首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 750 毫秒
1.
1. We studied the effect of flea infestation on the pattern of tick (Ixodes ricinus and Ixodes trianguliceps) infestation on small mammals. 2. We asked (1) whether the probability of an individual host being infested by ticks was affected by its infestation of fleas (number of individuals and species) and (2) whether the abundance and prevalence of ticks in a host population was affected by the abundance, prevalence, level of aggregation, and species richness of fleas. 3. The probability of a host individual being infested by ticks was affected negatively by flea infestation. At the level of host populations, flea abundance and prevalence had a predominantly positive effect on tick infestation, whereas flea species richness had a negative effect on tick infestation. 4. The effect of flea infestation on tick infestation was generally greater in I. ricinus than in I. trianguliceps, but varied among host species. 5. It can be concluded that the effect of fleas on tick infestation of small mammals may be either negative or positive depending on the level of consideration and parameters involved. The results did not provide support for direct interactions between the two ectoparasite taxa, but suggested population and community dynamics and the defence system of the hosts as possible factors.  相似文献   

2.
Data collected from a longitudinal survey carried out over 2 years on four farms in western France were used to assess the incidence and infestation of Ixodes ricinus on rodents. Once a month, on each farm, 25 Sherman live traps were set in hedges bordering selected pastures. A total of 799 micromammals were examined, including Apodemus sylvaticus, Clethrionomys glareolus, Microtus agrestis, Microtus arvalis, and Crocidura spp. Larvae and nymphs of I. ricinus were found. Small numbers of Ixodes (Exopalpiger) trianguliceps were also recovered from each farm. The mean infestation rate of the I. ricinus larvae (1.6–5.9) among all animals examined varied between farms Most animals were infested by only a single tick, but one M. agrestis harboured 43 I. ricinus larvae. Larvae or nymphs were found throughout the year, with peaks from March to October.  相似文献   

3.
The importance of Ixodes ricinus in the transmission of tick-borne pathogens is well recognized in the United Kingdom and across Europe. However, the role of coexisting Ixodes species, such as the widely distributed species Ixodes trianguliceps, as alternative vectors for these pathogens has received little attention. This study aimed to assess the relative importance of I. ricinus and I. trianguliceps in the transmission of Anaplasma phagocytophilum and Babesia microti among United Kingdom field voles (Microtus agrestis), which serve as reservoir hosts for both pathogens. While all instars of I. trianguliceps feed exclusively on small mammals, I. ricinus adults feed primarily on larger hosts such as deer. The abundance of both tick species and pathogen infection prevalence in field voles were monitored at sites surrounded with fencing that excluded deer and at sites where deer were free to roam. As expected, fencing significantly reduced the larval burden of I. ricinus on field voles and the abundance of questing nymphs, but the larval burden of I. trianguliceps was not significantly affected. The prevalence of A. phagocytophilum and B. microti infections was not significantly affected by the presence of fencing, suggesting that I. trianguliceps is their principal vector. The prevalence of nymphal and adult ticks on field voles was also unaffected, indicating that relatively few non-larval I. ricinus ticks feed upon field voles. This study provides compelling evidence for the importance of I. trianguliceps in maintaining these enzootic tick-borne infections, while highlighting the potential for such infections to escape into alternative hosts via I. ricinus.  相似文献   

4.
Infestation by the nest‐dwelling Ixodes hexagonus Leach and the exophilic Ixodes ricinus (Linnaeus) (Ixodida: Ixodidae) on the Northern white‐breasted hedgehog, Erinaceus roumanicus (Erinaceomorpha: Erinaceidae), was investigated during a 4‐year study in residential areas of the city of Poznań, west‐central Poland. Of 341 hedgehogs, 303 (88.9%) hosted 10 061 Ixodes spp. ticks encompassing all parasitic life stages (larvae, nymphs, females). Ixodes hexagonus accounted for 73% and I. ricinus for 27% of the collected ticks. Male hedgehogs carried significantly higher tick burdens than females. Analyses of seasonal prevalence and abundance of I. hexagonus revealed relatively stable levels of infestation of all parasitic stages, with a modest summer peak in tick abundance noted only on male hosts. By contrast, I. ricinus females and nymphs peaked in spring and declined steadily thereafter in summer and autumn, whereas the less abundant larvae peaked in summer. This is the first longterm study to evaluate the seasonal dynamics of both tick species on populations of wild hedgehogs inhabiting urban residential areas.  相似文献   

