共查询到20条相似文献,搜索用时 15 毫秒
1.
Patrick A. Guerra 《Biological reviews of the Cambridge Philosophical Society》2011,86(4):813-835
A life‐history trade‐off exists between flight capability and reproduction in many wing dimorphic insects: a long‐winged morph is flight‐capable at the expense of reproduction, while a short‐winged morph cannot fly, is less mobile, but has greater reproductive output. Using meta‐analyses, I investigated specific questions regarding this trade‐off. The trade‐off in females was expressed primarily as a later onset of egg production and lower fecundity in long‐winged females relative to short‐winged females. Although considerably less work has been done with males, the trade‐off exists for males among traits primarily related to mate acquisition. The trade‐off can potentially be mitigated in males, as long‐winged individuals possess an advantage in traits that can offset the costs of flight capability such as a shorter development time. The strength and direction of trends differed significantly among insect orders, and there was a relationship between the strength and direction of trends with the relative flight capabilities between the morphs. I discuss how the trade‐off might be both under‐ and overestimated in the literature, especially in light of work that has examined two relevant aspects of wing dimorphic species: (1) the effect of flight‐muscle histolysis on reproductive investment; and (2) the performance of actual flight by flight‐capable individuals. 相似文献
2.
This study combines path analysis with quantitative genetics to analyse a key life history trade-off in the cricket, Gryllus firmus. We develop a path model connecting five traits associated with the trade-off between flight capability and reproduction and test this model using phenotypic data and estimates of breeding values (best linear unbiased predictors) from a half-sibling experiment. Strong support by both types of data validates our causal model and indicates concordance between the phenotypic and genetic expression of the trade-off. Comparisons of the trade-off between sexes and wing morphs reveal that these discrete phenotypes are not genetically independent and that the evolutionary trajectories of the two wing morphs are more tightly constrained to covary than those of the two sexes. Our results illustrate the benefits of combining a quantitative genetic analysis, which examines statistical correlations between traits, with a path model that focuses upon the causal components of variation. 相似文献
3.
In the wing dimorphic sand cricket, Gryllus firmus, there is a pronounced trade-off between flight capability and fecundity. This trade-off is found both between morphs and within the macropterous morph, in which fecundity is negatively correlated with the mass of the principle flight muscles, the dorso-longitudinal muscles (DLM). In this paper, we examine how this trade-off is affected by a reduction in food and its genetic basis. We find that the relative fitness of the two wing morphs is not changed although both fecundity and DLM mass are decreased. A quantitative genetic analysis shows that the trade-off function is genetically variable but that most of the variation occurs in the intercept rather than the slope of the function. Analysis further indicates a very high genetic correlation between environments (food ration) supporting the hypothesis of a strong functional constraint between reproduction and flight capability. 相似文献
4.
Quantitative genetic theory assumes that trade-offs are best represented by bivariate normal distributions. This theory predicts that selection will shift the trade-off function itself and not just move the mean trait values along a fixed trade-off line, as is generally assumed in optimality models. As a consequence, quantitative genetic theory predicts that the trade-off function will vary among populations in which at least one of the component traits itself varies. This prediction is tested using the trade-off between call duration and flight capability, as indexed by the mass of the dorsolateral flight muscles, in the macropterous morph of the sand cricket. We use four different populations of crickets that vary in the proportion of macropterous males (Lab = 33%, Florida = 29%, Bermuda = 72%, South Carolina = 80%). We find, as predicted, that there is significant variation in the intercept of the trade-off function but not the slope, supporting the hypothesis that trade-off functions are better represented as bivariate normal distributions rather than single lines. We also test the prediction from a quantitative genetical model of the evolution of wing dimorphism that the mean call duration of macropterous males will increase with the percentage of macropterous males in the population. This prediction is also supported. Finally, we estimate the probability of a macropterous male attracting a female, P, as a function of the relative time spent calling (P = time spent calling by macropterous male/(total time spent calling by both micropterous and macropterous male). We find that in the Lab and Florida populations the probability of a female selecting the macropterous male is equal to P, indicating that preference is due simply to relative call duration. But in the Bermuda and South Carolina populations the probability of a female selecting a macropterous male is less than P, indicating a preference for the micropterous male even after differences in call duration are accounted for. 相似文献
5.
