首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Chen X  Fang L  Liu J  Zhan CG 《Biochemistry》2012,51(6):1297-1305
The catalytic mechanism for butyrylcholineserase (BChE)-catalyzed hydrolysis of acetylthiocholine (ATCh) has been studied by performing pseudobond first-principles quantum mechanical/molecular mechanical-free energy (QM/MM-FE) calculations on both acylation and deacylation of BChE. Additional quantum mechanical (QM) calculations have been carried out, along with the QM/MM-FE calculations, to understand the known substrate activation effect on the enzymatic hydrolysis of ATCh. It has been shown that the acylation of BChE with ATCh consists of two reaction steps including the nucleophilic attack on the carbonyl carbon of ATCh and the dissociation of thiocholine ester. The deacylation stage includes nucleophilic attack of a water molecule on the carboxyl carbon of substrate and dissociation between the carboxyl carbon of substrate and hydroxyl oxygen of Ser198 side chain. QM/MM-FE calculation results reveal that the acylation of BChE is rate-determining. It has also been demonstrated that an additional substrate molecule binding to the peripheral anionic site (PAS) of BChE is responsible for the substrate activation effect. In the presence of this additional substrate molecule at PAS, the calculated free energy barrier for the acylation stage (rate-determining step) is decreased by ~1.7 kcal/mol. All of our computational predictions are consistent with available experimental kinetic data. The overall free energy barriers calculated for BChE-catalyzed hydrolysis of ATCh at regular hydrolysis phase and substrate activation phase are ~13.6 and ~11.9 kcal/mol, respectively, which are in reasonable agreement with the corresponding experimentally derived activation free energies of 14.0 kcal/mol (for regular hydrolysis phase) and 13.5 kcal/mol (for substrate activation phase).  相似文献   

2.
3.
To clarify the substrate-recognition mechanism of carboxypeptidase Y, Fmoc-(Glu)n Ala-OH (n = 1 to 6), Fmoc-(Glu)n Ala-NH2 (1 to 5), and Fmoc-Lys(Glu)3Ala-NH2 were synthesized, and kinetic parameters for these substrates were measured. Km for Fmoc-peptides significantly decreased as peptide length increased from n = 1 to n = 5 with only slight changes in kcat. Km for Fmoc-(Glu)(5,6)Ala-OH were almost the same as one for protein substrates described previously (Nakase et al., Bull. Chem. Soc. Jpn., 73, 2587-2590). These results show that the enzyme has six subsites (S1' and S1-S5). Each subsite affinity calculated from the Km revealed subsite properties, and from the differences of subsite affinity between pH 6.5 and 5.0, the residues in each subsite were predicted. For Fmoc-peptide amide substrates, the priorities of amidase and carboxamide peptidase activities were dependent on the substrate. It is likely that the interactions between side chains of peptide and subsites compensate for the lack of P1'-S1' interaction, so the amidase activity prevailed for Fmoc-(Glu)(3,5)Ala-NH2. These results suggest that these subsites contribute extensively to substrate recognition rather than a hydrogen bond network.  相似文献   

4.
To study the roles of the carbohydrate moiety in the function of carboxypeptidase Y, asparagine residues at 13, 87, 168, and 368, the four-consensus N-linked glycosylation sites, were altered to alanine with site-directed mutagenesis. The mutant enzyme of 51 kDa completely lost the carbohydrate moiety which was present in the 61-kDa wild-type enzyme. Structural studies of the mutant enzyme showed that it maintained the native-like structure; hydrolytic activity, and substrate specificity of the mutant enzyme analogous to those of the wild-type enzyme. Susceptibility of the mutant enzyme toward proteolysis and pressure denaturation was reduced by 10-20%. It is concluded that the carbohydrate moiety functions to maintain the structural integrity of the enzyme under stressed.  相似文献   

