首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The structures of the toxins produced by Cochliobolus victoriae, victorin B, C, D, E, and victoricine, have recently been established. These toxins and modified forms of victorin C were tested for their effect on dark CO2 fixation in susceptible oat (Avena sativa) leaf slices. Half-maximal inhibition of dark CO2 fixation occurred with the native toxins in the range of 0.004 to 0.546 micromolar. An essential component for the inhibitory activity of victorin is the glyoxylic acid residue, particularly its hydrated aldehyde group. Removal of glyoxylic acid completely abolished the inhibitory activity of victorin, and the reduction of the aldehydo group transformed the toxin into a protectant. Conversion of victorin to its methyl ester resulted in diminution of inhibitory activity to 10% of the original activity of the toxin, whereas derivatization of the ε-amino group of the β-hydroxylysine moiety resulted in a decrease of inhibitory activity to 1% of that of victorin C. However, the derivatized toxin retained its host selectivity. In addition, the opening of the macrocyclic ring of the toxin drastically reduced the inhibitory activity.  相似文献   

2.
Nitrogen fixation (C2H2 reduction) in a sediment-water system was studied under anaerobic incubation conditions. Sodium sulfide at low concentrations stimulated activity, with a twofold increase in C2H4 production occurring in the presence of 8 μmol of S2− per ml of stream water. Sodium sulfide at concentrations of 16 μmol of S2− per ml or greater inhibited nitrogen fixation, with 64 μmol of S2− per ml being completely inhibitory. Sulfide at levels of 16 μmol/ml or above inhibited CO2 production, and the degree of inhibition increased with increasing concentration of sulfide. Titanium (III) citrate (used to modify Eh levels) stimulated both nitrogen fixation and CO2 production, but could not duplicate, at any concentration tested, the twofold increase in nitrogen fixation caused by 8 μmol of S2− per ml. Sulfide additions caused pH changes in the sediment, and when the sediment was adjusted and maintained at pH 7.0 all concentrations of sulfide inhibited nitrogen fixation activity. From considerations of the redox equilibria of H2, H2S, and other sulfur species at various pH values, it appeared that H2S was the toxic entity and that HS was less toxic. The observed stimulation of activity was apparently due to a pH change coupled with the concurrent production of HS from H2S.  相似文献   

3.
Differences in the photosynthetic performance between pairs of heat tolerant (HT) and heat sensitive (HS) accessions of tuber-bearing Solanum species were measured at 40 °C, after treating plants at 40/30 °C. After 1 to 9 days of heat treatment, both HT and HS accessions showed progressive inhibitory effects, primarily decreased rates of CO2 fixation, and loss of leaf chlorophyll. These effects were most pronounced in the HS accessions. Stomatal conductivity and internal CO2 concentrations were lower for both accessions at 40 °C especially for the HS accessions, suggesting that at ambient CO2 concentrations, stomatal conductance was limiting CO2 availability at the higher temperature. In the HT accessions, stomatal limitations were largely attributed to differences in vapor pressure deficit between 25° and 40 °C, while the HS accessions exhibited significant nonstomatal limitations. The young expanding leaves of the HS accession showed some HT characteristics, while the oldest leaves showed severe senescence symptoms after 9 days at 40/30 °C. The data suggest that differences in heat sensitivity between HT and HS accessions are the result of accelerated senescence, chlorophyll loss, reduced stomatal conductance, and inhibition of dark reactions at high temperature.  相似文献   