A growing number of studies are suggesting that females can improve the viability of their embryos by mating with multiple males. However, the reason why females should have low rates of embryo viability is puzzling. Here we conduct a quantitative genetic study of maternal effects on embryo viability in the field cricket Teleogryllus oceanicus. After controlling for female body size, we find significant additive genetic variance for ovary weight, a measure of fecundity, and egg hatching success, a measure of embryo viability. Moreover, we show a genetic trade-off between these traits that is predicted from life-history theory. High rates of embryo mortality in this highly fecund species might therefore be explained by selection favouring an optimum balance between fecundity and embryo viability that maximizes maternal fitness. Paternal effects on female fecundity and embryo viability are often seen as benefits driving the evolution of polyandrous behaviour. However, we raise the alternative possibility that paternal effects might shift females from their naturally selected optimum, and present some support for the notion that sexual conflict over a female's optimal fecundity and embryo viability might generate antagonistic coevolution between the sexes. 相似文献
6.
Piotr K. Rowiński Björn Rogell 《Evolution; international journal of organic evolution》2017,71(5):1339-1351
Adaptive evolutionary responses are determined by the strength of selection and amount of genetic variation within traits, however, both are known to vary across environmental conditions. As selection is generally expected to be strongest under stressful conditions, understanding how the expression of genetic variation changes across stressful and benign environmental conditions is crucial for predicting the rate of adaptive change. Although theory generally predicts increased genetic variation under stress, previous syntheses of the field have found limited support for this notion. These studies have focused on heritability, which is dependent on other environmentally sensitive, but nongenetic, sources of variation. Here, we aim to complement these studies with a meta‐analysis in which we examine changes in coefficient of variation (CV) in maternal, genetic, and residual variances across stressful and benign conditions. Confirming previous analyses, we did not find any clear direction in how heritability changes across stressful and benign conditions. However, when analyzing CV, we found higher genetic and residual variance under highly stressful conditions in life‐history traits but not in morphological traits. Our findings are of broad significance to contemporary evolution suggesting that rapid evolutionary adaptive response may be mediated by increased evolutionary potential in stressed populations. 相似文献
7.
Stability of genetic variance and covariance for reproductive characters in the face of climate change in a wild bird population 总被引:1,自引:1,他引:1
Global warming has had numerous effects on populations of animals and plants, with many species in temperate regions experiencing environmental change at unprecedented rates. Populations with low potential for adaptive evolutionary change and plasticity will have little chance of persistence in the face of environmental change. Assessment of the potential for adaptive evolution requires the estimation of quantitative genetic parameters, but it is as yet unclear what impact, if any, global warming will have on the expression of genetic variances and covariances. Here we assess the impact of a changing climate on the genetic architecture underlying three reproductive traits in a wild bird population. We use a large, long-term, data set collected on great tits (Parus major) in Wytham Woods, Oxford, and an 'animal model' approach to quantify the heritability of, and genetic correlations among, laying date, clutch size and egg mass during two periods with contrasting temperature conditions over a 40-year period (1965-1988 [cooler] vs. 1989-2004 [warmer]). We found significant additive genetic variance and heritability for all traits under both temperature regimes. We also found significant negative genetic covariances and correlations between clutch size and egg weight during both periods, and among laying date and clutch size in the colder years only. The overall G matrix comparison among periods, however, showed only a minor difference among periods, thus suggesting that genotype by environment interactions are negligible in this context. Our results therefore suggest that despite substantial changes in temperature and in mean laying date phenotype over the last decades, and despite the large sample sizes available, we are unable to detect any significant change in the genetic architecture of the reproductive traits studied. 相似文献
8.
Fitness depends on both the resources that individuals acquire and the allocation of those resources to traits that influence survival and reproduction. Optimal resource allocation differs between females and males as a consequence of their fundamentally different reproductive strategies. However, because most traits have a common genetic basis between the sexes, conflicting selection between the sexes over resource allocation can constrain the evolution of optimal allocation within each sex, and generate trade‐offs for fitness between them (i.e. ‘sexual antagonism’ or ‘intralocus sexual conflict’). The theory of resource acquisition and allocation provides an influential framework for linking genetic variation in acquisition and allocation to empirical evidence of trade‐offs between distinct life‐history traits. However, these models have not considered the emergence of trade‐offs within the context of sexual dimorphism, where they are expected to be particularly common. Here, we extend acquisition–allocation theory and develop a quantitative genetic framework for predicting genetically based trade‐offs between life‐history traits within sexes and between female and male fitness. Our models demonstrate that empirically measurable evidence of sexually antagonistic fitness variation should depend upon three interacting factors that may vary between populations: (1) the genetic variances and between‐sex covariances for resource acquisition and allocation traits, (2) condition‐dependent expression of resource allocation traits and (3) sex differences in selection on the allocation of resource to different fitness components. 相似文献
9.
