首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Comparative molecular field analysis (CoMFA) has been applied to novel D2 partial agonists. Due to the predictability of the CoMFA model across different series of D2 partial agonists, we believe these compounds are binding to the D2 agonist receptor in the conformation and alignment described herein.  相似文献   

2.
3.
The androgen receptor (AR) activity of listed chemicals, so called SPEED 98, by the Ministry of the Environment, Japan, and structurally related chemicals was characterized using MDA-kb2 human breast cancer cells stably expressing an androgen-responsive luciferase reporter gene, MMTV-luc. Since our results suggested that chemicals with diverse chemical structures were capable of disrupting the endocrine systems mediated by AR, a comparative molecular field analysis (CoMFA) model was developed to analyze the structural requirements necessary to disrupt AR function. A significant CoMFA model with r(2)=0.825 and q(2)=0.332 was developed for AR antagonist activity of 35 pure antagonists excluding procymidone. On the other hand, a good CoMFA model with r(2)=0.983 and q(2)=0.555 was obtained for antagonist activity of 13 chemicals with both agonist and antagonist activities. The steric and electrostatic properties were sufficient to describe the structural requirements for AR antagonist activity. In addition, the structural difference of AR agonists and antagonists was explained based on CoMFA results and the AR-LBD crystal structure. As several ERalpha agonists such as diethylstilbestrol (DES) acted as AR antagonists, the surface area of the AR ligand-binding domain (LBD) was compared with that of the ERalpha-LBD based on their reported crystal structures to analyze how those ligands interact with LBDs. The surface area of AR-LBD was shown to be smaller than that of ERalpha-LBD and therefore compounds with both estrogenic and antiandrogenic activities can fit well into the ERalpha-LBD but may protrude from the AR-LBD. It is likely that this subtle difference of the surface areas of the LBDs determines whether an ERalpha agonist acts as an AR antagonist or an agonist.  相似文献   

4.
A cell line in which RD-HGA16 cells were stably transfected with the hTAAR 1 receptor was created and utilized to carry out a systematic evaluation of a series of beta-phenethylamines. Fair agreement was observed with data obtained for aryl and ethylene chain substituted analogs in an AV12-664 cell line in which hemagglutinin-tagged hTAAR 1 was stably co-expressed with rat G alpha(s). Analogs with multiple substituents as well as analogs with bulky groups were found to be partial agonists. Analogs in which the primary amino group was converted to a secondary or a tertiary amino group by N-methylation were also partial agonists. Comparative Molecular Field Analysis (CoMFA) using the potency data yielded a regression coefficient r(2) of 0.824. The steric field contribution to the model was 61% with the balance (39%) contributed by the electrostatic field. The collective results suggest that increasing steric bulk both at the amino nitrogen, particularly by N-dimethylation, and at the 4-position of the aromatic ring leads to low efficacy ligands.  相似文献   

5.
The nociceptin/orphanin FQ receptor (NOP) has been implicated in a wide range of biological functions, including pain, anxiety, depression and drug abuse. Especially, its agonists have a great potential to be developed into anxiolytics. However, the crystal structure of NOP is still not available. In the present work, both structure-based and ligand-based modeling methods have been used to achieve a comprehensive understanding on 67N-substituted spiropiperidine analogues as NOP agonists. The comparative molecular-field analysis method was performed to formulate a reasonable 3D-QSAR model (cross-validated coefficient q(2)=0.819 and conventional r(2)=0.950), whose robustness and predictability were further verified by leave-eight-out, Y-randomization, and external test-set validations. The excellent performance of CoMFA to the affinity differences among these compounds was attributed to the contributions of electrostatic/hydrogen-bonding and steric/hydrophobic interactions, which was supported by the Surflex-Dock and CDOCKER molecular-docking simulations based on the 3D model of NOP built by the homology modeling method. The CoMFA contour maps and the molecular docking simulations were integrated to propose a binding mode for the spiropiperidine analogues at the binding site of NOP.  相似文献   

6.
Abstract

Peroxisome proliferator-activated receptors (PPARs) are considered important targets for the treatment of Type 2 diabetes (T2DM). To accelerate the discovery of PPAR α/γ dual agonists, the comparative molecular field analysis (CoMFA) were performed for PPARα and PPARγ, respectively. Based on the molecular alignment, highly predictive CoMFA model for PPARα was obtained with a cross-validated q2 value of 0.741 and a conventional r2 of 0.975 in the non-cross-validated partial least-squares (PLS) analysis, while the CoMFA model for PPARγ with a better predictive ability was shown with q2 and r2 values of 0.557 and 0.996, respectively. Contour maps derived from the 3D-QSAR models provided information on main factors towards the activity. Then, we carried out structural optimization and designed several new compounds to improve the predicted biological activity. To investigate the binding modes of the predicted compounds in the active site of PPARα/γ, a molecular docking simulation was carried out. Molecular dynamic (MD) simulations indicated that the predicted ligands were stable in the active site of PPARα/γ. Therefore, combination of the CoMFA and structure-based drug design results could be used for further structural alteration and synthesis and development of novel and potent dual agonists. Abbreviations DM diabetes mellitus