5.
Carbohydrate ligands are important mediators of biomolecular recognition. Microcalorimetry has found the complex-type N-linked glycan core pentasaccharide beta-GlcNAc-(1-->2)-alpha-Man-(1-->3)-[beta-GlcNAc-(1-->2)-alpha-Man-(1-->6)]-Man to bind to the lectin, Concanavalin A, with almost the same affinity as the trimannoside, Man-alpha-(1-->6)-[Man-alpha-(1-->3)]-Man. Recent determination of the structure of the pentasaccharide complex found a glycosidic linkage psi torsion angle to be distorted by 50 degrees from the NMR solution value and perturbation of some key mannose-protein interactions observed in the structures of the mono- and trimannoside complexes. To unravel the free energy contributions to binding and to determine the structural basis for this degeneracy, we present the results of a series of nanosecond molecular dynamics simulations, coupled to analysis via the recently developed MM-GB/SA approach (Srinivasan et al., J. Am. Chem. Soc. 1998, 120:9401-9409). These calculations indicate that the strength of key mannose-protein interactions at the monosaccharide site is preserved in both the oligosaccharides. Although distortion of the pentasaccharide is significant, the principal factor in reduced binding is incomplete offset of ligand and protein desolvation due to poorly matched polar interactions. This analysis implies that, although Concanavalin A tolerates the additional 6 arm GlcNAc present in the pentasaccharide, it does not serve as a key recognition determinant.  相似文献   

6.
The antigenic recognition of Shigella flexneri O-polysaccharide, which consists of a repeating unit ABCD [-->2)-alpha-L-Rhap-(1-->2)-alpha-L-Rhap-(1-->3)-alpha-L-Rhap-(1-->3)-beta-D-GlcpNAc-(1-->], by the monoclonal antibody SYA/J6 (IgG3, kappa) has been investigated by crystallographic analysis of the Fab domain and its two complexes with two antigen segments (a pentasaccharide Rha A-Rha B-Rha C-GlcNAc D-Rha A' and a modified trisaccharide Rha B-Rha C-GlcNAc D in which Rha C* is missing a C2-OH group). These complex structures, the first for a Fab specific for a periodic linear heteropolysaccharide, reveal a binding site groove (between the V(H) and V(L) domains) that makes polar and nonpolar contacts with all the sugar residues of the pentasaccharide. Both main-chain and side-chain atoms of the Fab are used in ligand binding. The charged side chain of Glu H50 of CDR H2 forms crucial hydrogen bonds to GlcNAc of the oligosaccharides. The modified trisaccharide is more buried and fits more snugly than the pentasaccharide. It also makes as many contacts (approximately 75) with the Fab as the pentasaccharide, including the same number of hydrogen bonds (eight, with four being identical). It is further engaged in more hydrophobic interactions than the pentasaccharide. These three features favorable to trisaccharide binding are consistent with the observation of a tighter complex with the trisaccharide than the pentasaccharide. Thermodynamic data demonstrate that the native tri- to pentasaccharides have free energies of binding in the range of 6.8-7.4 kcal mol(-1), and all but one of the hydrogen bonds to individual hydroxyl groups provide no more than approximately 0.7 kcal mol(-1). They further indicate that hydrophobic interactions make significant contributions to binding and, as the native epitope becomes larger across the tri-, tetra-, pentasaccharide series, entropy contributions to the free energy become dominant.  相似文献   

7.
Sodium dodecyl sulfate was shown to promote both the inactivation and proteolytic degradation of the yeast glycoprotein, carboxypeptidase Y, with the former effect occurring six times faster than the latter. Although the proteolysis, as judged by polyacrylamide gel electrophoresis, was inhibited by pepstatin, which implicates the presence of proteinase A, the possibility of autodigestion could not be ruled out. A contributing role of the enzyme's carbohydrate moiety to these two processes was revealed by treating carboxypeptidase Y with endo-β-N-acetylglucosaminidase H. This treatment removes all four of the enzyme's Oligosaccharide chains in sodium dodecyl sulfate and as a consequence increases the rate of inactivation of the resulting carboxypeptidase Y by twofold and its proteolytic degradation by threefold relative to that of untreated enzyme. It thus appears that carboxypeptidase Y is a glycoprotein whose structural integrity and functional activity are influenced by its associated carbohydrate component.  相似文献   

