首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cai L  Makhov AM  Schafer DA  Bear JE 《Cell》2008,134(5):828-842
The dendritic actin network generated by the Arp2/3 complex in lamellipodia underlies formation of protrusions, directional sensing, and migration. While the generation of this network is well studied, the mechanisms regulating network disassembly are poorly understood. We report that Coronin 1B disassembles Arp2/3-containing actin filament branches by inducing Arp2/3 dissociation. This activity is antagonized by Cortactin, a filament branch stabilizer. Consistent with this biochemical competition, depletion of both proteins partially rescues defects in lamellipodial dynamics observed upon depletion of either protein alone. Coronin 1B targets actin branches in a manner that is mutually exclusive with the Arp2/3 complex and alters the branch angle. We conclude that Coronin 1B replaces the Arp2/3 complex at actin filament branches as the dendritic network matures and drives the turnover of branched actin networks.  相似文献   

2.
Regulated assembly of actin-filament networks provides the mechanical force that pushes forward the leading edge of motile eukaryotic cells and intracellular pathogenic bacteria and viruses. When activated by binding to actin filaments and to the WA domain of Wiskott-Aldrich-syndrome protein (WASP)/Scar proteins, the Arp2/3 complex nucleates new filaments that grow from their barbed ends. The Arp2/3 complex binds to the sides and pointed ends of actin filaments, localizes to distinctive 70 degrees actin-filament branches present in lamellae, and forms similar branches in vitro. These observations have given rise to the dendritic nucleation model for actin-network assembly, in which the Arp2/3 complex initiates branches on the sides of older filaments. Recently, however, an alternative mechanism for branch formation has been proposed. In the 'barbed-end nucleation' model, the Arp2/3 complex binds to the free barbed end of a filament and two filaments subsequently grow from the branch. Here we report the use of kinetic and microscopic experiments to distinguish between these models. Our results indicate that the activated Arp2/3 complex preferentially nucleates filament branches directly on the sides of pre-existing filaments.  相似文献   

3.
BACKGROUND: Cellular movements are powered by the assembly and disassembly of actin filaments. Actin dynamics are controlled by Arp2/3 complex, the Wiskott-Aldrich syndrome protein (WASp) and the related Scar protein, capping protein, profilin, and the actin-depolymerizing factor (ADF, also known as cofilin). Recently, using an assay that both reveals the kinetics of overall reactions and allows visualization of actin filaments, we showed how these proteins co-operate in the assembly of branched actin filament networks. Here, we investigated how they work together to disassemble the networks. RESULTS: Actin filament branches formed by polymerization of ATP-actin in the presence of activated Arp2/3 complex were found to be metastable, dissociating from the mother filament with a half time of 500 seconds. The ADF/cofilin protein actophorin reduced the half time for both dissociation of gamma-phosphate from ADP-Pi-actin filaments and debranching to 30 seconds. Branches were stabilized by phalloidin, which inhibits phosphate dissociation from ADP-Pi-filaments, and by BeF3, which forms a stable complex with ADP and actin. Arp2/3 complex capped pointed ends of ATP-actin filaments with higher affinity (Kd approximately 40 nM) than those of ADP-actin filaments (Kd approximately 1 microM), explaining why phosphate dissociation from ADP-Pi-filaments liberates branches. Capping protein prevented annealing of short filaments after debranching and, with profilin, allowed filaments to depolymerize at the pointed ends. CONCLUSIONS: The low affinity of Arp2/3 complex for the pointed ends of ADP-actin makes actin filament branches transient. By accelerating phosphate dissociation, ADF/cofilin promotes debranching. Barbed-end capping proteins and profilin allow dissociated branches to depolymerize from their free pointed ends.  相似文献   

