to pronation. The magnitude of joint bending moments showed a consistent pattern with forearm position, regardless of simulated active or passive rotation, or supination and pronation motion trials. This result illustrates that the primary influence on joint load is likely the position and contact with the radial articulation. This study of DRUJ loading should be useful for biomechanical modeling, implant design considerations and improved knowledge of articular mechanics.  相似文献   

9.
Pretransition and main transition of aqueous dipalmitoyl phosphatidylcholine (DPPC) dispersions were investigated by pulse NMR. The second moment M2 inter of the proton absorption line shows significant changes at 42 degrees C and about 35 degree C. Over the whole investigated temperature range between 25 and 50 degree C a superposition of at least two distinct second moments assigned to different molecular regions was observed.  相似文献   

10.
Multitasking, where workers are required to perform multiple physical tasks with various levels of cognitive load is common in today's workplace. Simultaneous physical and mental demands are thought to cause task interference and likely increase muscle activity. To test the interfering effects of multitasking, 16 healthy participants performed hand and shoulder exertions with combinations of four grip conditions (no grip, 30% grip with low precision, 30% grip with high precision, and maximal grip) and three shoulder conditions at 90 degrees abduction (maintaining posture, 40% force-controlled moment, 40% posture-controlled moment), with and without the Stroop test while surface EMG was recorded from eight upper extremity muscles. Both 40% MVC shoulder moments increased extrinsic forearm muscle activity by 2-4% MVE (p<0.01). Grip exertion at 30% MVC reduced anterior and middle deltoid activity by 2% MVE (p<0.01). Exerting a constant force against the transducer (force-controlled) required 3-4% MVE greater middle and posterior deltoid activity (p<0.001) compared to supporting an equivalent inertial load at the same shoulder angle (posture-controlled). Performing the mental task (Stroop test) concurrently with either 40% MVC shoulder moments significantly increased trapezius activity by nearly 2% MVE (p<0.05). Interestingly, the Stroop test also reduced all deltoid activity by 1% MVE (p<0.05). The addition of both the Stroop test and force-control shoulder exertion independently reduced maximal grip force by 7% and 10% MVC, respectively. These results suggest that more complex workplace tasks may act to increase muscle load or interfere with task performance. These small but significant findings may play a role in the development of long-term musculoskeletal disorders in the workplace.  相似文献   

11.
External load at the tibia during activities of daily living provides baseline measures for the improvement of the design of the bone–implant interface for relevant internal and external prostheses. A motion analysis system was used together with an established protocol with skin markers to estimate three-dimensional forces and moments acting on ten equidistant points along the tibial shaft. Twenty young and able-bodied volunteers were analysed while performing three repetitions of the following tasks: level walking at three different speeds, in a straight-line and with sudden changes of direction to the right and to the left, stair ascending and descending, squatting, rising from a chair and sitting down. Moment and force patterns were normalised to the percentage of body weight per height and body weight, respectively, and then averaged over all subjects for each point, about the three tibial anatomical axes, and for each task. Load patterns were found to be consistent over subjects, but different among the anatomical axes, tasks and points. Generally, moments were higher in the medio/lateral axis and influenced by walking speed. In all five walking tasks and in ascending stairs with alternating feet, the more proximal the point was the smaller the mean moment was. For the remaining tasks the opposite trend was observed. The overall largest value was observed in the medio/lateral direction at the ankle centre in level walking at high speed (9.1% body weight * height on average), nearly three times larger than that of the anterior/posterior axis (2.9) during level walking with a sidestep turn. The present results should be of value also for in-vitro mechanical tests and finite element models.  相似文献   

12.
Although beta oscillations (≈ 13–35 Hz) are often considered as a sensorimotor rhythm, their functional role remains debated. In particular, the modulations of beta power during preparation and execution of complex movements in different contexts were barely investigated. Here, we analysed the beta oscillations recorded with electroencephalography (EEG) in a precued grasping task in which we manipulated two critical parameters: the grip type (precision vs. side grip) and the force (high vs. low force) required to pull an object along a horizontal axis. A cue was presented 3 s before a GO signal and provided full, partial or no information about the two movement parameters. We measured beta power over the centro-parietal areas during movement preparation and execution as well as during object hold. We explored the modulations of power in relation to the amount and type of prior information provided by the cue. We also investigated how beta power was affected by the grip and force parameters.We observed an increase in beta power around the cue onset followed by a decrease during movement preparation and execution. These modulations were followed by a transient power increase during object hold. This pattern of modulations did not differ between the 4 movement types (2 grips ×2 forces). However, the amount and type of prior information provided by the cue had a significant effect on the beta power during the preparatory delay. We discuss how these results fit with current hypotheses on the functional role of beta oscillations.  相似文献   