4.
Adsorption and plaque formation of foot-and-mouth disease virus (FMDV) serotype A12 are inhibited by antibodies to the integrin αvβ3 (A. Berinstein et al., J. Virol. 69:2664–2666, 1995). A human cell line, K562, which does not normally express αvβ3 cannot replicate this serotype unless cells are transfected with cDNAs encoding this integrin (K562-αvβ3 cells). In contrast, we found that a tissue culture-propagated FMDV, type O1BFS, was able to replicate in nontransfected K562 cells, and replication was not inhibited by antibodies to the endogenously expressed integrin α5β1. A recent report indicating that cell surface heparan sulfate (HS) was required for efficient infection of type O1 (T. Jackson et al., J. Virol. 70:5282–5287, 1996) led us to examine the role of HS and αvβ3 in FMDV infection. We transfected normal CHO cells, which express HS but not αvβ3, and two HS-deficient CHO cell lines with cDNAs encoding human αvβ3, producing a panel of cells that expressed one or both receptors. In these cells, type A12 replication was dependent on expression of αvβ3, whereas type O1BFS replicated to high titer in normal CHO cells but could not replicate in HS-deficient cells even when they expressed αvβ3. We have also analyzed two genetically engineered variants of type O1Campos, vCRM4, which has greatly reduced virulence in cattle and can bind to heparin-Sepharose columns, and vCRM8, which is highly virulent in cattle and cannot bind to heparin-Sepharose. vCRM4 replicated in wild-type K562 cells and normal, nontransfected CHO (HS+ αvβ3) cells, whereas vCRM8 replicated only in K562 and CHO cells transfected with αvβ3 cDNAs. A similar result was also obtained in assays using a vCRM4 virus with an engineered RGD→KGE mutation. These results indicate that virulent FMDV utilizes the αvβ3 integrin as a primary receptor for infection and that adaptation of type O1 virus to cell culture results in the ability of the virus to utilize HS as a receptor and a concomitant loss of virulence.  相似文献   

5.
The host-specific toxin produced by Helminthosporium maydis, race T, causes 50% inhibition of dark fixation of 14CO2 by leaf discs of susceptible (Texas male sterile) corn when it is diluted to approximately 1/10,000 of the volume of the original fungus culture filtrate. Dilutions of 1/10 or less are required for equivalent inhibition of discs prepared from resistant (N) corn. Root growth and photosynthesis were considerably less sensitive (dilution values 1/3000 and 1/1200, respectively), as was leakage of 14C induced by toxin from preloaded discs. Based on literature values for dilutions causing ion leakage or inhibition of mitochondrial oxidation, toxin dilutions several orders of magnitude greater bring about inhibition of dark CO2 fixation. Preincubation of discs in light increased sensitivity of dark fixation to toxin and an effect of light on symptom development was shown. Phosphoenolypruvate carboxylase activity in extracts of roots or leaves was not affected by toxin nor was the enzyme level altered in excised leaves treated with toxin. Inhibition of dark fixation of CO2 provides a bioassaay for race T toxin which is both reliable and rapid.  相似文献   

6.
Malate synthesis by dark carbon dioxide fixation in leaves   总被引:4,自引:4,他引:0       下载免费PDF全文
The rates of dark CO2 fixation and the label distribution in malate following dark 14CO2 fixation in a C-4 plant (maize), a C-3 plant (sunflower), and two Crassulacean acid metabolism plants (Bryophyllum calycinum and Kalanchoë diagremontianum leaves and plantlets) are compared. Within the first 30 minutes of dark 14CO2 fixation, leaves of maize, B. calycinum, and sunflower, and K. diagremontianum plantlets fix CO2 at rates of 1.4, 3.4, 0.23, and 1.0 μmoles of CO2/mg of chlorophyll· hour, respectively. Net CO2 fixation stops within 3 hours in maize and sunflower, but Crassulaceans continue fixing CO2 for the duration of the 23-hour experiment.

A bacterial procedure using Lactobacillus plantarum ATCC No. 8014 and one using malic enzyme to remove the β-carboxyl (C4) from malate are compared. It is reported that highly purified malic enzyme and the bacterial method provide equivalent results. Less purified malic enzyme may overestimate the label in C4 as much as 15 to 20%.

The contribution of carbon atom 1 of malate is between 18 and 21% of the total carboxyl label after 1 minute of dark CO2 fixation. Isotopic labeling in the two carboxyls approached unity with time. The rate of increase is greatest in sunflower leaves and Kalanchoë plantlets. In addition, Kalanchoë leaves fix 14CO2 more rapidly than Kalanchoë plantlets and the equilibration of the malate carboxyls occurs more slowly. The rates of fixation and the randomization are tissue-specific. The rate of fixation does not correlate with the rate of randomization of isotope in the malate carboxyls.

