首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The adenovirus E1A protein has been implicated in increasing cellular susceptibility to apoptosis induced by tumor necrosis factor (TNF); however, its mechanism of action is still unknown. Since activation of nuclear factor kappaB (NF-kappaB) has been shown to play an anti-apoptotic role in TNF-induced apoptosis, we examined apoptotic susceptibility and NF-kappaB activation induced by TNF in the E1A transfectants and their parental cells. Here, we reported that E1A inhibited activation of NF-kappaB and rendered cells more sensitive to TNF-induced apoptosis. We further showed that this inhibition was through suppression of IkappaB kinase (IKK) activity and IkappaB phosphorylation. Moreover, deletion of the p300 and Rb binding domains of E1A abolished its function in blocking IKK activity and IkappaB phosphorylation, suggesting that these domains are essential for the E1A function in down-regulating IKK activity and NF-kappaB signaling. However, the role of E1A in inhibiting IKK activity might be indirect. Nevertheless, our results suggest that inhibition of IKK activity by E1A is an important mechanism for the E1A-mediated sensitization of TNF-induced apoptosis.  相似文献   

2.
Oncogenes induce and activate endogenous p73 protein   总被引:5,自引:0,他引:5  
  相似文献   

3.
Among other cellular responses, tumor necrosis factor (TNF) induces different forms of cell death and the activation of the p38 mitogen-activated protein kinase (MAPK). The influence of p38 MAPK activation on TNF-induced apoptosis or necrosis is controversially discussed. Here, we demonstrate that pharmacological inhibition of p38 MAPK enhances TNF-induced cell death in murine fibroblast cell lines L929 and NIH3T3. Furthermore, overexpression of dominant-negative versions of p38 MAPK or its upstream kinase MKK6 led to increased cell death in L929 cells. While overexpression of the p38 isoforms alpha and beta did not protect L929 cells from TNF-induced toxicity, overexpression of constitutively active MKK6 decreased TNF-induced cell death. Although the used inhibitors of p38 MAPK decreased the phosphorylation of the survival kinase PKB/Akt, this effect could be ruled out as cause of the observed sensitization to TNF-induced cytotoxicity. Finally, we demonstrate that the nuclear factor kappaB (NF-kappaB)-dependent gene expression, shown as an example for the anti-apoptotic gene cellular inhibitor of apoptosis (c-IAP2), was reduced by p38 MAPK inhibition. In consequence, we found that inhibition of p38 MAPK led to the activation of the executioner caspase-3.  相似文献   

4.
Human neutrophil accumulation in inflammatory foci is essential for the effective control of microbial infections. Although exposure of neutrophils to cytokines such as tumor necrosis factor-alpha (TNFalpha), generated at sites of inflammation, leads to activation of MAPK pathways, mechanisms responsible for the fine regulation of specific MAPK modules remain unknown. We have previously demonstrated activation of a TNFalpha-mediated JNK pathway module, leading to apoptosis in adherent human neutrophils (Avdi, N. J., Nick, J. A., Whitlock, B. B., Billstrom, M. A., Henson, P. M., Johnson, G. L., and Worthen, G. S. (2001) J. Biol. Chem. 276, 2189-2199). Herein, evidence is presented linking regulation of the JNK pathway to p38 MAPK and the Ser/Thr protein phosphatase-2A (PP2A). Inhibition of p38 MAPK by SB 203580 and M 39 resulted in significant augmentation of TNFalpha-induced JNK and MKK4 (but not MKK7 or MEKK1) activation, whereas prior exposure to a p38-activating agent (platelet-activating factor) diminished the TNFalpha-induced JNK response. TNFalpha-induced apoptosis was also greatly enhanced upon p38 inhibition. Studies with a reconstituted cell-free system indicated the absence of a direct inhibitory effect of p38 MAPK on the JNK module. Neutrophil exposure to the Ser/Thr phosphatase inhibitors okadaic acid and calyculin A induced JNK activation. Increased phosphatase activity following TNFalpha stimulation was shown to be PP2A-associated and p38-dependent. Furthermore, PP2A-induced dephosphorylation of MKK4 resulted in its inactivation. Thus, in neutrophils, p38 MAPK, through a PP2A-mediated mechanism, regulates the JNK pathway, thus determining the extent and nature of subsequent responses such as apoptosis.  相似文献   