Derek A. Roff 《Journal of evolutionary biology》1995,8(4):405-419
Morphological dimorphisms are found in many different taxa. Wing dimorphism in insects, in which some individuals possess wings and associated flight muscles and are thus volant while others lack a functional flight apparatus and are thus flightless, is a typical example of such types of dimorphisms. It has been extensively studied and such studies have demonstrated that the volant form, although possessing the advantage of flight capability, suffers a fitness cost in a delay in the onset of reproduction after emergence into the adult form and a reduced fecundity. Previous comparative analyses have suggested that there is no consistent trend for development time (hatching to adult) to differ between the two morphs. The present study analyses the phenotypic and genetic correlations between development time and wing morph in the cricket Gryllus firmus. It is shown that the macropterous (volant) morph develops faster than the micropterous (flightless morph). This trade-off is manifested at both thephenotypic and genetic level. Further, a comparative analysis shows that the same phenotypic trade-off is generally found in other Orthopteran species so far studied, but in other orders the micropterous morph develops faster. Provided that the phenotypic trade-off is genetically based, in the Orthoptera the fitness advantage of the earlier onset of reproduction in micropterous females is offset by the extended development time (antagonistic pleiotropy). However, in other orders there is reinforcing pleiotropy in that the micropterous females develop faster and reproduce sooner than the macropterous morph. These results highlight the complexity of fitness interactions and the need to study a phenomenon across several taxa. 相似文献
10.
Polymorphism often corresponds to alternative mating tactics in males, but much less is known about this relationship in females. However, recent work suggests that selection for alternative reproductive strategies in females can maintain genetic variation in important life-history traits. Brown anole lizards (Anolis sagrei) exhibit a genetically based polymorphism in dorsal pattern that is expressed only by females, which occur in bar (B), diamond (D) and intermediate diamond-bar (DB) morphs. Here, we use a combination of natural history data, captive breeding studies and phenotypic manipulations of reproductive investment to test the hypothesis that this polymorphism corresponds to morph-specific patterns of reproductive investment. Three years of data from wild females and two generations of captive breeding revealed no differences among morphs in the frequency of egg production or in the number, frequency, size or sex ratio of offspring. Manipulations of reproductive investment via surgical ovariectomy revealed significant costs of reproduction with respect to survival, growth, immune function and haematocrit, but the magnitudes of these costs did not differ among morphs. Collectively, our results refute the hypothesis that this sex-limited polymorphism is maintained by selection for alternative reproductive strategies. We compare this finding to other systems in which polymorphic females exhibit alternative reproductive tactics and discuss other selective factors that could maintain polymorphism in anoles. 相似文献
11.
A negative, genetic correlation between the total number and average size of progeny is a classical life‐history trade‐off that can greatly affect the fitness of organisms in their natural environments. This trade‐off has been investigated for animals and for sexually reproducing plants. However, evidence for a genetical size‐number trade‐off for clonal progeny in plants is still scarce. This study provides experimental evidence for such a trade‐off in the stoloniferous herb Potentilla reptans, and it studies phenotypic plasticity to light availability for the involved traits. Genotypes of P. reptans were collected from distinctively different environments, clonally replicated and exposed to high light and to shaded conditions. We found a significant negative correlation between the average size and the total number of offspring across genotypes for both light environments. Shading reduced ramet numbers, but hardly affected average ramet size. 相似文献
12.
13.
To make long-term predictions using present quantitative genetic theory it is necessary to assume that the genetic variance–covariance matrix ( G ) remains constant or at least changes by a constant fraction. In this paper we examine the stability of the genetic architecture of two traits known to be subject to natural selection; femur length and ovipositor length in two species of the cricket Allonemobius. Previous studies have shown that in A. fasciatus and A. socius natural selection favours an increased body size southwards but a decreased ovipositor length. Such countergradient selection should tend to favour a change in G . In the total sample of eight populations of A. socius and one of A. fasciatus we show that there is significant variation in all genetic covariance components, i.e. VA for body size, VA for ovipositor length, and CovA. This variation results entirely from an increase in the covariances of A. fasciatus. However, although larger, these components are approximately proportionally increased, thereby leading to no statistically significant change in the genetic correlation. A proportional increase in the covariance components is consistent with changes resulting from genetic drift. On the other hand, the genetic covariance components are significantly correlated with the length of the growing season suggesting that the change in the genetic architecture is the result of selection and drift. 相似文献
14.
15.