  相似文献   

7.
Daly JM  Barna B 《Plant physiology》1980,66(4):580-583
The effect of purified host-specific toxin from Bipolaris (Helminthosporium) maydis, race T, on dark or light-dependent CO2 fixation was studied with thin (1 × 8 mm) corn (Zea mays L.) leaf slices supplied H14CO3. At 5 to 30 nanograms per milliliter (5 nanomolar), toxin significantly inhibited (20 to 40%) dark CO2 fixation in susceptible (T) corn slices after either dark or light preincubations of 10-20 minutes. The same concentrations were effective to the same degree on photosynthesis, but the effect differed in that significant inhibition occurred after 25 minutes and only with light preincubation. Light preincubation without toxin did not shorten the time required for inhibition of photosynthesis after addition of toxin. Once photosynthetic inhibition was entrained, it was not reversed by subsequent periods of darkness. The results suggest the possibility that race T toxin affects two separate metabolic sites, and the data are discussed in view of currently held concepts of toxin action in susceptible tissue.  相似文献   

8.
Anaerobic or microaerophilic chemolithoautotrophic bacteria have been considered to be responsible for CO2 dark fixation in different pelagic redoxclines worldwide, but their involvement in redox processes is still not fully resolved. We investigated the impact of 17 different electron donor/acceptor combinations in water of pelagic redoxclines from the central Baltic Sea on the stimulation of bacterial CO2 dark fixation as well as on the development of chemolithoautotrophic populations. In situ, the highest CO2 dark fixation rates, ranging from 0.7 to 1.4 μmol liter−1 day−1, were measured directly below the redoxcline. In enrichment experiments, chemolithoautotrophic CO2 dark fixation was maximally stimulated by the addition of thiosulfate, reaching values of up to 9.7 μmol liter−1 CO2 day−1. Chemolithoautotrophic nitrate reduction proved to be an important process, with rates of up to 33.5 μmol liter−1 NO3 day−1. Reduction of Fe(III) or Mn(IV) was not detected; nevertheless, the presence of these potential electron acceptors influenced the development of stimulated microbial assemblages. Potential chemolithoautotrophic bacteria in the enrichment experiments were displayed on 16S ribosomal complementary DNA single-strand-conformation polymorphism fingerprints and identified by sequencing of excised bands. Sequences were closely related to chemolithoautotrophic Thiomicrospira psychrophila and Maorithyas hadalis gill symbiont (both Gammaproteobacteria) and to an uncultured nitrate-reducing Helicobacteraceae bacterium (Epsilonproteobacteria). Our data indicate that this Helicobacteraceae bacterium could be of general importance or even a key organism for autotrophic nitrate reduction in pelagic redoxclines.  相似文献   

9.
Non-native disulfide isomers of α-conotoxins are generally inactive although some unexpectedly demonstrate comparable or enhanced bioactivity. The actions of “globular” and “ribbon” isomers of α-conotoxin AuIB have been characterized on α3β4 nicotinic acetylcholine receptors (nAChRs) heterologously expressed in Xenopus oocytes. Using two-electrode voltage clamp recording, we showed that the inhibitory efficacy of the ribbon isomer of AuIB is limited to ∼50%. The maximal inhibition was stoichiometry-dependent because altering α3:β4 RNA injection ratios either increased AuIB(ribbon) efficacy (10α:1β) or completely abolished blockade (1α:10β). In contrast, inhibition by AuIB(globular) was independent of injection ratios. ACh-evoked current amplitude was largest for 1:10 injected oocytes and smallest for the 10:1 ratio. ACh concentration-response curves revealed high (HS, 1:10) and low (LS, 10:1) sensitivity α3β4 nAChRs with corresponding EC50 values of 22.6 and 176.9 μm, respectively. Increasing the agonist concentration antagonized the inhibition of LS α3β4 nAChRs by AuIB(ribbon), whereas inhibition of HS and LS α3β4 nAChRs by AuIB(globular) was unaffected. Inhibition of LS and HS α3β4 nAChRs by AuIB(globular) was insurmountable and independent of membrane potential. Molecular docking simulation suggested that AuIB(globular) is likely to bind to both α3β4 nAChR stoichiometries outside of the ACh-binding pocket, whereas AuIB(ribbon) binds to the classical agonist-binding site of the LS α3β4 nAChR only. In conclusion, the two isomers of AuIB differ in their inhibitory mechanisms such that AuIB(ribbon) inhibits only LS α3β4 nAChRs competitively, whereas AuIB(globular) inhibits α3β4 nAChRs irrespective of receptor stoichiometry, primarily by a non-competitive mechanism.  相似文献   