13.
Primates are very versatile in their modes of progression, yet laboratory studies typically capture only a small segment of this variation. In vivo bone strain studies in particular have been commonly constrained to linear locomotion on flat substrates, conveying the potentially biased impression of stereotypic long bone loading patterns. We here present substrate reaction forces (SRF) and limb postures for capuchin monkeys moving on a flat substrate (“terrestrial”), on an elevated pole (“arboreal”), and performing turns. The angle between the SRF vector and longitudinal axes of the forearm or leg is taken as a proxy for the bending moment experienced by these limb segments. In both frontal and sagittal planes, SRF vectors and distal limb segments are not aligned, but form discrepant angles; that is, forces act on lever arms and exert bending moments. The positions of the SRF vectors suggest bending around oblique axes of these limb segments. Overall, the leg is exposed to greater moments than the forearm. Simulated arboreal locomotion and turns introduce variation in the discrepancy angles, thus confirming that expanding the range of locomotor behaviors studied will reveal variation in long bone loading patterns that is likely characteristic of natural locomotor repertoires. “Arboreal” locomotion, even on a linear noncompliant branch, is characterized by greater variability of force directions and discrepancy angles than “terrestrial” locomotion (significant for the forearm only), partially confirming the notion that life in trees is associated with greater variation in long bone loading. Directional changes broaden the range of external bending moments even further. Am J Phys Anthropol, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

14.
A heavy or light object fell into the cup held between the thumb and the index finger of a sitting subject. The anticipatory muscle activity and the grip force applied to the cup depended on the object mass, whereas the temporal parameters, such as the moment of the start and the duration of muscle activity and the moment of the maximum grip force remained unchanged. Preliminary verbal information about the object mass sufficed for the predictive programming of adequate muscle activity and grip force. Without this information, i.e., when the mass of the falling object was unknown, the anticipatory activity was planned in expectation of a heavy weight.  相似文献   

15.
The delicate tuning of digit forces to object properties can be disrupted by a number of neurological and musculoskeletal diseases. One such condition is Carpal Tunnel Syndrome (CTS), a compression neuropathy of the median nerve that causes sensory and motor deficits in a subset of digits in the hand. Whereas the effects of CTS on median nerve physiology are well understood, the extent to which it affects whole-hand manipulation remains to be addressed. CTS affects only the lateral three and a half digits, which raises the question of how the central nervous system integrates sensory feedback from affected and unaffected digits to plan and execute whole-hand object manipulation. We addressed this question by asking CTS patients and healthy controls to grasp, lift, and hold a grip device (445, 545, or 745 g) for several consecutive trials. We found that CTS patients were able to successfully adapt grip force to object weight. However, multi-digit force coordination in patients was characterized by lower discrimination of force modulation to lighter object weights, higher across-trial digit force variability, the consistent use of excessively large digit forces across consecutive trials, and a lower ability to minimize net moments on the object. Importantly, the mechanical requirement of attaining equilibrium of forces and torques caused CTS patients to exert excessive forces at both CTS-affected digits and digits with intact sensorimotor capabilities. These findings suggest that CTS-induced deficits in tactile sensitivity interfere with the formation of accurate sensorimotor memories of previous manipulations. Consequently, CTS patients use compensatory strategies to maximize grasp stability at the expense of exerting consistently larger multi-digit forces than controls. These behavioral deficits might be particularly detrimental for tasks that require fine regulation of fingertip forces for manipulating light or fragile objects.  相似文献   

16.
Many studies use a reference task of an isometric maximum voluntary power grip task in a mid-pronated forearm posture to normalize their forearm electromyographic (EMG) signal amplitude. Currently there are no recommended protocols to do this. In order to provide guidance on the topic, we examined the EMG amplitude of six forearm muscles (three flexors and three extensors) during twenty different maximal voluntary efforts that included various gripping postures, force and moment exertions and compared them to a frequently used normalization task of exerting a maximum grip force, termed the reference task. 16 participants (8 male and 8 female, aged 18–26) were recruited for this study. Overall, maximal muscle activity was produced during the resisted moment tasks. When contrasted with the reference task, the resisted moment tasks produced EMG activity that was up to 2.8 times higher (p < 0.05). Although there was no one task that produced greater EMG values than the reference task for all forearm muscles, the resisted flexor and extensor moment tasks produced similar, if not higher EMG activity than the reference task for the three flexors and three extensor muscles, respectively. This suggests that researchers wishing to normalize forearm EMG activity during power gripping prehensile tasks should use resisted flexor and extensor moment tasks to obtain better estimates of the forearm muscles’ maximum electrical activation magnitudes.  相似文献   