5.
Tick infestations on small mammals were studied from April to November, 2010, in deciduous woodland in southern England in order to determine whether co‐infestations with tick stages occurred on small mammals, a key requirement for endemic transmission of tick‐borne encephalitis virus (TBEV). A total of 217 small mammals was trapped over 1,760 trap nights. Yellow‐necked mice (Apodemus flavicollis) made up the majority (52.5%) of animals, followed by wood mice (A. sylvaticus) 35.5% and bank voles (Myodes glareolus) 12%. A total of 970 ticks was collected from 169 infested animals; 96% of ticks were Ixodes ricinus and 3% I. trianguliceps. Over 98% of ticks were larval stages. Mean infestation intensities of I. ricinus were significantly higher on A. flavicollis (6.53 ± 0.67) than on A. sylvaticus (4.96 ± 0.92) and M. glareolus (3.25 ± 0.53). Infestations with I. ricinus were significantly higher in August than in any other month. Co‐infestations with I. ricinus nymphs and larvae were observed on six (3.6%) infested individuals, and fifteen small mammals (8.9%) supported I. ricinus – I. trianguliceps co‐infestations. This work contributes further to our understanding of European small mammal hosts that maintain tick populations and their associated pathogens, and indicates that co‐infestation of larvae and nymph ticks does occur in lowland UK. The possible implications for transmission of tick‐borne encephalitis virus between UK ticks and small mammals are discussed.  相似文献   

6.
The majority of studies on ecological specialisation rely on data reflecting realised specificity, without considering species’ potential specificity. Most species of ticks, a large family of hematophagous ectoparasites, have a narrow host range in nature, but it is unclear whether this is due to host-driven adaptations or other processes (such as off-host abiotic environment). We investigated the potential specificity of two tick species with contrasting ecology by infesting three avian host species that occur in the same off-host macrohabitat but are unequally infested by the ticks in nature (i.e. have contrasting realised specificity). The endophilic specialist tick Ixodes arboricola resides inside the hosts’ nest and has high realised host specificity, whereas the exophilic generalist tick I. ricinus encounters hosts in the field and has very low realised specificity. As hosts, we used great tits (frequently infested by both tick species), blackbirds (frequently infested by I. ricinus but never by I. arboricola) and great spotted woodpeckers (no ticks of either species have been reported). If realised specificity is constrained by host-driven adaptations there should be no differences between potential and realised specificity, whereas if realised specificity is constrained by other processes potential specificity and realised specificity should be different. We found that attachment rates and weight during feeding of I. arboricola were lower on blackbirds than on great tits, whereas there were no such differences for I. ricinus. No ticks of either species attached to woodpeckers. These results indicate that realised host specificity of ticks is, at least partially, constrained by host-driven adaptations. This specificity therefore strongly depends on the ticks’ encounter rates with particular host types, which are affected by the ticks’ off-host ecological requirements, behaviour and life-history characteristics.  相似文献   

7.
From 1994 to 2011, over 7000 individuals of small mammals were captured and examined for ticks in the natural foci of ixodid tick-borne borrelioses (ITBB) in the Middle Urals (Chusovskoy District of Perm Territory). Alongside with the taiga tick (Ixodes persulcatus), which is the main Borrelia vector, approximately 5700 feeding individuals of Ixodes trianguliceps have been identified. The latter species has been found to be about five times less abundant than the former. I. trianguliceps has been collected from small mammals belonging to 19 species. Its main hosts are common shrews (Sorex araneus), bank voles (Clethrionomys glareolus), and northern red-backed voles (C. rutilus). I. trianguliceps shows two seasonal peaks of abundance, spring-summer, and summer-autumn. Plating in BSK II medium yielded 72 isolates of Borrelia from a total of 1142 individuals of I. trianguliceps; 64 isolates have been identified with PCR and RFLP. The mean values of the Borrelia infestation rate in I. trianguliceps larvae, nymphs, and adults are 2.6, 10.2, and 8.1%, respectively, which is 5–10 times lower than in the taiga tick individuals collected from the same mammals. Borreliae obtained from I. trianguliceps (as well as those from I. persulcatus) have been identified as Borrelia garinii and B. afzelii, the former spirochete species being more frequent (about 90% of isolates from I. trianguliceps). Our results indicate that I. trianguliceps ticks participate in circulation of the ITBB causative agents in the forests of the Middle Urals. Rare occurrence of the tick and low rates of its infestation with borreliae suggest that the species is unlikely to play a significant role in the epizootic development in the natural foci of ITBB.  相似文献   