5.
6.
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) has been shown to induce apoptosis of cancer cells. Sensitization of cancer cells to TRAIL, particularly TRAIL-resistant cancer cells, could improve the effectiveness of TRAIL as an anticancer agent. The adenovirus type 5 E1A that associates with anticancer activities including sensitization to apoptosis induced by tumor necrosis factor is currently being tested in clinical trials. In this study, we investigated the sensitivity to TRAIL in the E1A transfectants ip1-E1A2 and 231-E1A cells and the parental TRAIL-resistant human ovarian cancer SKOV3.ip1 and TRAIL-sensitive human breast cancer MDA-MB-231 cells. The results indicated that the percentage of TRAIL-induced apoptotic cells was significantly higher in the E1A transfectants of both cell lines than it was in the parental cell lines. To further investigate the cellular mechanism of this effect, we found that E1A enhances TRAIL-induced activation of caspase-8, caspase-9, and caspase-3. Inhibition of caspase-3 activity by a specific inhibitor, Z-DEVD-fmk, abolished TRAIL-induced apoptosis. In addition, E1A enhanced TRAIL expression in ip1-E1A2 cells, but not in 231-E1A cells, and the anti-TRAIL neutralizing antibody N2B2 blocked the E1A-mediated bystander effect in vitro. Taken together, these results suggest that E1A sensitizes both TRAIL-sensitive and TRAIL-resistant cancer cells to TRAIL-induced apoptosis, which occurs through the enhancement of caspase activation; activation of caspase-3 is required for TRAIL-induced apoptosis; and E1A-induced TRAIL expression is involved in the E1A-mediated bystander effect. Combination of E1A and TRAIL could be an effective treatment for cancer.  相似文献   

7.
Vascular endothelial growth factor (VEGF) utilizes a phosphoinositide 3-kinase (PI 3-kinase)/Akt signaling pathway to protect endothelial cells from apoptotic death. Here we show that PI 3-kinase/Akt signaling promotes endothelial cell survival by inhibiting p38 mitogen-activated protein kinase (MAPK)-dependent apoptosis. Blockade of the PI 3-kinase or Akt pathways in conjunction with serum withdrawal stimulates p38-dependent apoptosis. Blockade of PI 3-kinase/Akt also led to enhanced VEGF activation of p38 and apoptosis. In this context, the pro-apoptotic effect of VEGF is attenuated by the p38 MAPK inhibitor SB203580. VEGF stimulation of endothelial cells or infection with an adenovirus expressing constitutively active Akt causes MEKK3 phosphorylation, which is associated with decreased MEKK3 kinase activity and down-regulation of MKK3/6 and p38 MAPK activation. Conversely, activation-deficient Akt decreases VEGF-stimulated MEKK3 phosphorylation and increases MKK/p38 activation. Activation of MKK3/6 is not dependent on Rac activation since dominant negative Rac does not decrease p38 activation triggered by inhibition of PI 3-kinase. Thus, cross-talk between the Akt and p38 MAPK pathways may regulate the level of cytoprotection versus apoptosis and is a new mechanism to explain the cytoprotective actions of Akt.  相似文献   