10.
Inhibition of dark CO2 fixation by susceptible corn leaves was used to compare the relative toxicity of synthetic analogs with that of the host-specific phytotoxin produced by the fungal corn pathogen, Helminthosporium maydis, race T. Analogs with C15, C25, or C26 chain lengths and 1,5-dioxo-3-hydroxy functions were only slightly less toxic (2–6 × 10?7M) than native T toxin (C35–C45 chain lengths) or its individual components (3 × 10?8M). Like native toxin, analogs were host-specific in that they did not inhibit dark CO2 fixation in leaf tissue of resistant corn at concentrations 102–103 times greater than those effective with susceptible corn. These findings support the structures previously proposed for native T toxin.  相似文献   

11.
Photosynthetic carbon metabolism of a marine grass   总被引:5,自引:4,他引:5       下载免费PDF全文
The δ13C value of a tropical marine grass Thalassia testudinum is −9.04‰. This value is similar to the δ13C value of terrestrial tropical grasses. The δ13C values of the organic acid fraction, the amino acid fraction, the sugar fraction, malic acid, and glucose are: −11.2‰, −13.1‰, −10.1‰, −11.1‰, and −11.5‰, respectively. The δ13C values of malic acid and glucose of Thalassia are similar to the δ13C values of these intermediates in sorghum leaves and attest to the presence of the photosynthetic C4-dicarboxylic acid pathway in this marine grass. The inorganic HCO3 for the growth of the grass fluctuates between −6.7 to −2.7‰ during the day. If CO2 fixation in Thalassia is catalyzed by phosphoenolpyruvate carboxylase (which would result in a −3‰ fractionation between HCO3 and malic acid), the predicted δ13C value for Thalassia would be −9.7 to −5.7‰. This range is close to the observed range of −12.6 to −7.8‰ for Thalassia and agree with the operation of the C4-dicarboxylic acid pathway in this plant. The early products of the fixation of HCO3 in the leaf sections are malic acid and aspartic acid which are similar to the early products of CO2 fixation in C4 terrestrial plants.  相似文献   

12.
A new phytotoxin, stemphyloxin I, C21H32O5, was isolated from cultures of the pathogenic fungus Stemphylium botryosum f. sp. lycopersici. The toxin is a tricyclic compound possessing a most unusual β-ketoaldehyde group. Injection of stemphyloxin I into a tomato leaflet caused unlimited necrotic spots and a loss of turgor, which at higher toxin concentration wilted the whole compound leaf. Visible symptoms could be observed at a toxin concentration as low as 2.7 micromolar. Stemphyloxin I is a nonspecific toxin. It exhibits a differential toxicity towards various plants, tomato and eggplant being the most sensitive. Incorporation of [14C]amino acids into proteins of exponentially growing tomato cell suspension was completely suppressed in the presence of 1 micromolar toxin. The toxin showed no significant difference in its inhibitory activity against green and white tomato cell cultures. The methoxy derivative of stemphyloxin I, in which the β-ketoaldehyde group is exclusively modified, showed a reduction of approximately 50 times in its inhibitory activity as compared to the toxin. The diacetate derivative conferred the same activity as stemphyloxin I.  相似文献   

13.
Identification with specific heparan sulfate-lyases, heparitinase I and heparinase of the constitutional unsaturated disaacharide (ΔDi-SHS) derived from heparan sulfate (HS) isomers and heparin was achieved using high-performance liquid chromatography (HPLC) with a sulfonated styrene-divinylbenzene copolymer. Eight ΔDi-SHS products derived from HS isomers were identified. Enzymatic digestion with heparitinase I and heparinase converts heterogeneous sulfated HS isomers and heparin into different ΔDi-SHS. The practical application of these enzymes was examined using specific enzymes and HPLC. In a patient with Hurler syndrome, eight individual Δi-SHS were identified in urinary HS isomers.  相似文献   