4.
The actin filament network at the leading edge of motile cells relies on localized branching by Arp2/3 complex from "mother" filaments growing near the plasma membrane. The nucleotide bound to the mother filaments (ATP, ADP and phosphate, or ADP) may influence the branch dynamics. To determine the effect of the nucleotide bound to the subunits of the mother filament on the formation and stability of branches, we compared the time courses of actin polymerization in bulk samples measured using the fluorescence of pyrene actin with observations of single filaments by total internal reflection fluorescence microscopy. Although the branch nucleation rate in bulk samples was nearly the same regardless of the nucleotide on the mother filaments, we observed fewer branches by microscopy on ADP-bound filaments than on ADP-P(i)-bound filaments. Observation of branches in the microscope depends on their binding to the slide. Since the probability that a branch binds to the slide is directly related to its lifetime, we used counts of branches to infer their rates of dissociation from mother filaments. We conclude that the nucleotide on the mother filament does not affect the initial branching event but that branches are an order of magnitude more stable on the sides of new ATP- or ADP-P(i) filaments than on ADP-actin filaments.  相似文献   

5.
A spectroscopic assay using pyrene-labeled fission yeast Arp2/3 complex revealed that the complex binds to and dissociates from actin filaments extremely slowly with or without the nucleation-promoting factor fission yeast Wsp1-VCA. Wsp1-VCA binds both Arp2/3 complex and actin monomers with high affinity. These two ligands have only modest impacts on the interaction of the other ligand with VCA. Simulations of a mathematical model based on the kinetic parameters determined in this study and elsewhere account for the full time course of actin polymerization in the presence of Arp2/3 complex and Wsp1-VCA and show that an activation step, postulated to follow binding of a ternary complex of Arp2/3 complex, a bound nucleation-promoting factor, and an actin monomer to an actin filament, has a rate constant at least 0.15 s(-1). Kinetic parameters determined in this study constrain the process of actin filament branch formation during cellular motility to one main pathway.  相似文献   

6.
Higgs HN  Blanchoin L  Pollard TD 《Biochemistry》1999,38(46):15212-15222
The 70 C-terminal amino acids of Wiskott-Aldrich syndrome protein (WASp WA) activate the actin nucleation activity of the Arp2/3 complex. WASp WA binds both the Arp2/3 complex and actin monomers, but the mechanism by which it activates the Arp2/3 complex is not known. We characterized the effect of WASp WA on actin polymerization in the absence and presence of the human Arp2/3 complex. WASp WA binds actin monomers with an apparent K(d) of 0.4 microM, inhibiting spontaneous nucleation and subunit addition to pointed ends, but not addition to barbed ends. A peptide containing only the WASp homology 2 motif behaves similarly but with a 10-fold lower affinity. In contrast to previously published results, neither WASp WA nor a similar region of the protein Scar1 significantly depolymerizes actin filaments under a variety of conditions. WASp WA and the Arp2/3 complex nucleate actin filaments, and the rate of this nucleation is a function of the concentrations of both WASp WA and the Arp2/3 complex. With excess WASp WA and <10 nM Arp2/3 complex, there is a 1:1 correspondence between the Arp2/3 complex and the concentration of filaments produced, but the filament concentration plateaus at an Arp2/3 complex concentration far below the cellular concentration determined to be 9.7 microM in human neutrophils. Preformed filaments increase the rate of nucleation by WASp WA and the Arp2/3 complex but not the number of filaments that are generated. We propose that filament side binding by the Arp2/3 complex enhances its activation by WASp WA.  相似文献   

7.
The actin-related protein 2/3 (Arp2/3) complex mediates the formation of branched actin filaments at the leading edge of motile cells and in the comet tails moving certain intracellular pathogens. Crystal structures of the Arp2/3 complex are available, but the architecture of the junction formed by the Arp2/3 complex at the base of the branch was not known. In this study, we use electron tomography to reconstruct the branch junction with sufficient resolution to show how the Arp2/3 complex interacts with the mother filament. Our analysis reveals conformational changes in both the mother filament and Arp2/3 complex upon branch formation. The Arp2 and Arp3 subunits reorganize into a dimer, providing a short-pitch template for elongation of the daughter filament. Two subunits of the mother filament undergo conformational changes that increase stability of the branch. These data provide a rationale for why branch formation requires cooperative interactions among the Arp2/3 complex, nucleation-promoting factors, an actin monomer, and the mother filament.  相似文献   