8.
Leech carboxypeptidase inhibitor (LCI) is a novel protein inhibitor present in the medicinal leech Hirudo medicinalis. The structures of LCI free and bound to carboxypeptidase A2 (CPA2)have been determined by NMR and X-ray crystallography, respectively. The LCI structure defines a new protein motif that comprises a five-stranded antiparallel beta-sheet and one short alpha-helix. This structure is preserved in the complex with human CPA2 in the X-ray structure, where the contact regions between the inhibitor and the protease are defined. The C-terminal tail of LCI becomes rigid upon binding the protease as shown in the NMR relaxation studies, and it interacts with the carboxypeptidase in a substrate-like manner. The homology between the C-terminal tails of LCI and the potato carboxypeptidase inhibitor represents a striking example of convergent evolution dictated by the target protease. These new structures are of biotechnological interest since they could elucidate the control mechanism of metallo-carboxypeptidases and could be used as lead compounds for the search of fibrinolytic drugs.  相似文献   

9.
The process of pressure-induced denaturation of carboxypeptidase Y and the role of the carbohydrate moiety in its response to pressure and low temperature were investigated by measuring in situ the catalytic activity and, the intrinsic and 8-anilino-1-naphthalene sulfonic acid binding fluorescences. Pressure-induced denaturation of carboxypeptidase Y is a process involving at least three transitions. Low pressures (below 150 MPa) induced slight conformational changes characterized by a slight decrease in the center of the spectral mass of intrinsic fluorescence, whereas no changes in 8-anilino-1-naphthalene sulfonic acid binding fluorescence were observed and 80% of the catalytic activity remained. Higher pressure (150-500 MPa) induced further conformational changes, characterized by a large decrease in the center of the spectral mass of intrinsic fluorescence, a large increase in the 8-anilino-1-naphthalene sulfonic acid binding fluorescence and the loss of all catalytic activity. Thus, this intermediate exhibited characteristics of molten globule-like state. A further increase, in pressure (above 550 MPa) induced transition from this first molten globule-like state to a second molten globule-like state. This two-stage denaturation process can be explained by assuming the existence of two independent structural domains in the carboxypeptidase molecule. A similar three-transition process was found for unglycosylated carboxypeptidase Y, but, the first two transitions clearly occurred at lower pressures than those for glycosylated carboxypeptidase Y. These findings indicate that the carbohydrate moiety protects carboxypeptidase Y against pressure-induced denaturation. The origin of the protective effects is discussed based on the known crystallographic structure of CPY.  相似文献   

10.
A new bacterial sialidase (N-acetylneuraminate glycohydrolase, EC 3.2.1.18) isolated from the culture filtrate of Arthrobacter ureafaciens was characterized in detail with respect to its action on sialoglycolipids. Strong electrolytes had a reversible inhibitory effect on the action of the enzyme on brain gangliosides in accordance with Debye-Hückel effect of ionic environment on ionic activity, and resulted in an acidic shift and a broadening of the pH optimum. Both ionic and non-ionic detergents markedly enhanced the enzymic activity on the gangliosides, and caused an acidic shift on the pH optimum of this enzyme. Sulfhydryl groups seemed to be involved in its active site. This enzyme had a highly specific action on sialidase-resistant ganglioside GM1, showing about 100-fold higher activity on GM1 than Clostridium perfringens sialidase, the only sialidase so far reported to cleave the lipid substrate in the presence of bile salts. In the absence of detergents, the activity of A. ureafaciens sialidase on GM1 was very low. Ganglioside GM1 in either the monomeric or micelar form was hydrolyzed to asialo-GM1 by A. ureafaciens sialidase most efficiently in the presence of sodium cholate of about three times the GM1 molar concentration. The presence of detergents increased both the Km and Vmax values for ganglioside GM1. The oligosaccharide prepared from GM1 by ozonolysis was cleaved well by this sialidase in the absence of detergents, and no detergent was found to affect the hydrolysis. The Km value for the sugar substrate was about two orders of magnitude greater than that for the corresponding lipid substrate. It is suggested that the hydrophobic ceramide moiety increases affinity of the lipid substrate to the enzyme, but inhibits hydrolysis of the substrate, possibly due to its hydrophobic interaction with hydrophobic portions of the enzyme molecule (resulting in lower Km and Vmax for lipid substrates). This inhibition may be released by detergent due to formation of mixed micelles of sialoglycolipid and detergent molecules. It is also indicated that recognition of the specific saccharide structure of GM1 by individual sialidases is essential for release of the resistant sialyl residue, and that A. ureafaciens sialidase seemed to have an isoenzymic or oligomeric structure.  相似文献   