T2DM type 2 diabetes

PPARs peroxisome proliferator-activated receptors

LBDD ligand based drug design

3D-QSAR three-dimensional quantitative structure activity relationship

CoMFA comparative molecular field analysis

PLS partial least square

LOO leave-one-out

q2 cross-validated correlation coefficient

ONC optimal number of principal components

r2 non-cross-validated correlation coefficient

SEE standard error of estimate

F the Fischer ratio

r2pred predictive correlation coefficient

DBD DNA binding domain

MD molecular dynamics

RMSD root-mean-square deviation

RMSF root mean square fluctuations

Communicated by Ramaswamy H. Sarma  相似文献   

7.
Recent results showing that the binding characteristics of 33 steroids for human membrane progesterone receptor alpha (hu-mPRα) differ from those for the nuclear progesterone receptor (nPR) suggest that hu-mPRα-specific agonists can be identified for investigating its physiological functions. The binding affinities of an additional 21 steroids for hu-mPRα were determined to explore the structure–activity relationships in more detail and to identify potent, specific mPRα agonists. Four synthetic progesterone derivatives with methyl or methylene groups on positions 18 or 19, 18a-methylprogesterone (18-CH3P4, Org OE 64-0), 13-ethenyl-18-norprogesterone (18-CH2P4, Org 33663-0), 19a-methylprogesterone (19-CH3P4, Org OD 13-0) and 10-ethenyl-19-norprogesterone (19-CH2P4, Org OD 02-0), showed similar or higher affinities than progesterone for hu-mPRα and displayed mPRα agonist activities in G-protein and MAP kinase activation assays. All four steroids also bound to the nPR in cytosolic fractions of MCF-7 cells. However, two compounds, 19-CH2P4 and 19-CH3P4, showed no nPR agonist activity in a nPR reporter assay and therefore are selective mPRα agonists suitable for physiological investigations. The structure–binding relationships of the combined series of 54 steroids for hu-mPRα deviated strikingly from those of a published set of 60 3-keto or 3-desoxy steroids for nPR. Close correlations were observed between the receptor binding affinities of the steroids and their physicochemical properties calculated by comparative molecular field analysis (CoMFA) for both hu-mPRα and nPR. A comparison of the CoMFA field graphs for the two receptors revealed several differences in the structural features required for binding to hu-mPRα and nPR which could be exploited to develop additional mPR-specific ligands.  相似文献   

8.
3D-QSAR analysis has been performed on a series of previously synthesized benzonitrile derivatives, which were screened as farnesyltransferase inhibitors, using comparative molecular field analysis (CoMFA) with partial least-square fit to predict the steric and electrostatic molecular field interactions for the activity. The CoMFA study was carried out using a training set of 34 compounds. The predictive ability of the model developed was assessed using a test set of eight compounds (r(pred)(2) as high as 0.770). The analyzed 3D-QSAR CoMFA model has demonstrated a good fit, having r(2) value of 0.991 and cross-validated coefficient q(2) value as 0.619. The analysis of CoMFA contour maps provided insight into the possible modification of the molecules for better activity.  相似文献   

9.
Baogongteng A (BGT-A), a naturally occurring tropane muscarinic agonist isolated from Chinese medicinal plant, exhibits a bioactive effect different from those of many tropane alkaloids that are muscarinic antagonists. A series of racemic derivatives of BGT-A was synthesized to study the structure-activity relationships (SAR). To explore further the SAR in this series and to ultimately design muscarinic agonists for drug development, a Comparative Molecular Field Analysis (CoMFA) was performed. The values of the leave-one-out cross-validated correlation coefficient q2 and the conventional correlation coefficient r2 for the model are 0.613 and 0.965, respectively. The regression analysis of the data indicated that the steric effect of N-substituted group on tropane of analyzed compounds critically affected the agonistic activity to muscarinic receptors.  相似文献   

10.
The farnesoid x receptor (FXR) has become a potential drug target for treating cholesterol-related and bile acid-related diseases recently. In this paper, 3-dimensional quantitative structure-activity (structure-affinity and structure-efficacy) relationships are investigated for a series of non-steroidal agonists (fexaramine series) by using the comparative molecular field analysis (CoMFA), where molecular docking method (FlexX) is employed to construct molecular superimposition maps. A proposal to design some new agonists is discussed lastly.  相似文献   