8.
Integration of signals to the Arp2/3 complex   总被引:14,自引:0,他引:14  
The Arp2/3 complex is necessary for nucleating the formation of branched networks of actin filaments at the cell cortex, and an increasing number of proteins able to activate the Arp2/3 complex have been described. The Wiskott-Aldrich syndrome protein (WASP) family and cortactin comprise the large majority of the known activators. WASPs bind to Arp2/3 via an acidic (A) domain, and a WH2 domain appears to bring an actin monomer to Arp2/3, promoting the nucleation of the new filament. Cortactin also binds the Arp2/3 complex via an A domain; however, it also binds to actin filaments, which helps activate the Arp2/3 complex and stabilise the newly created branches between the filaments.  相似文献   

9.
The WASP and cortactin families constitute two distinct classes of Arp2/3 modulators in mammalian cells. Physical and functional interactions among the Arp2/3 complex, VCA (a functional domain of N-WASP), and cortactin were examined under conditions that were with or without actin polymerization. In the absence of actin, cortactin binds significantly weaker to the Arp2/3 complex than VCA. At concentrations of VCA 20-fold lower than cortactin, the association of cortactin with the Arp2/3 complex was nearly abolished. Analysis of the cells infected with Shigella demonstrated that N-WASP located at the tip of the bacterium, whereas cortactin accumulated in the comet tail. Interestingly, cortactin promotes Arp2/3 complex-mediated actin polymerization and actin branching in the presence of VCA at a saturating concentration, and cortactin acquired 20 nm affinity for the Arp2/3 complex during actin polymerization. The interaction of VCA with the Arp2/3 complex was reduced in the presence of both cortactin and actin. Moreover, VCA reduced its affinity for Arp2/3 complex at branching sites that were stabilized by phalloidin. These data imply a novel mechanism for the de novo assembly of a branched actin network that involves a coordinated sequential interaction of N-WASP and cortactin with the Arp2/3 complex.  相似文献   

10.
Cortactin is a c-src substrate associated with sites of dynamic actin assembly at the leading edge of migrating cells. We previously showed that cortactin binds to Arp2/3 complex, the essential molecular machine for nucleating actin filament assembly. In this study, we demonstrate that cortactin activates Arp2/3 complex based on direct visualization of filament networks and pyrene actin assays. Strikingly, cortactin potently inhibited the debranching of filament networks. When cortactin was added in combination with the active VCA fragment of N-WASp, they synergistically enhanced Arp2/3-induced actin filament branching. The N-terminal acidic and F-actin binding domains of cortactin were both necessary to activate Arp2/3 complex. These results support a model in which cortactin modulates actin filament dendritic nucleation by two mechanisms, (1) direct activation of Arp2/3 complex and (2) stabilization of newly generated filament branch points. By these mechanisms, cortactin may promote the formation and stabilization of the actin network that drives protrusion at the leading edge of migrating cells.  相似文献   

11.
We investigate the issue of end versus side branching of actin filaments by Arp2/3 complex, using a combination of analytic theory, polymerization assays, and quantitative modeling. The analytic theory shows that the effect of capping protein on the initial stages of actin polymerization in the presence of Arp2/3 complex depends strongly on whether new Arp2/3 complex-induced branches grow from the sides or ends of existing filaments. Motivated by these results, we measure and quantitatively model the kinetics of actin polymerization in the presence of activated Arp2/3 complex, for a range of concentrations of capping protein. Our model includes the most important types of events involving actin and actin-binding proteins, and can be adjusted to include end branching, side branching, or both. The side-branching model gives a better fit to the experimental data than the end-branching model. An end-plus-side model including both types of branching gives a moderate improvement in the quality of the fit. Another side-branching model, based on aging of subunits' capacity for branch formation, gives a significantly better fit than the end-plus-side model. We discuss implications for actin polymerization in cells.  相似文献   