14.
Heparan sulfate (HS) and HS proteoglycans (HSPGs) colocalize with amyloid-β (Aβ) deposits in Alzheimer disease brain and in Aβ precursor protein (AβPP) transgenic mouse models. Heparanase is an endoglycosidase that specifically degrades the unbranched glycosaminoglycan side chains of HSPGs. The aim of this study was to test the hypothesis that HS and HSPGs are active participators of Aβ pathogenesis in vivo. We therefore generated a double-transgenic mouse model overexpressing both human heparanase and human AβPP harboring the Swedish mutation (tgHpa*Swe). Overexpression of heparanase did not affect AβPP processing because the steady-state levels of Aβ1–40, Aβ1–42, and soluble AβPP β were the same in 2- to 3-month-old double-transgenic tgHpa*Swe and single-transgenic tgSwe mice. In contrast, the Congo red-positive amyloid burden was significantly lower in 15-month-old tgHpa*Swe brain than in tgSwe brain. Likewise, the Aβ burden, measured by Aβx-40 and Aβx-42 immunohistochemistry, was reduced significantly in tgHpa*Swe brain. The intensity of HS-stained plaques correlated with the Aβx-42 burden and was reduced in tgHpa*Swe mice. Moreover, the HS-like molecule heparin facilitated Aβ1–42-aggregation in an in vitro Thioflavin T assay. The findings suggest that HSPGs contribute to amyloid deposition in tgSwe mice by increasing Aβ fibril formation because heparanase-induced fragmentation of HS led to a reduced amyloid burden. Therefore, drugs interfering with Aβ-HSPG interactions might be a potential strategy for Alzheimer disease treatment.  相似文献   

15.
Heparan sulfate (HS) is a structurally complex polysaccharide that interacts with a broad spectrum of extracellular effector ligands and thereby is thought to regulate a diverse array of biologic processes. The specificity of HS-ligand interactions is determined by the arrangement of sulfate groups on HS, which creates distinct binding motifs. Biologically important HS motifs are expected to exhibit regulated expression, yet there is a profound lack of tools to identify such motifs; consequently, little is known of their structures and functions. We have identified a novel phage display-derived antibody (NS4F5) that recognizes a highly regulated HS motif (HSNS4F5), which we have rigorously identified as (GlcNS6S-IdoA2S)3. HSNS4F5 exhibits a restricted expression in healthy adult tissues. Blocking HSNS4F5 on cells in culture resulted in reduced proliferation and enhanced sensitivity to apoptosis. HSNS4F5 is up-regulated in tumor endothelial cells, consistent with a role in endothelial cell activation. Indeed, TNF-α stimulated endothelial expression of HSNS4F5, which contributed to leukocyte adhesion. In a mouse model of severe systemic amyloid protein A amyloidosis, HSNS4F5 was expressed within amyloid deposits, which were successfully detected by microSPECT imaging using NS4F5 as a molecularly targeted probe. Combined, our results demonstrate that NS4F5 is a powerful tool for elucidating the biological function of HSNS4F5 and can be exploited as a probe to detect novel polysaccharide biomarkers of disease processes.  相似文献   

16.
The use of mesophyll protoplast extracts from various C4 species has provided an effective method for studying light-and substrate-dependent formation of oxaloacetate, malate, and asparate at rates equivalent to whole leaf C4 photosynthesis. Conditions regulating the formation of the C4 acids were studied with protoplast extracts from Digitaria sanguinalis, an NADP-malic enzyme C4 species, Eleusineindica, an NAD-malic enzyme C4 species, and Urochloa panicoides, a phosphoenolpyruvate (PEP) carboxykinase C4 species. Light-dependent induction of CO2 fixation by the mesophyll extracts of all three species was relatively low without addition of exogenous substrates. Pyruvate, alanine and α-ketoglutarate, or 3-phosphoglycerate induced high rates of CO2 fixation in the mesophyll extracts with oxaloacetate, malate, and aspartate being the primary products. In all three species, it appears that pyruvate, alanine, or 3-phosphoglycerate may serve as effective precursors to the formation of PEP for carboxylation through PEP-carboxylase in C4 mesophyll cells. Induction by pyruvate or alanine and α-ketoglutarate was light-dependent, whereas 3-phosphoglycerate-induced CO2 fixation was not.  相似文献   