Derek A. Roff Timothy A. Mousseau Daniel J. Howard 《Evolution; international journal of organic evolution》1999,53(1):216-224
Predictions using quantitative genetic models generally assume that the variance-covariance matrices remain constant over time. This assumption is based on the supposition that selection is generally weak and hence variation lost through selection can be replaced by new mutations. Whether this is generally true can only be ascertained from empirical studies. Ideally for such a study we should be able to make a prediction concerning the relative strength of selection versus genetic drift. If the latter force is prevalent then the variance-covariances matrices should be proportional to each other. Previous studies have indicated that females in the two sibling cricket species Allonemobius socius and A. fasciatus do not discriminate between males of the two species by their calling song. Therefore, differences between the calling song of the two males most likely result from drift rather than sexual selection. We test this hypothesis by comparing the genetic architecture of calling song of three populations of A. fasciatus with two populations of A. socius. We found no differences among populations within species, but significant differences in the G (genetic) and P (phenotypic) matrices between species, with the matrices being proportional as predicted under the hypothesis of genetic drift. Because of the proportional change in the (co)variances no differences between species are evident in the heritabilities or genetic correlations. Comparison of the two species with a hybrid population from a zone of overlap showed highly significant nonproportional variation in genetic architecture. This variation is consistent with a general mixture of two separate genomes or selection. Qualitative conclusions reached using the phenotypic matrices are the same as those reached using the genetic matrices supporting the hypothesis that the former may be used as surrogate measures of the latter. 相似文献
16.
Gregory E. Blomquist 《Biology letters》2009,5(3):339-342
Trade-offs are central to life-history theory but difficult to document. Patterns of phenotypic and genetic correlations in rhesus macaques, Macaca mulatta—a long-lived, slow-reproducing primate—are used to test for a trade-off between female age of first reproduction and adult survival. A strong positive genetic correlation indicates that female macaques suffer reduced adult survival when they mature relatively early and implies primate senescence can be explained, in part, by antagonistic pleiotropy. Contrasts with a similar human study implicate the extension of parental effects to later ages as a potential mechanism for circumventing female life-history trade-offs in human evolution. 相似文献
17.
The underlying genetic basis of life-history traits in free-ranging animals is critical to the effects of selection on such traits, but logistical constraints mean that such data are rarely available. Our long-term ecological studies on free-ranging oviparous snakes (keelbacks, Tropidonophis mairii (Gray, 1841), Colubridae) on an Australian floodplain provide the first such data for any tropical reptile. All size-corrected reproductive traits (egg mass, clutch size, clutch mass and post-partum maternal mass) were moderately repeatable between pairs of clutches produced by 69 female snakes after intervals of 49-1152 days, perhaps because maternal body condition was similar between clutches. Parent-offspring regression of reproductive traits of 59 pairs of mothers and daughters revealed high heritability for egg mass (h2= 0.73, SE=0.24), whereas heritability for the other three traits was low (< 0.37). The estimated heritability of egg mass may be inflated by maternal effects such as differential allocation of yolk steroids to different-sized eggs. High heritability of egg size may be maintained (rather than eroded by stabilizing selection) because selection acts on a trait (hatchling size) that is determined by the interaction between egg size and incubation substrate rather than by egg size alone. Variation in clutch size was mainly because of environmental factors (h2=0.04), indicating that one component of the trade-off between egg size and clutch size is under much tighter genetic control than the other. Thus, the phenotypic trade-off between egg size and egg number in keelback snakes occurs because each female snake must allocate a finite amount of energy into eggs of a genetically determined size. 相似文献
18.
Learning ability and immunity to parasites are linked at the physiological level in several insect species. The aim of this work was to investigate the relationship between learning and immunity at an evolutionary level. We tested whether selection for improved learning ability in Drosophila melanogaster led to changes in parasitoid resistance as a correlated response. Similarly, we assayed whether selection for better parasitoid resistance led to a change in learning ability. There was no significant difference between selected and control lines in either case; the estimated confidence intervals for the differences indicate that a trade-off relationship is unlikely. 相似文献
19.
1. Functional wing polymorphism in insects is an intriguing topic, especially with respect to the adaptive advantage of each wing morph. The common pygmy grasshopper in Germany, Tetrix subulata, displays wing polymorphism skewed towards macropterous (LW) individuals capable of flight. Furthermore, T. subulata is known to undergo adult diapause in winter and reproduce in spring. 2. Morphometric and biochemical parameters were examined in field‐collected grasshoppers during autumn and spring to obtain a ‘snapshot’ from the same/one cohort of grasshoppers in the wild. 3. Flight muscles are largely reduced in brachypterous (SW) specimens, whereas they are well developed in LW individuals. Body mass measurements indicated gain in female T. subulata in spring, especially in LW morphs, which could be attributed to increased reproductive activity (egg production). 4. Metabolic fuel in haemolymph is differentially distributed in autumn: the concentration of lipids is highest in males, while carbohydrates are most abundant in LW specimens. The metabolic data imply that dispersal in T. subulata is predominantly in autumn, by flight in the case of LW specimens and by hopping/walking in males. 5. The season seems to be an important factor for the reproductive versus dispersal trade‐off in this species. Moreover, this study shows that morphological differences in T. subulata individuals are reflected in physiological differences that may ultimately affect behaviour and ecology. 相似文献
20.