11.
12.
Anisylazoformyllysine (CH3OC6H4-N = N-CO-Lys-OH) is rapidly hydrolyzed at the acyl-lysine linkage by the zinc-enzyme porcine carboxypeptidase B. The catalytic reaction is readily monitored spectrophotometrically by disappearance of the intense absorption (348.5 nm, epsilon 18400) of the azo chromophore, which chemically fragments after substrate cleavage. Carboxypeptidase Y has no activity toward this type of substrate.  相似文献   

13.
The composition and structural aspects of the amino and carboxylic acid groups required for incorporation into peptides by transpeptidation and inhibition of hydrolysis in carboxypeptidase Y-catalyzed reactions were studied. Separation of these two groups by even one carbon prevents incorporation by transpeptidation and does not inhibit incorporation of other amino acids into model peptides. Substitution of phosphonic or sulfonic acids for the carboxylic acid group also results in loss of incorporation by transpeptidation. Only the sulfonic acid analog of glycine causes inhibition of hydrolysis and this inhibition is lost when serine is included in the reaction. d-Serine is not incorporated by carboxypeptidase Y, and its presence in the reaction mixture does not inhibit the incorporation of the L-isomer.  相似文献   

14.
The functional cycle of heat shock protein 90 (Hsp90) is driven and inhibited by the association/dissociation of ligand molecules. In order to understand the molecular mechanism of the association of N-terminal domain of Hsp90 (N-Hsp90) and its ligand molecule, it is necessary to investigate which part in the target system promotes or inhibits the association of N-Hsp90 and its ligand molecule. We apply the decomposition analysis for the association free energy of N-Hsp90 and ADP. The mean force calculated by thermodynamic integration method combined with molecular dynamic simulations is divided into the contributions from molecules in the target system. Van der Waals interaction of the solvent water molecules strongly stabilises the association. Three lysine residues on the surface of the N-Hsp90 pull ADP toward the binding pocket of N-Hsp90. This study elucidates the association process of ADP from the bulk region to the binding pocket of the N-terminal domain Hsp90. This approach is applicable to elucidate the association process of biomolecules.  相似文献   

15.
Temperature-sensitive secretory mutants (sec) of S. cerevisiae have been used to evaluate the organelles and cellular functions involved in transport of the vacuolar glycoprotein, carboxypeptidase Y (CPY). Others have shown that CPY (61 kd) is synthesized as an inactive proenzyme (69 kd) that is matured by cleavage of an 8 kd amino-terminal propeptide. sec mutants that are blocked in either of two early stages in the secretory process and accumulate endoplasmic reticulum or Golgi bodies also accumulate precursor forms of CPY when cells are incubated at the nonpermissive temperature (37°C). These forms are converted to a proper size when cells are returned to a permissive temperature (25°C). Vacuoles isolated from sec mutant cells do not contain the proCPY produced at 37°C. These results suggest that vacuolar and secretory glycoproteins require the same cellular functions for transport from the endoplasmic reticulum and from the Golgi body. The Golgi body represents a branch point in the pathway: from this organelle, vacuolar proenzymes are transported to the vacuole for proteolytic processing and secretory proteins are packaged into vesicles.  相似文献   

16.
Immunological studies on the carboxypeptidase Y mutant prcl-l of Saccharomyces cerevisiae revealed the origin of mutation in the structural gene of carboxypeptidase Y. The absence of carboxypeptidase Y has no effect on growth, even after drastic changes of growth conditions. A double mutant (prc 1- leu2-) lacking carboxypeptidase Y and auxotrophic for leucine is able to grow on the peptide benzyloxycarbonylglycylleucine (Cbz-Gly-Leu) as sole nitrogen source, indicating the existence of a second carboxypeptidase. Using a new peptidase test, the existence of this second enzyme, called carboxypeptidase S, was confirmed biochemically.  相似文献   