8.
Integrin transmembrane receptors generate multiple signals, but how they mediate specific signaling is not clear. Here we test the hypothesis that particular sequences along the beta(1) integrin cytoplasmic domain may exist that are intimately related to specific integrin-mediated signaling pathways. Using systematic alanine mutagenesis of amino acids conserved between different beta integrin cytoplasmic domains, we identified the tryptophan residue at position 775 of human beta(1) integrin as specific and necessary for integrin-mediated protein kinase B/Akt survival signaling. Stable expression of a beta(1) integrin mutated at this amino acid in GD25 beta(1)-null cells resulted in reduction of Akt phosphorylation at both Ser(473) and Thr(308) activation sites. As a consequence, the cells were substantially more sensitive to serum starvation-induced apoptosis when compared with cells expressing wild type beta(1) integrin. This inactivation of Akt resulted from increased dephosphorylation by a localized active population of protein phosphatase 2A. Both Akt and protein phosphatase 2A were present in beta(1) integrin-organized cytoplasmic complexes, but the activity of this phosphatase was 2.5 times higher in the complexes organized by the mutant integrin. The mutation of Trp(775) specifically affected Akt signaling, without effects on other integrin-activated pathways including phosphoinositide 3-kinase, MAPK, JNK, and p38 nor did it influence activation of the integrin-responsive kinases focal adhesion kinase and Src. The identification of Trp(775) as a specific site for integrin-mediated Akt signaling supports the concept of specificity of signaling along the integrin cytoplasmic domain.  相似文献   

9.
Activin A can induce erythroid differentiation, whereas basic fibroblast growth factor (bFGF) can maintain the undifferentiated status of erythroid progenitors. How these two factors together can affect the regulation of erythroid differentiation in hematopoietic cells has not been elucidated. This study demonstrates that bFGF antagonizes activin A-mediated growth inhibition and hemoglobin (Hb) synthesis in K562 cells. Analyses of mitogen-activated protein kinases revealed that activin A-induced p38 phosphorylation and inhibited ERK1/2 phosphorylation. In contrast, bFGF worked antagonistically to induce ERK1/2 phosphorylation and inhibited p38 phosphorylation in K562 cells. Furthermore, co-treatment of cells with activin A and bFGF decreased p38 phosphorylation and increased ERK1/2 phosphorylation. SB203580 inhibition of p38 activity eliminated activin A-mediated growth inhibition and Hb synthesis, whereas U0126 inhibition of ERK1/2 activity augmented the effects of activin A on K562 cells. These results suggest that bFGF can negatively modulate p38 and positively modulate ERK1/2 to antagonize activin A-mediated growth inhibition and Hb synthesis in K562 cells.  相似文献   

10.
Doxorubicin is the anthracycline with the widest spectrum of antitumor activity, and it has been shown that the antitumor activity is mediated in vivo by selective triggering of apoptosis in proliferating endothelial cells. We studied cultured human endothelial cells and observed that doxorubicin-induced apoptosis was mediated by p38 mitogen-activated protein kinase (MAPK). Doxorubicin-provoked apoptosis was significantly inhibited by expression of dominant negative p38 MAPK or pharmacological inhibition with SB203580. Furthermore, blocking phosphatidylinositol-3-kinase/Akt signaling significantly increased doxorubicin-induced caspase-3 activity and cell death, indicating that Akt is a survival factor in this system. Notably, we also found that doxorubicin-provoked apoptosis included p38 MAPK-mediated inhibition of Akt and Bad phosphorylation. Furthermore, doxorubicin-stimulated phosphorylation of Bad in cells expressing dominant negative p38 MAPK was impeded by the inhibition of PI3-K. In addition to the impact on Bad phosphorylation, doxorubicin-treatment caused p38 MAPK-dependent downregulation of Bcl-xL protein.  相似文献   