17.
In 3D image-based studies of joint kinematics, 3D registration methods should be automatic, insensitive to segmentation inconsistencies and use coordinate systems that have clinically relevant orientations and locations because this is important for analyzing rotation angles and translation directions. We developed and evaluated a registration method, which is based on the cylindrical geometry of the humerus shaft and an analysis of the inertia moments of the humerus head, in order to consistently and automatically orient the humerus coordinate system according to its anatomy. Registration techniques must be thoroughly evaluated. In this study we used a well-detectable marker as reference, from which coordinate system determination errors of a 3D object could be measured. This allowed us to quantify by means of unique error analysis the translational and rotational errors in terms of how much and about/along which humeral axis errors occurred. The evaluation experiments were performed using virtual rotations of 3D humeral binary image, a humerus model and a 3D image of a volunteer's shoulder. They indicated that the humeral coordinate system determination errors primarily originated from segmentation inconsistencies, which influenced mostly the humeral transverse axes orientation. The error analysis revealed that the developed registration method reduced the effect of manual segmentation inconsistencies on the orientation of the humeral transverse axes up to 37%, in comparison to the commonly used inertia registration.  相似文献   

18.
In previous work,we modified blade element theory by implementing three-dimensional wing kinematics and modeled the unsteady aerodynamic effects by adding the added mass and rotational forces.This method is referred to as Unsteady Blade Element Theory (UBET).A comparison between UBET and Computational Fluid Dynamics (CFD) for flapping wings with high flapping frequencies (>30 Hz) could not be found in literature survey.In this paper,UBET that considers the movement of pressure center in pitching-moment estimation was validated using the CFD method.We investigated three three-dimensional (3D) wing kinematics that produce negative,zero,and positive aerodynamic pitching moments.For all cases,the instantaneous aerodynamic forces and pitching moments estimated via UBET and CFD showed similar trends.The differences in average vertical forces and pitching moments about the center of gravity were about 10% and 12%,respectively.Therefore,UBET is proven to reasonably estimate the aerodynamic forces and pitching moment for flight dynamic study of FW-MAV.However,the differences in average wing drags and pitching moments about the feather axis were more than 20%.Since study of aerodynamic power requires reasonable estimation of wing drag and pitching moment about the feather axis,UBET needs further improvement for higher accuracy.  相似文献   

19.
During a maximal isometric plantar flexion effort the moment measured at the dynamometer differs from the resultant ankle joint moment. The present study investigated the effects of contraction form and contraction velocity during isokinetic plantar/dorsal flexion efforts on the differences between resultant and measured moments due to the misalignment between ankle and dynamometer axes. Eleven male subjects (age: 31+/-6 years, mass: 80.6+/-9.6 kg, height: 178.4+/-7.4 cm) participated in this study. All subjects performed isometric-shortening-stretch-isometric contractions induced by electrical stimulation at three different angular velocities (25 degrees /s, 50 degrees /s and 100 degrees /s) on a customised dynamometer. The kinematics of the leg were recorded using the vicon 624 system with eight cameras operating at 250 Hz. The resultant moments at the ankle joint were calculated through inverse dynamics. The relative differences between resultant and measured ankle joint moments due to axis misalignment were fairly similar in all phases of the isometric-shortening-stretch-isometric contraction (in average 5-9% of the measured moment). Furthermore these findings were independent of the contraction velocity. During dynamic plantar/dorsal flexion contractions the differences between measured and resultant joint moment are high enough to influence conclusions regarding the mechanical response of ankle extensor muscles. However the relative differences were not increased during dynamic contractions as compared to isometric contractions.  相似文献   

20.
It is widely known that the pinch-grip forces of the human hand are linearly related to the weight of the grasped object. Less is known about the relationship between grip force and grip stiffness. We set out to determine variations to these dependencies in different tasks with and without visual feedback. In two different settings, subjects were asked to (a) grasp and hold a stiffness-measuring manipulandum with a predefined grip force, differing from experiment to experiment, or (b) grasp and hold this manipulandum of which we varied the weight between trials in a more natural task. Both situations led to grip forces in comparable ranges. As the measured grip stiffness is the result of muscle and tendon properties, and since muscle/tendon stiffness increases more-or-less linearly as a function of muscle force, we found, as might be predicted, a linear relationship between grip force and grip stiffness. However, the measured stiffness ranges and the increase of stiffness with grip force varied significantly between the two tasks. Furthermore, we found a strong correlation between regression slope and mean stiffness for the force task which we ascribe to a force stiffness curve going through the origin. Based on a biomechanical model, we attributed the difference between both tasks to changes in wrist configuration, rather than to changes in cocontraction. In a new set of experiments where we prevent the wrist from moving by fixing it and resting it on a pedestal, we found subjects exhibiting similar stiffness/force characteristics in both tasks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号