11.
Receptor density is an important determinant of cellular effector responses to receptor activation. We analysed cytosolic Ca(2+) responses to alpha(2)-adrenergic agents in PC12 cells expressing human alpha(2B)-adrenergic receptors (AR) at two densities (3.8 and 1.3 pmol/mg protein). The efficacy (E(max)) of agonists was greater in cells with higher receptor expression; while the potency (EC(50)) of norepinephrine and oxymetazoline was independent of alpha(2B)-AR levels. Several classical alpha(2)-AR antagonists behaved as either partial or inverse agonists in a receptor density-dependent fashion. No apparent structural similarities were found among the inverse agonists, precluding simple predictions of inverse agonist activity. Transfected PC12 cells expressing alpha(2B)-AR at relatively high density would be a useful approach to screen inverse agonists for this class of receptors. Our results further indicate that receptor density significantly influences the properties of ligands, not only of partial agonists as predicted by classical receptor theory, but also of antagonists and full agonists.  相似文献   

12.
Oxazolidinones exemplified by eprezolid and linezolid are a new class of antibacterials that are active against Gram positive and anaerobic bacteria including methicillin-resistant Staphylococcus aureus (MRSA), methicillin-resistant Staphylococcus epidermidis (MRSE) and vancomycin resistant enterococci (VRE). In an effort to have a better antibacterial agent in the oxazolidinone class, we have performed three-dimensional quantitative structure-activity relationship (3D-QSAR) studies for a series of tricyclic oxazolidinones. 3D-QSAR studies were performed using the Comparative Molecular Field Analysis (CoMFA) and Comparative Molecular Similarity Indices Analysis (CoMSIA) procedures. These studies were performed using 42 compounds; the QSAR model was developed using a training set of 33 compounds. The predictive ability of the QSAR model was assessed using a test set of 9 compounds. The predictive 3D-QSAR models have conventional r(2) values of 0.975 and 0.940 for CoMFA and CoMSIA respectively; similarly, cross-validated coefficient q(2) values of 0.523 and 0.557 for CoMFA and CoMSIA, respectively, were obtained. The CoMFA 3D-QSAR model performed better than the CoMSIA model.  相似文献   

13.
14.
15.
16.
A three-dimensional quantitative structure activity relationship study (3-D-QSAR) was performed on a set of thiazolidinedione antihyperglycemic agents using the comparative molecular field analysis (CoMFA) method. The CoMFA models were derived from a training set of 53 compounds. Fifteen compounds, which were not used in model generation were used to validate the CoMFA models. All the compounds were superimposed to the template structure by atom-based and shape-based strategies. The SYBYL QSAR rigid body field fit was also used for aligning the ligands. A total of twelve different alignments were generated. The resulting models exhibited a good cross-validated r2cv values (0.624-0.764) and the conventional r2 values (0.689-0.921). A more robust cross-validation test using cross-validation by 2 groups (leave half out method) was performed 100 times to ascertain the predictiveness of the CoMFA models. The mean of r2cv values from 100 runs ranged from 0.611-0.690. Few models exhibited good external predictivity. These models were then used to define a hypothetical receptor model for antihyperglycemic agents.  相似文献   

17.
Two 3D-QSAR methods--CoMFA and CoMSIA--were applied to a set of 38 angiotensin receptor (AT1) antagonists. The conformation and alignment of molecules were obtained by a novel method - consensus dynamics. The representation of biological activity, partial charge formalism, absolute orientation of the molecules in the grid, and grid spacing were also studied for their effect on the CoMFA models. The models were thoroughly validated through trials using scrambled activities and bootstrapping. The best CoMFA model had a cross-validated correlation coefficient ( q2) of 0.632, which improved with "region focusing" to 0.680. This model had a "predictive" r2 of 0.436 on a test series that was unique and with little representation in the training set. Although the "predictive" r2 of the best CoMSIA model, which included steric, electrostatic, and hydrogen bond acceptor fields was higher than that of the best CoMFA model, the other statistical parameters like q2, r2, F value, and s were unsatisfactory. The contour maps generated using the best CoMFA model were used to identify the structural features important for biological activity in these compounds.  相似文献   