11.
Estrogens such as 17-beta estradiol (E(2)) play a critical role in sporadic breast cancer progression and decrease apoptosis in breast cancer cells. Our studies using estrogen receptor-positive MCF7 cells show that E(2) abrogates apoptosis possibly through phosphorylation/inactivation of the proapoptotic protein BAD, which was rapidly phosphorylated at S112 and S136. Inhibition of BAD protein expression with specific antisense oligonucleotides reduced the effectiveness of tumor necrosis factor-alpha, H(2)O(2), and serum starvation in causing apoptosis. Furthermore, the ability of E(2) to prevent tumor necrosis factor-alpha-induced apoptosis was blocked by overexpression of the BAD S112A/S136A mutant but not the wild-type BAD. BAD S112A/S136A, which lacks phosphorylation sites for p90(RSK1) and Akt, was not phosphorylated in response to E(2) in vitro(.) E(2) treatment rapidly activated phosphatidylinositol 3-kinase (PI-3K)/Akt and p90(RSK1) to an extent similar to insulin-like growth factor-1 treatment. In agreement with p90(RSK1) activation, E(2) also rapidly activated extracellular signal-regulated kinase, and this activity was down-regulated by chemical and biological inhibition of PI-3K suggestive of cross talk between signaling pathways responding to E(2). Dominant negative Ras blocked E(2)-induced BAD phosphorylation and the Raf-activator RasV12T35S induced BAD phosphorylation as well as enhanced E(2)-induced phosphorylation at S112. Chemical inhibition of PI-3K and mitogen-activated protein kinase kinase 1 inhibited E(2)-induced BAD phosphorylation at S112 and S136 and expression of dominant negative Ras-induced apoptosis in proliferating cells. Together, these data demonstrate a new nongenomic mechanism by which E(2) prevents apoptosis.  相似文献   

12.
Shikonin derivatives exert powerful cytotoxic effects, induce apoptosis and escape multidrug resistance in cancer. However, the diverse mechanisms underlying their anticancer activities are not completely understood. Here, we demonstrated that shikonin-induced apoptosis is caused by reactive oxygen species (ROS)-mediated activation of Akt/ASK1/p38 mitogen-activated protein kinase (MAPK) and downregulation of p21Cip1. In the presence of shikonin, inactivation of Akt caused apoptosis signal-regulating kinase 1 (ASK1) dephosphorylation at Ser83, which is associated with ASK1 activation. Shikonin-induced apoptosis was enhanced by inhibition of Akt, whereas overexpression of constitutively active Akt prevented apoptosis through modulating ASK1 phosphorylation. Silencing ASK1 and MKK3/6 by siRNA reduced the activation of MAPK kinases (MKK) 3/6 and p38 MAPK, and apoptosis, respectively. Antioxidant N-acetyl cysteine attenuated ASK1 dephosphorylation and p38 MAPK activation, indicating that shikonin-induced ROS is involved in the activation of Akt/ASK1/p38 pathway. Expression of p21Cip1 was significantly induced in early response, but gradually decreased by prolonged exposure to shikonin. Overexpression of p21Cip1 have kept cells longer in G1 phase and attenuated shikonin-induced apoptosis. Depletion of p21Cip1 facilitated shikonin-induced apoptosis, implying that p21Cip1 delayed shikonin-induced apoptosis via G1 arrest. Immunohistochemistry and in vitro binding assays showed transiently altered localization of p21Cip1 to the cytoplasm by shikonin, which was blocked by Akt inhibition. The cytoplasmic p21Cip1 actually binds to and inhibits the activity of ASK1, regulating the cell cycle progression at G1. These findings suggest that shikonin-induced ROS activated ASK1 by decreasing Ser83 phosphorylation and by dissociation of the negative regulator p21Cip1, leading to p38 MAPK activation, and finally, promoting apoptosis.  相似文献   