8.
Ixodes ricinus, as vector, and small mammals, as reservoirs, are implicated in pathogen transmission between wild fauna, domestic animals and humans at the woodland–pasture interface. The ecological relationship between ticks and small mammals was monitored in 2005 on four bocage (enclosed pastureland) sites in central France, where questing ticks were collected by dragging and small mammals were trapped. Questing I. ricinus tick and small mammal locations in the environment were assessed through correspondence analysis. I. ricinus larval burden on small mammals was modeled using a negative binomial law. The correspondence analyses underlined three landscape features: grassland, hedgerow, and woodland. Seven small mammal species were trapped, while questing ticks were all I. ricinus, with the highest abundance in woodland and the lowest in pasture. The small mammals were overall more abundant in hedgerow, less present in woodland and sparse in grassland. They carried mainly I. ricinus, and secondarily I. acuminatus and I. trianguliceps. The most likely profile for a tick-infested small mammal corresponded to a male wood mouse (Apodemus sylvaticus) in woodland or hedgerow during a dry day. A. sylvaticus, which was the only species captured in grassland, but was also present in hedgerow and woodland, may be a primary means of transfer of I. ricinus larvae from woodland to pasture.  相似文献   

9.
Although the population dynamics of the tick Ixodes ricinus are relatively well studied, those of other Western European tick species are largely unknown. Moreover, there is very little information related to the interactions between I. ricinus and other ticks. Such knowledge, however, is of special interest in respect to the epidemiology of tick-borne pathogens such as Borrelia spp. We compared the dynamics of the generalist I. ricinus with the nest-dwelling hedgehog specialist, I. hexagonus. Both species were collected from hedgehogs from a naturally infested experimental population between 2006 and 2008. Ticks were collected once a month from March to October from each hedgehog counted and the life history stage and species determined. All hedgehogs harboured both tick species. Nymphs, females and males of I. ricinus showed clear bimodal seasonal distributions with peaks in spring and autumn, while larvae peaked only in summer. The density of I. hexagonus life stages was low during the whole investigation period and seasonal fluctuations of population density were much weaker compared to I. ricinus. Nymphs and larvae showed comparatively little change in population size and no consistent period of peak density. Females showed a single peak in summer and males were found only occasionally on hedgehogs. We suggest density-dependent mechanisms regulating the population density of the specialist I. hexagonus but not of the generalist I. ricinus.  相似文献   

10.
The impact of host identity and habitat type on the density of hard ticks (Ixodes ricinus and Dermacentor reticulatus) infections on rodents in forest and abandoned field habitats in NE Poland was investigated. Ixodes ricinus was most abundant in the forest system, but D. reticulatus, although rarer, was most abundant in the field system. Environmental humidity and the much lower density of rodents probably limited the abundance of I. ricinus larvae in the field system, although this tick was still common on Microtus oeconomus from around small ponds. Nymphs of I. ricinus were comparatively rare in the forest, probably because of infection of non-rodent hosts. Dermacentor reticulatus nymphs on the other hand were very much more common in the ears of Microtus species than would have been predicted based on larval densities. The impact of habitat change (in this case successional change following field abandonment) on tick densities is emphasised, and the role of Apodemus as an epidemiological bridge, linking woodland and field habitats, is highlighted.  相似文献   

11.
The diversity of hard tick fauna was studied in different forest communities in 48 localities of eastern Croatia using the dragging‐flagging method and by hand from ten different vertebrate hosts. A total of 2,225 specimens comprising seven species in three genera were identified. Ixodes ricinus, the most abundant species (72.8% of all collected specimens) was recorded in 44 localities, followed by Dermacentor reticulatus in 19 localities, while the other five species (D. marginatus, H. concinna, H. inermis, I. canisuga, and I. hexagonus) were recorded in fewer localities. The highest ratio (67% of collected ticks) was in the adult stage with the predominance of females. The numbers of collected females, males, and nymphs of I. ricinus and H. concinna differed significantly. Ten new tick‐host associations in Croatia were recorded. Fifty‐three animals were infested with one tick species. Single species infestation with I. ricinus was found in 45.8% of animals, followed by D. reticulatus with 25.4%, D. marginatus with 10.2%, H. inermis and I. hexagonus with 3.4%, and I. canisuga with 1.7%. Coinfestation with two species of ticks were recorded in six animals. Ixodes ricinus, H. inermis, and D. reticulatus showed bimodal seasonal activity; for other species unimodal activity patterns were recorded.  相似文献   