18.
Platelet activation by collagen depends principally on two receptors, alpha(2)beta(1) integrin (GPIa-IIa) and GPVI. During this activation, the nonreceptor protein tyrosine kinase pp72(syk) is rapidly phosphorylated, but the precise contribution of alpha(2)beta(1) integrin and GPVI to signaling for this phosphorylation is not clear. We have recently found that proteolysis of platelet alpha(2)beta(1) integrin by the snake venom metalloproteinase, jararhagin, results in inhibition of collagen-induced platelet aggregation and pp72(syk) phosphorylation. In order to verify whether the treatment of platelets with jararhagin had any effect on GPVI signaling, in this study we stimulated platelets treated with either jararhagin or anti-alpha(2)beta(1) antibody with two GPVI agonists, an antibody to GPVI and convulxin. Platelet shape change and phosphorylation of pp72(syk) by both GPVI agonists was preserved, as was the structure and function of GPVI shown by (125)I-labeled convulxin binding to immunoprecipitated GPVI from jararhagin-treated platelets. In contrast, defective platelet aggregation in response to GPVI agonists occurred in both jararhagin-treated and alpha(2)beta(1)-blocked platelets. This apparent cosignaling role of alpha(2)beta(1) integrin for platelet aggregation suggests the possibility of a topographical association of this integrin with GPVI. We found that both platelet alpha(2)beta(1) integrin and GPVI coimmunoprecipitated with alpha(IIb)beta(3) integrin. Since platelet aggregation requires activation of alpha(IIb)beta(3) integrin, defective aggregation in the absence of alpha(2)beta(1) suggests that this receptor may provide a signaling link between GPVI and alpha(IIb)beta(3). Our study therefore demonstrates that platelet signaling leading to pp72(syk) phosphorylation initiated with GPVI engagement by either convulxin or GPVI antibody does not depend on alpha(2)beta(1) integrin. However, alpha(IIb)beta(3) integrin may, in this model, require functional alpha(2)beta(1) integrin for its activation.  相似文献   

19.
An approach combining CoMFA and HQSAR methods was used to describe QSAR models for a series of cruzain inhibitors having the acylhydrazide framework. A CoMFA study using two alignment orientations (I and II), three different probe atoms and changes of the lattice spacing (1 and 2 A) was performed. Alignment II and an sp3 probe carbon atom yielded good cross-validation (q2=0.688) employing lattice spacing of 1 A. The best HQSAR model was generated using atoms, bond, and connectivity as fragment distinction and fragment size default (4-5) showing similar cross-validated value of CoMFA (q2=0.689). Based upon the information derived from CoMFA and HQSAR, we have identified some key features that may be used to design new acylhydrazide derivatives that may be more potent cruzain inhibitors.  相似文献   

20.
Arginine vasopressin (AVP) increases water permeability in the collecting duct of the nephron via activation of adenylyl cyclase. Alpha-2 (alpha2) agonists inhibit AVP-stimulated water permeability via binding to alpha2 adrenoceptors that have been divided into 3 subtypes- alpha2A, alpha2B, and alpha2C. Some biological effects mediated by alpha2 agonists result from nonadrenergic imidazoline receptors that exist in the rat kidney. Thus, alpha2-inhibition of AVP-stimulated water permeability in the rat collecting duct could be caused by imidazoline receptors. The purpose of this study was to test agonists and antagonists selective for alpha2 and imidazoline receptors on AVP-stimulated water permeability in the rat inner medullary collecting duct (IMCD). Some experiments were conducted where water permeability was stimulated by a nonhydrolyzable analog of adenosine 3', 5'-cyclic monophosphate (cAMP). Agonists included dexmedetomidine, clonidine, oxymetazoline, agmatine and rilmenidine. The latter two are selective imidazoline agonists. Antagonists included yohimbine, RX821002, atipamezole, prazosin, WB4101, idazoxan, and BU239. Prazosin and WB4101 demonstrate selectivity for the alpha2B and alpha2C subtypes, respectively, and oxymetazoline and RX821002 are selective for the alpha2A subtype. BU239 is selective for imidazoline receptors. Wistar rat terminal IMCDs were isolated and perfused to determine the osmotic water permeability coefficient (Pf). All agonists except agmatine inhibited AVP-stimulated Pf. Inhibition by rilmenidine indicated a different mechanism of action from other agonists. Dose-response data show dexmedetomidine to be the most potent inhibitor. Oxymetazoline and clonidine inhibited cAMP-stimulated Pf indicating that the mechanism involves postcAMP cellular events. It was reported previously that dexmedetomidine inhibits cAMP-stimulated Pf (1). All antagonists except prazosin and WB4101 reversed alpha2-inhibition of AVP-stimulated Pf. BU239 was effective at 1 microM but not at 100 nM. Results suggest that alpha2A adrenoceptors modulate water permeability in the IMCD. The involvement of imidazoline receptors is inconclusive.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号