13.
14.
Epstein-Barr virus (EBV) latent membrane protein 2A (LMP2A) is widely expressed in EBV-infected cells within the infected human host and EBV-associated malignancies, suggesting that LMP2A is important for EBV latency, persistence, and EBV-associated tumorigenesis. Previously, we demonstrated that LMP2A provides an antiapoptotic signal through the activation of phosphatidylinositol 3-kinase (PI3-K)/Akt pathway in vitro. However, the exact function of LMP2A in tumor progression is not well understood. In this study, we found that LMP2A did not induce anchorage-independent cell growth in a human keratinocyte cell line, HaCaT, but did in a human gastric carcinoma cell line, HSC-39. In addition, LMP2A activated the PI3-K/Akt pathway in both HaCaT and HSC-39 cells; however, LMP2A did not activate Ras in HaCaT cells but did in HSC-39 cells. Furthermore, the Ras inhibitors manumycin A and a dominant-negative form of Ras (RasN17) and the PI3-K inhibitor LY294002 blocked LMP2A-mediated Akt phosphorylation and anchorage-independent cell growth in HSC-39 cells. These results suggest that constitutive activation of the Ras/PI3-K/Akt pathway by LMP2A is a key factor for LMP2A-mediated transformation.  相似文献   

15.
16.
The Akt kinase plays a crucial role in supporting Trk-dependent cell survival, whereas the p75 neurotrophin receptor (p75NTR) facilitates cellular apoptosis. The precise mechanism that p75NTR uses to promote cell death is not certain, but one possibility is that p75NTR-dependent ceramide accumulation inhibits phosphatidylinositol 3-kinase-mediated Akt activation. To test this hypothesis, we developed a system for examining p75NTR-dependent apoptosis and determined the effect of p75NTR on Akt activation. Surprisingly, p75NTR increased, rather than decreased, Akt phosphorylation in a variety of cell types, including human Niemann-Pick fibroblasts, which lack acidic sphingomyelinase activity. The p75NTR expression level required to elicit Akt phosphorylation was much lower than that required to activate the JNK pathway or to mediate apoptosis. We show that p75NTR-dependent Akt phosphorylation was independent of TrkA signaling, required active phosphatidylinositol 3-kinase, and was associated with increased tyrosine phosphorylation of p85 and Shc and with reduced cytosolic tyrosine phosphatase activity. Finally, we show that p75NTR expression increased survival in cells exposed to staurosporine or subjected to serum withdrawal. These findings indicate that p75NTR facilitates cell survival through novel signaling cascades that result in Akt activation.  相似文献   

17.
18.
Gastrin (G17) has a CCK-B receptor-mediated growth-promoting effect on the AR42J rat acinar cell line. We examined whether G17 inhibits apoptosis induced by serum withdrawal of AR42J cells and CHO-K1 cells stably expressing CCK-B receptors (CHO-K1/CCK-B cells). Cellular apoptosis was measured by flow cytometry and the terminal deoxynucleotidyltransferase-mediated dUTP-FITC nick end-labeling method. Serum withdrawal induced AR42J and CHO-K1/CCK-B cell apoptosis. Addition of 10 nM G17 reversed these effects. We examined the action of G17 (10 nM) on phosphorylation and activation of protein kinase B/Akt, a kinase known to promote cell survival. Akt phosphorylation and activation were measured by kinase assays and Western blots with an anti-phospho-Akt antibody. G17 stimulated Akt phosphorylation and activation. G17 induction of Akt phosphorylation was inhibited by the phosphoinositide 3-kinase (PI 3-kinase) inhibitors LY-294002 (10 microM) and wortmannin (200 nM) but not by the mitogen-activated protein kinase kinase 1 inhibitor PD-98059 (50 microM). To study the role of p38 kinase in G17 signaling to Akt, we examined the effect of G17 on p38 kinase activation and phosphorylation using kinase assays and Western blots with an anti-phospho-p38 kinase antibody. G17 induced p38 kinase activity at doses and with kinetics similar to those observed for Akt induction. The p38 kinase inhibitor SB-203580 inhibited G17 induction of Akt phosphorylation and activation at a concentration (10 microM) 10-fold higher than necessary to block p38 kinase (1 microM), suggesting the possible involvement of kinase activities other than p38 kinase. Transduction of AR42J cells with the adenoviral vector Adeno-dn Akt, which overexpresses an inhibitor of Akt, reversed the antiapoptotic action of G17. In conclusion, G17 promotes AR42J cell survival through the induction of Akt via PI 3-kinase and SB-203580-sensitive kinase activities.  相似文献   