12.
In the last few years, improved analytical tools and the integration of genetic data with multiple sources of information have shown that temperate species exhibited more complex responses to ice ages than previously thought. In this study, we investigated how Pleistocene climatic changes affected the current distribution and genetic diversity of European populations of the tick Ixodes ricinus, an ectoparasite with high ecological plasticity. We first used mitochondrial and nuclear genetic markers to investigate the phylogeographic structure of the species and its Pleistocene history using coalescent‐based methods; then we used species distribution modelling to infer the climatic niche of the species at last glacial maximum; finally, we reviewed the literature on the I. ricinus hosts to identify the locations of their glacial refugia. Our results support the scenario that during the last glacial phase, I. ricinus never experienced a prolonged allopatric divergence in separate glacial refugia, but persisted with interconnected populations across Southern and Central Europe. The generalist behaviour in host choice of I. ricinus would have played a major role in maintaining connections between its populations. Although most of the hosts persisted in separate refugia, from the point of view of I. ricinus, they represented a continuity of ‘bridges’ among populations. Our study highlights the importance of species‐specific ecology in affecting responses to Pleistocene glacial–interglacial cycles. Together with other cases in Europe and elsewhere, it contributes to setting new hypotheses on how species with wide ecological plasticity coped with Pleistocene climatic changes.  相似文献   

13.
Rodents often act as important hosts for ticks and as pathogen reservoirs. At northern latitudes, rodents often undergo multi‐annual population cycles, and the periodic absence of certain hosts may inhibit the survival and recruitment of ticks. We investigated the potential role of common shrews (Sorex araneus) to serve as a supplementary host source to immature life stages (larvae and nymphs) of a generalist tick Ixodes ricinus and a small mammal specialist tick Itrianguliceps, during decreasing abundances of bank voles (Myodes glareolus). We used generalized mixed models to test whether ticks would have a propensity to parasitize a certain host species dependent on host population size and host population composition across two high‐latitude gradients in southern Norway, by comparing tick burdens on trapped animals. Host population size was defined as the total number of captured animals and host population composition as the proportion of voles to shrews. We found that a larger proportion of voles in the host population favored the parasitism of voles by Iricinus larvae (estimate = −1.923, p = .039) but not by nymphs (estimate = −0.307, p = .772). Itrianguliceps larvae did not show a lower propensity to parasitize voles, regardless of host population composition (estimate = 0.875, p = .180), while nymphs parasitized shrews significantly more as vole abundance increased (estimate = 2.106, p = .002). These results indicate that common shrews may have the potential to act as a replacement host during periods of low rodent availability, but long‐term observations encompassing complete rodent cycles may determine whether shrews are able to maintain tick range expansion despite low rodent availability.  相似文献   

14.
This paper presents preliminary findings towards developing a UK‐specific approach to reducing public exposure to woodland questing Ixodes ricinus tick populations by harnessing existing biodiversity‐enhancing woodland ride (i.e., linear non‐wooded herbaceous habitat either side of track within woodland) management strategies. This preliminary study in an English woodland firstly assesses whether ecological and environmental factors determine presence and density of questing Ixodes ricinus along woodland rides. Secondly, it sets these findings in the context of woodland ride management guidelines in England in order to understand what impact ride management strategies might have on numbers of questing ticks and tick survival. Nymph and adult I. ricinus presence and abundance were modelled in relation to relevant microclimate and ecological parameter variables. Predictor variables for increased questing nymph abundance included ride orientation, mat depth, occurrence of bracken/bramble and animal tracks, ride/path width, and sward height. Ticks thrive in the ecotonal habitat of a woodland ride, therefore we urge woodland managers to consider the impact of their ride management on ticks and human exposure to ticks. Possible recommendations for mitigating questing I. ricinus in line with biodiversity management guidelines rides are discussed in this paper and include seasonal mowing regimes, management of mulch/mat, and bracken/bramble management through use of scalloped ride edges.  相似文献   

15.
The efficiency with which the spirochaete Borrelia burgdorferi sensu stricto was transmitted from laboratory mice to larval and nymphal Ixodes ricinus ticks was assessed, using the polymerase chain reaction. The transmission efficiency to nymphs was significantly greater than to larvae when both fed together on the same host. Increased tick infestation levels of mice were correlated with significantly greater engorgement weights and higher B. burgdorferi transmission coefficients from mice to nymphs. These observations indicate that both the feeding success of ticks and the transmission coefficients from host to tick may be influenced by the tick infestation level of an infected host. The infestation level and the relative numbers of each life stage of the tick are factors which should be considered in the design of transmission experiments.  相似文献   