17.
Brix H 《Plant physiology》1968,43(3):389-393
The rate of photorespiration of Douglas-fir seedlings was measured under different light intensities by: (1) extrapolating the curve for CO2 uptake in relation to atmospheric CO2 content to zero CO2 content, and (2) measuring CO2 evolution of the plants into a CO2-free airstream. Different results, obtained from these techniques, were believed to be caused by a severe restriction of the photosynthetic activity when the latter was used. With the first method, CO2 evolution was lower than the dark respiration rate at low light intensity. For all temperatures studied (6°, 20°, 28°) a further increase in light intensity raised the CO2 evolution above dark respiration before it leveled off. The rate of CO2 evolution was stimulated by increase in temperature at all light intensities. With the CO2-free air method, CO2 evolution in the light was less than dark respiration at all light intensities.  相似文献   

18.
The mode of inhibition of UDP, one of the products of the reaction catalyzed by (1→3)-β-d-glucan synthase in sugar beet (Beta vulgaris L.) was investigated. In the absence of added UDP, the enzyme, in the presence of Ca2+, Mg2+, and cellobiose, exhibited Michaelis-Menten kinetics and had an apparent Km of 260 micromolar for UDP-glucose. Complex effects on the kinetics of the (1→3)-β-d-glucan synthase were observed in the presence of UDP. At high UDP-glucose concentrations, i.e. greater than the apparent Km, UDP behaved as a competitive inhibitor with an apparent Ki of 80 micromolar. However, at low UDP-glucose concentrations, reciprocal plots of enzyme activity versus substrate concentration deviated sharply from linearity. This unusual effect of UDP is similar to that reported for fungal (1→3)-β-d-glucan synthase. However, papulacandin B, a potent inhibitor of this fungal enzyme, had no effect on the plant (1→3)-β-d-glucan synthase isolated from sugar beet petioles. The inhibitory effect of UDP was also compared with other known inhibitors of glucan synthases.  相似文献   

19.
Brown PH  Outlaw WH 《Plant physiology》1982,70(6):1700-1703
When Vicia faba guard cell protoplasts were treated with fusicoccin, dark 14CO2 fixation rates increased by as much as 8-fold. Rate increase was saturated with less than 1 micromolar fusicoccin. Even after 6 minutes of dark 14CO2 fixation, more than 95% of the incorporated radioactivity was in stable products derived from carboxylation of phosphoenolpyruvate (about 50% and 30% in malate and aspartate, respectively). The relative distribution of 14C among products and in the C-4 position of malate (initially more than 90% of [14C]malate) was independent of fusicoccin concentration. After incubation in the dark, malate content was higher in protoplasts treated with fusicoccin. A positive correlation was observed between the amounts of 14CO2 fixed and malate content.

It was concluded that (a) fusicoccin causes an increase in the rate of dark 14CO2 fixation without alteration of the relative fluxes through pathways by which it is metabolized, (b) fusicoccin causes an increase in malate synthesis, and (c) dark 14CO2 fixation and malate synthesis are mediated by phosphoenolpyruvate carboxylase.

  相似文献   

20.
Randall SK  Wang Y  Sze H 《Plant physiology》1985,79(4):957-962
The properties of the soluble moiety (F1) of the mitochondrial H+-ATPase from oat roots were examined and compared to those of the native mitochondrial membrane-bound enzyme. The chloroform soluble preparation was purified by Sephadex G-200 and DEAE-cellulose chromatography. The purified F1 preparation contained major polypeptides corresponding to α, β, γ, δ, and ε of apparent molecular mass 58, 55, 35, 22, and 14 kilodaltons, respectively. The purified F1-ATPase, like the native enzyme, was inhibited by azide (I50 = 10 micromolar), nitrate (I50 = 7-10 millimolar), 4,4′-diisothiocyano-2,2′-stilbene disulfonic acid (I50 = 1-3 micromolar), and 7-chloro-4-nitrobenzo-2-oxa-1,3-diazole (I50 = 3 micromolar). F1-ATPase activity was stimulated by bicarbonate but not by chloride. In both the native and the F1-form of the ATPase, ATP was hydrolyzed in preference to GTP. The results indicate that these properties of the native membrane-bound mitochondrial ATPase have been conserved in the purified F1. In contrast to the membrane-bound enzyme, the F1-ATPase was not inhibited by oligomycin or by N,N′-dicyclohexylcarbodiimide. The mitochondrial F1-ATPase from oat roots is analogous to other known F1F0-ATPases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号