17.
The possible role of histidine residues in the catalytic function of carboxypeptidase Y from bakers' yeast has been investigated using site-specific reagents. Among the reagents tested, benzyloxy-L-phenylalanylchloromethane (Z-PheCH2Cl) was the most powerful inhibitor of the enzyme. It irreversibly inactivated both the peptidase and esterase activities with an apparent second order rate constant of 3.8 M-minus 1 S-minus 1; the D isomer caused essentially no effect on either activity. Inhibition by L-Z-PheCH2Cl, the reaction retarded by certain competitive inhibitors of the enzyme. Using radioactive L-Z-PheCH2Cl, the reaction with the enzyme was shown to be essentially stoichiometric. Diisopropylphosphorofluoridate (iPr2PF)-inactivated enzyme failed to react with Z-PheCH2Cl, and conversely, the Z-PheCH2Cl-inhibited enzyme failed to react with radioactive iPr2PF. Amino acid analyses of the Z-PheCH2Cl-inactivated enzyme revealed the loss of essentially 1 residue, with a concomitant yield of a 0.62 residue of N-t-carboxymethylhistidine. Since carboxypeptidase Y has a reactive serine at its active center, we concluded from these results that the mechanism involves a charge-relay system in the hydrolysis of peptide and ester substrates, as in chymotrypsin. An -SH group of carboxypeptidase Y was not affected during the reaction with L-Z-PheCH2Cl. The generic name "serine carboxypeptidase" has been proposed for carboxypeptidase Y and for the iPr2PF-sensitive carboxypeptidases from plants, molds, and animal tissues, in order to distinguish them from "metal carboxypeptidase" to which carboxypeptidase A (EC 3.4.12.2) and B (EC 3.4.12.3) belong.  相似文献   

18.
Summary Carboxypeptidase Y (CPY) is a glycosylated yeast vacuolar protease used commercially for synthesis of peptides. To increase the production of CPY in Saccharomyces cerevisiae we have placed its coding region (PRC1) under control of the strongly regulated yeast GAL1 promoter on multicopy plasmids and introduced the constructs into vpl1 mutant strains. Such mutants are known to secrete CPY. High levels of CPY production were obtained by induction of the GAL1 promoter when the cells had left the exponential phase, resulting in a growth-phase-dependent CPY production similar to that cells with PRC1 under the control of its own promoter. Introduction of a high copy number 2-URA3-EU2d plasmid with GAL1p-PRC1 fusion in a vpl1 strain resulted in a 200-fold increase of secreted CPY (about 40 mg/l) as compared to a vpl1 mutant carrying a single copy of the wild-type PRC1 gene. The overproduced, secreted CPY was active and had the normal N-terminal sequence. Sodium dodecyl sulphate polyacrylamide gel electrophoresis revealed two forms of active CPY, probably due to different levels of glycosylation. Offprint requests to: T. L. Nielsen  相似文献   

19.
20.
Extended binding site of ricin B lectin for oligosaccharide recognition   总被引:1,自引:0,他引:1  
The plant lectin ricin B chain binds oligosaccharide with more affinity than the mono- or disaccharide ligands. The experiments indicated that a biantennary oligosaccharide could bind itself to any of the crystallographically established 1st or 2nd binding sites. After manual docking of either terminal galactose residues of the oligosaccharide in the 1st and 2nd binding sites of Ricin B and simulating the systems over nanosecond trajectories in implicit solvent, it was observed that the protein bound the oligosaccharide strongly through both its 1st and 2nd binding sites. Not only were the terminal galactose residues, several other residues of the oligosaccharide were involved in the binding scheme. Average gas phase energies were calculated molecular mechanically, solvation energies were calculated by Generalized Born model and the normal mode analysis was used to calculate the entropic contribution of binding. The entropy/enthalpy compensation has been observed for the protein-oligosaccharide interactions. The binding was found to be enthalpically favorable and compensating for the unfavorable entropic contribution. Comparison of the calculated free energy with the experimental data clearly suggests that binding is mono-dentate rather than bi-dentate through a single Gal-containing antenna.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号