16.
The prevalence of Borrelia burgdorferi sensu lato in several tick species was studied over a 2 year period in two ecologically different areas in Spain. One area was an endemic area for Lyme disease, with a number of autochthonous human cases and supported large populations of Ixodes ricinus on cattle and birds; the second area was characterized by the absence of I. ricinus together with the presence of foxes and their associated tick species. While I. ricinus was the main vector of B. burgdoreri in the endemic area (with a mean prevalence of 14% in adults and 51% in nymphs), adults of both Ixodes canisuga and Ixodes hexagonus had high rates of B. burgdorferi prevalence (30 and 28%, respectively) in the zone where I. ricinus was absent. Immatures of Ixodes frontalis were found to be carriers of the spirochete only in those zones where I. ricinus is present, suggesting evidence for reservoir competence in a tick-bird cycle.  相似文献   

17.
In Europe the most important hosts maintaining Ixodes ricinus tick populations are deer. Therefore, excluding deer by fencing or culling are potential tick management tools. Here we test the hypothesis that deer act as vehicles for moving ticks between two distinct habitats: forest and open heather moorland. We utilised an ideal “natural experiment” whereby forests were either fenced or unfenced to prevent or allow deer to move between habitats. We aimed to test the hypothesis that deer cause a net movement of ticks from high tick density areas, i.e. forests, to low tick density areas, i.e. open moorland. We recorded I. ricinus and host abundance in 10 unfenced and seven fenced forests and their respective surrounding heather moorland. We found that fenced forests had fewer deer and fewer I. ricinus nymphs than unfenced forests. However, we found no evidence that fencing forests reduced I. ricinus abundance on adjacent heather moorland. Thus there was insufficient evidence for our hypothesis that deer cause a net movement of ticks from forest onto adjacent moorland. However, we found that deer abundance generally correlates with I. ricinus abundance. We conclude that fencing can be used as a tool to reduce ticks and disease risk in forests, but that fencing forests is unlikely to reduce ticks or disease risk on adjacent moorland. Instead, reducing deer numbers could be a potential tool to reduce tick abundance with implications for disease mitigation.  相似文献   

18.
Many haematophagous ectoparasites use carbon dioxide (CO2) and host odour to detect and locate their hosts. The tick Ixodes ricinus (Linnaeus) (Ixodida: Ixodidae) walks only small distances and quests in vegetation until it encounters a host. The differential effects of CO2 and host odour on the host‐finding behaviour of I. ricinus have, however, never been clarified and hence represent the subject of this study. The effects of CO2 and odour from bank voles on the activation and attraction of I. ricinus nymphs were analysed in a Y‐tube olfactometer. Carbon dioxide evoked a response in the absence and presence of host odour, but did not attract nymphs. Host odour, however, did not evoke a response but did attract nymphs in the absence and presence of CO2. The current results show that CO2 is an activator, but not an attractant, and that host odour is an attractant, but not an activator, of I. ricinus nymphs, and provide ecological insights into the host‐finding behaviour of I. ricinus.  相似文献   

19.
The etiologic agent of granulocytic anaplasmosis, Anaplasma phagocytophilum, has a circum-global distribution within the northern hemisphere and shows a host species predilection that varies by the geographic region in which the disease is found. Adaptation by the bacterium to a host species potentially contributes to the variation found worldwide but this is confounded by the bacterium's relationship with its tick vectors, all of which belong to the Ixodes ricinus group. We tested the hypothesis that tick vector species collected from geographic regions sympatric with particular A. phagocytophilum strains will show evidence of a higher degree of vector competence than will tick species and allopatric A. phagocytophilum strains. A reciprocal cross-transmission experiment was performed using an eastern and a western North American strain of A. phagocytophilum (Webster and MRK, respectively) and the two tick species, I. scapularis and I. pacificus, most commonly associated with human and animal transmission of the bacteria in the United States. The western tick, I. pacificus, showed a significantly higher vector competence for A. phagocytophilum than I. scapularis and the eastern isolate, Webster, was more transmissible than its western counterpart, MRK. These results indicate that geographic variation in host susceptibility to A. phagocytophilum strains may play a more important role in the epidemiology of granulocytic anaplasmosis than does the competence of its tick vectors to transmit the pathogen.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号