12.
The emergence of axonal filopodia is the first step in the formation of axon collateral branches. In vitro, axonal filopodia emerge from precursor cytoskeletal structures termed actin patches. However, nothing is known about the cytoskeletal dynamics of the axon leading to the formation of filopodia in the relevant tissue environment. In this study we investigated the role of the actin nucleating Arp2/3 complex in the formation of sensory axon actin patches, filopodia, and branches. By combining in ovo chicken embryo electroporation mediated gene delivery with a novel acute ex vivo spinal cord preparation, we demonstrate that actin patches form along sensory axons and give rise to filopodia in situ. Inhibition of Arp2/3 complex function in vitro and in vivo decreases the number of axonal filopodia. In vitro, Arp2/3 complex subunits and upstream regulators localize to actin patches. Analysis of the organization of actin filaments in actin patches using platinum replica electron microscopy reveals that patches consist of networks of actin filaments, and filaments in axonal filopodia exhibit an organization consistent with the Arp2/3-based convergent elongation mechanism. Nerve growth factor (NGF) promotes formation of axonal filopodia and branches through phosphoinositide 3-kinase (PI3K). Inhibition of the Arp2/3 complex impairs NGF/PI3K-induced formation of axonal actin patches, filopodia, and the formation of collateral branches. Collectively, these data reveal that the Arp2/3 complex contributes to the formation of axon collateral branches through its involvement in the formation of actin patches leading to the emergence of axonal filopodia.  相似文献   

13.
Both Arp2/3 complex and the Abl2/Arg nonreceptor tyrosine kinase are essential to form and maintain diverse actin-based structures in cells, including cell edge protrusions in fibroblasts and cancer cells and dendritic spines in neurons. The ability of Arg to promote cell edge protrusions in fibroblasts does not absolutely require kinase activity, raising the question of how Arg might modulate actin assembly and turnover in the absence of kinase function. Arg has two distinct actin-binding domains and interacts physically and functionally with cortactin, an activator of the Arp2/3 complex. However, it was not known whether and how Arg influences actin filament stability, actin branch formation, or cofilin-mediated actin severing or how cortactin influences these reactions of Arg with actin. Arg or cortactin bound to actin filaments stabilizes them from depolymerization. Low concentrations of Arg and cortactin cooperate to stabilize filaments by slowing depolymerization. Arg stimulates formation of actin filament branches by Arp2/3 complex and cortactin. An Arg mutant lacking the C-terminal calponin homology actin-binding domain stimulates actin branch formation by the Arp2/3 complex, indicative of autoinhibition. ArgΔCH can stimulate the Arp2/3 complex even in the absence of cortactin. Arg greatly potentiates cofilin severing of actin filaments, and cortactin attenuates this enhanced severing. The ability of Arg to stabilize filaments, promote branching, and increase severing requires the internal (I/L)WEQ actin-binding domain. These activities likely underlie important roles that Arg plays in the formation, dynamics, and stability of actin-based cellular structures.  相似文献   

14.
Actin is a highly ubiquitous protein in eukaryotic cells that plays a crucial role in cell mechanics and motility. Cell motility is driven by assembling actin as polymerizing actin drives cell protrusions in a process closely involving a host of other actin-binding proteins, notably the actin-related protein 2/3 (Arp2/3) complex, which nucleates actin and forms branched filamentous structures. The Arp2/3 complex preferentially binds specific actin networks at the cell leading edge and forms branched filamentous structures, which drive cell protrusions, but the exact regulatory mechanism behind this process is not well understood. Here we show using in vitro imaging and binding assays that a fragment of the actin-binding protein caldesmon added to polymerizing actin increases the Arp2/3-mediated branching activity, whereas it has no effect on branch formation when binding to aged actin filaments. Because this caldesmon effect is shown to be independent of nucleotide hydrolysis and phosphate release from actin, our results suggest a mechanism by which caldesmon maintains newly polymerized actin in a distinct state that has a higher affinity for the Arp2/3 complex. Our data show that this new state does not affect the level of cooperativity of binding by Arp2/3 complex or its distribution on actin. This presents a novel regulatory mechanism by which caldesmon, and potentially other actin-binding proteins, regulates the interactions of actin with its binding partners.  相似文献   