19.
Treatment with the anti-leukemic drug arsenic trioxide (As(2)O(3), 1-4 microM) sensitizes U937 promonocytes and other human myeloid leukemia cell lines (HL60, NB4) to apoptosis induction by TNFalpha. As(2)O(3) plus TNFalpha increases TNF receptor type 1 (TNF-R1) expression, decreases c-FLIP(L) expression, and causes caspase-8 and Bid activation, and apoptosis is reduced by anti-TNF-R1 neutralizing antibody and caspase-8 inhibitor. The treatment also causes Bax translocation to mitochondria, cytochrome c and Omi/HtrA2 release from mitochondria, XIAP down-regulation, and caspase-9 and caspase-3 activation. Bcl-2 over-expression inhibits cytochrome c release and apoptosis, and also prevents c-FLIP(L) down-regulation and caspase-8 activation, but not TNF-R1 over-expression. As(2)O(3) does not affect Akt phosphorylation/activation or intracellular GSH content, nor prevents the TNFalpha-provoked stimulation of p65-NF-kappaB translocation to the nucleus and the increase in NF-kappaB binding activity. Treatments with TNFalpha alone or with As(2)O(3) plus TNFalpha cause TNF-R1-mediated p38-MAPK phosphorylation/activation. P38-MAPK-specific inhibitors attenuate the As(2)O(3) plus TNFalpha-provoked activation of caspase-8/Bid, Bax translocation, cytochrome c release, and apoptosis induction. In conclusion, the sensitization by As(2)O(3) to TNFalpha-induced apoptosis in promonocytic leukemia cells is an Akt/NF-kappaB-independent, p38-MAPK-regulated process, which involves the interplay of both the receptor-mediated and mitochondrial executioner pathways.  相似文献   

20.
We recently reported that hypoxia induces chromatin condensation and cell nuclear fragmentation, morphological markers of apoptosis, to tube-forming HUVECs in an in vitro blood vessel model by activating p38 MAPK. In this report, we further examined what role p38 plays and how it is activated during hypoxia-induced apoptosis. First, in order to confirm that p38 can indeed induce apoptosis, the cells were treated with anisomycin, a p38 activator, during normoxia. The activator treatment induced apoptosis and activation of p38 and caspase-3 in a very short time, which indicated that p38 activation alone was sufficient to trigger apoptosis in tube-forming HUVECs. We then observed hypoxia-induced changes in intracellular signals, ERK1/2 and Akt. ERK1/2 inactivation was shown to occur prior to p38 activation and caspase-3 cleavage during hypoxia. On the other hand, anisomycin had no inhibitory effect on ERK1/2 activation during normoxia. It was also shown that the amount of Akt protein slightly decreased by either hypoxia or anisomycin treatment. We then investigated how these two survival signals, ERK1/2 and Akt, are involved in p38 activation by using MEK inhibitor U0126 and PI3K inhibitor LY294002. When tube-forming HUVECs were treated with U0126 or LY294002 during normoxia, the two inhibitors were able to induce apoptosis and activation of p38 and caspase-3 in a relatively short time. U0126 was able to inhibit ERK1/2 activation, but had almost no effect on Akt activation. In contrast, LY294002 was able to inhibit Akt activation, but had very little effect on ERK1/2 activation. These results indicate that ERK1/2 inactivation, rather than Akt decrease, is responsible for hypoxia-induced p38 activation. Taken together, our results strongly suggest that hypoxia-induced apoptosis is regulated through signal transduction in which inactivation of ERK1/2 leads to activation of p38, which then triggers caspase cascade as an execution mechanism of apoptosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号