15.
BACKGROUND: Modulation of actin cytoskeleton assembly is an integral step in many cellular events. A key regulator of actin polymerization is Arp2/3 complex. Cortactin, an F-actin binding protein that localizes to membrane ruffles, is an activator of Arp2/3 complex. RESULTS: A yeast two-hybrid screen revealed the interaction of the cortactin Src homology 3 (SH3) domain with a peptide fragment derived from a cDNA encoding a region of WASp-Interacting Protein (WIP). GST-cortactin interacted with WIP in an SH3-dependent manner. The subcellular localization of cortactin and WIP coincided at the cell periphery. WIP increased the efficiency of cortactin-mediated Arp2/3 complex activation of actin polymerization in a concentration-dependent manner. Lastly, coexpression of cortactin and WIP stimulated membrane protrusions. CONCLUSIONS: WIP, a protein involved in filopodia formation, binds to both actin monomers and cortactin. Thus, recruitment of actin monomers to a cortactin-activated Arp2/3 complex likely leads to the observed increase in cortactin activation of Arp2/3 complex by WIP. These data suggest that a cortactin-WIP complex functions in regulating actin-based structures at the cell periphery.  相似文献   

16.
Actin-related protein 2 and 3 (Arp2/3) complex forms a dendritic network of actin filaments during endocytosis and cellular locomotion by nucleating branches on the sides of preexisting actin filaments. Reconstructions of electron tomograms of branch junctions show how Arp2/3 complex anchors the branch, with Arp2 and Arp3 serving as the first two subunits of the branch. Our aim was to characterize the massive conformational change that moves Arp2 ∼30 Å from its position in crystal structures of inactive Arp2/3 complex to its position in branch junctions. Starting with the inactive crystal structure, we used atomistic-scale molecular dynamics simulations to drive Arp2 toward the position observed in branch junctions. When we applied forces to Arp2 while restraining Arp3, one block of structure (Arp2, subunit ARPC1, the globular domain of ARPC4 and ARPC5) rotated counterclockwise by 30° around a pivot point in an α-helix of ARPC4 (Glu81-Asn100) to align Arp2 next to Arp3 in a second block of structure including ARPC3 and the globular domains of ARPC2. This active structure buried more surface area than the inactive conformation. The complex was stable in all simulations. In most simulations, collisions of subdomain 2 of Arp2 with Arp3 impeded the movement of Arp2.  相似文献   

17.
The Arp2/3 complex nucleates and cross-links actin filaments at the leading edge of motile cells, and its activity is stimulated by C-terminal regions of WASP/Scar proteins, called VCA domains. VCA domains contain a verprolin homology sequence (V) that binds monomeric actin and central (C) and acidic sequences (A) that bind the Arp2/3 complex. Here we show that the C domain binds to monomeric actin with higher affinity (K(d) = 10 microm) than to the Arp2/3 complex (K(d) > 200 microm). Nuclear magnetic resonance spectroscopy reveals that actin binds to the N-terminal half of the C domain and that both the V and C domains can bind actin independently and simultaneously, indicating that they interact with different sites. Mutation of conserved hydrophobic residues in the actin-binding interface of the C domain disrupts activation of the Arp2/3 complex but does not alter affinity for the complex. By chemical cross-linking the C domain interacts with the p40 subunit of the Arp2/3 complex and, by fluorescence polarization anisotropy, the binding of actin and the Arp2/3 complex are mutually exclusive. Our results indicate that both actin and Arp2/3 binding are important for C domain function but that the C domain does not form a static bridge between the two. We propose a model for activation of the Arp2/3 complex in which the C domain first primes the complex by inducing a necessary conformational change and then initiates nucleus assembly by bringing an actin monomer into proximity of the primed complex.  相似文献   

18.
The actin filament network immediately under the plasma membrane at the leading edge of rapidly moving cells consists of short, branched filaments, while those deeper in the cortex are much longer and are rarely branched. Nucleation by the Arp2/3 complex activated by membrane-bound factors (Rho-family GTPases and PIP(2)) is postulated to account for the formation of the branched network. Tropomyosin (TM) binds along the sides of filaments and protects them from severing proteins and pointed-end depolymerization in vitro. Here, we show that TM inhibits actin filament branching and nucleation by the Arp2/3 complex activated by WASp-WA. Tropomyosin increases the lag at the outset of polymerization, reduces the concentration of ends by 75%, and reduces the number of branches by approximately 50%. We conclude that TM bound to actin filaments inhibits their ability to act as secondary activators of nucleation by the Arp2/3 complex. This is the first example of inhibition of branching by an actin binding protein. We suggest that TM suppresses the nucleation of actin filament branches from actin filaments in the deep cortex of motile cells. Other abundant actin binding proteins may also locally regulate the branching nucleation by the Arp2/3 complex in cells.  相似文献   

19.
A role of Arp2/3 complex in lamellipodia is well established, whereas its roles in filopodia formation remain obscure. We addressed this question in neuronal cells, in which motility is heavily based on filopodia, and we found that Arp2/3 complex is involved in generation of both lamellipodia and filopodia in growth cones, and in neuritogenesis, the processes thought to occur largely in Arp2/3 complex-independent manner. Depletion of Arp2/3 complex in primary neurons and neuroblastoma cells by small interfering RNA significantly decreased the F-actin contents and inhibited lamellipodial protrusion and retrograde flow in growth cones, but also initiation and dynamics of filopodia. Using electron microscopy, immunochemistry, and gene expression, we demonstrated the presence of the Arp2/3 complex-dependent dendritic network of actin filaments in growth cones, and we showed that individual actin filaments in filopodia originated at Arp2/3 complex-dependent branch points in lamellipodia, thus providing a mechanistic explanation of Arp2/3 complex functions during filopodia formation. Additionally, Arp2/3 complex depletion led to formation of multiple neurites, erratic pattern of neurite extension, and excessive formation of stress fibers and focal adhesions. Consistent with this phenotype, RhoA activity was increased in Arp2/3 complex-depleted cells, indicating that besides nucleating actin filaments, Arp2/3 complex may influence cell motility by altering Rho GTPase signaling.  相似文献   

20.
Glia maturation factor (GMF) is a member of the actin-depolymerizing factor (ADF)/cofilin family. ADF/cofilin promotes disassembly of aged actin filaments, whereas GMF interacts specifically with Arp2/3 complex at branch junctions and promotes debranching. A distinguishing feature of ADF/cofilin is that it binds tighter to ADP-bound than to ATP-bound monomeric or filamentous actin. The interaction is also regulated by phosphorylation at Ser-3 of mammalian cofilin, which inhibits binding to actin. However, it is unknown whether these two factors play a role in the interaction of GMF with Arp2/3 complex. Here we show using isothermal titration calorimetry that mammalian GMF has very low affinity for ATP-bound Arp2/3 complex but binds ADP-bound Arp2/3 complex with 0.7 μm affinity. The phosphomimetic mutation S2E in GMF inhibits this interaction. GMF does not bind monomeric ATP- or ADP-actin, confirming its specificity for Arp2/3 complex. We further show that mammalian Arp2/3 complex nucleation activated by the WCA region of the nucleation-promoting factor N-WASP is not affected by GMF, whereas nucleation activated by the WCA region of WAVE2 is slightly inhibited at high GMF concentrations. Together, the results suggest that GMF functions by a mechanism similar to that of other ADF/cofilin family members, displaying a preference for ADP-Arp2/3 complex and undergoing inhibition by phosphorylation of a serine residue near the N terminus. Arp2/3 complex nucleation occurs in the ATP state, and nucleotide hydrolysis promotes debranching, suggesting that the higher affinity of GMF for ADP-Arp2/3 complex plays a physiological role by promoting debranching of aged branch junctions without interfering with Arp2/3 complex nucleation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号